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Abstract Anomaly detection (AD) is a fundamental

task for time-series analytics with important implica-

tions for the downstream performance of many appli-

cations. In contrast to other domains where AD mainly

focuses on point-based anomalies (i.e., outliers in stan-

dalone observations), AD for time series is also con-

cerned with range-based anomalies (i.e., outliers span-

ning multiple observations). Nevertheless, it is com-

mon to use traditional point-based information retrieval

measures, such as Precision, Recall, and F-score, to as-

sess the quality of methods by thresholding the anomaly

score to mark each point as an anomaly or not. How-

ever, mapping discrete labels into continuous data in-

troduces unavoidable shortcomings, complicating the

evaluation of range-based anomalies. Notably, the choice

of evaluation measure may significantly bias the exper-

imental outcome. Despite over six decades of attention,

there has never been a large-scale systematic quantita-

tive and qualitative analysis of time-series AD evalua-

tion measures. This paper extensively evaluates qual-

ity measures for time-series AD to assess their robust-

ness under noise, misalignments, and different anomaly

cardinality ratios. Our results indicate that measures

producing quality values independently of a threshold

(i.e., AUC-ROC and AUC-PR) are more suitable for

time-series AD. Motivated by this observation, we first

extend the AUC-based measures to account for range-

based anomalies. Then, we introduce a new family of

parameter-free and threshold-independent measures, Vol-

ume Under the Surface (VUS), to evaluate methods

while varying parameters. We also introduce two op-

timized implementations for VUS that reduce signif-
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(a) Robustness evaluation to lag evaluated over 678 data series  

(b) Robustness evaluation to noise evaluated over 678 data series  

(c) Robustness evaluation to normal/abnormal ratio evaluated over 678 data series  

(a) Critical diagram computed using the F score

(b) Critical diagram computed using the range-based F score

insignificant 
differences

significant 
differences

(b) Critical diagram computed using VUS-ROC
(4 pairs of methods with insignificant differences)

(a) Critical diagram computed using AUC-ROC 
(6 pairs of methods with insignificant differences)

insignificant 
differences

significant 
differences

Fig. 1: Critical difference diagram computed with the Fried-
man test followed by a post-hoc Wilcoxon test (with α = 0.1)
for the (a) F-score and (b) range-based F-score over 250 time
series in KDD21 [28]. Bold lines indicate insignificant differ-
ences of connected methods.

icantly the execution time of the initial implementa-

tion. Our findings demonstrate that our four measures

are significantly more robust in assessing the quality of

time-series AD methods.

1 Introduction

Massive collections of time-varying measurements, com-

monly referred to as time series, have become a reality

in virtually every scientific and industrial domain [5,39,

44,43,47,19,6,42,40]. Notably, there is an increasingly

pressing need for developing techniques for efficient and

effective analysis of zettabytes of time series produced

by millions of Internet-of-Things (IoT) devices [22,24,

46,26,27,32]. IoT deployments empower diverse data

science applications in environmental sciences, astro-

physics, neuroscience, and engineering, among others [38,

58], and have revolutionized many industries, includ-

ing automobile, healthcare, manufacturing, and utili-
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ties [37]. However, rare events, or imperfections and

inherent complexities in the data generation and mea-

surement pipelines, often introduce abnormalities that

appear as anomalies in time-series databases, impact-

ing the effectiveness of downstream tasks and analytics.

Consequently, anomaly detection (AD) becomes a

fundamental problem with broad applications sharing

the same goal [7,51,56]: analyzing time series to iden-

tify observations that do not conform to some notion of

expected behavior based on previously observed data.

During the past decades, a multitude of AD methods

have been proposed and compared [57,31,11,21,12,15,

13,16,56,33,17,9,45,14]. Different from other domains

that principally focus on point-based anomalies (i.e.,

outliers in standalone observations), AD for time series

is also concerned with range-based anomalies (i.e., out-

liers spanning multiple observations). Unfortunately, it

has become common practice to use traditional point-

based information retrieval (IR) accuracy measures, such

as Precision, Recall, and F-score, to quantify the effec-

tiveness of different anomaly detectors.

In addition, the previously mentioned IR evaluation

measures suffer from a significant limitation: a thresh-

old is necessary over the anomaly score produced by AD

methods to mark each time-series point as an anomaly

or not. The most common approach to set a thresh-

old value is to use the average score plus three times

the standard deviation of the anomaly score. However,

this popular choice might not suit every AD method,

use case, and domain, leading to significant variations

in the quality values of the evaluation measures. There-

fore, these IR measures are difficult to trust and compli-

cate evaluating different AD methods on heterogeneous

benchmarks. To eliminate the need to set a threshold,

another standard measure for binary classification is

used: the receiver operator characteristic (ROC) curve

and the Area Under the Curve (AUC), which is the area

below the ROC curve (AUC-ROC). The ROC curve

is generated by plotting the true positive rate (TPR)

against the false positive rate (FPR) at various thresh-

old settings (instead of only one threshold used in Pre-

cision, Recall, and F-score measures). Another variant,

the Precision-Recall (PR) curve, represents the relation

between Precision and Recall, and the Area under the

PR curve (AUC-PR) is the area below PR [18].

Unfortunately, all previous measures, Precision, Re-

call, F-Score, AUC-ROC, and AUC-PR, are ideal for

point-based anomalies but cannot adequately evaluate

ubiquitous range-based contextual and collective anoma-

lies [10]. Remarkably, the mapping of discrete labels

into continuous data introduces unavoidable shortcom-

ings (e.g., difficulty in marking precisely the range of the

anomalies and handling misalignments between the hu-

man labels and the anomaly range produced by thresh-

olding the anomaly score). To address these shortcom-

ings, a range-based definition of Precision and Recall

has been proposed by extending the traditional defini-

tions [52]. Range-based Precision, Recall, and F-Score

consider several factors: (i) whether a subsequence is de-

tected or not; (ii) how many points in the subsequence

are detected; (iii) which part of the subsequence is de-

tected; and (iv) how many fragmented regions corre-

spond to one real subsequence outlier. This definition

is detailed and comprehensive; however, several param-

eters require tuning and, importantly, a threshold over

the anomaly score is still required.

A recent study [50] listed AD evaluation measures

for time series, describing their advantages and short-

comings measured on synthetic time series. However,

there has never been (to the best of our knowledge) a

large-scale systematic quantitative and qualitative anal-

ysis of time-series AD evaluation measures on real time

series. Notably, the choice of evaluation measure may

significantly bias the experimental outcome. To under-

stand the implications of choosing an appropriate mea-

sure, Figure 1 depicts the critical diagrams of the F-

score and range-based F-score computed with the Fried-

man test followed by a Wilcoxon test [54] over several

AD methods (see Section 5 for details) across the 250

time series of the KDD21 dataset [28]. Figure 1 demon-

strates that not only the ranking is changing, but also

some methods shift from insignificantly to significantly

different from one measure to the other.

In this paper, we extensively evaluate quality mea-

sures for time-series AD to assess their robustness under

noise, misalignments, and different anomaly cardinality

ratios. Specifically, our study includes 9 previously pro-

posed quality measures, computed over the anomaly

scores of 10 AD methods across 10 diverse datasets

that contain 900 time series with marked anomalies.

Our analysis assesses the robustness of quality measures

both qualitatively and quantitatively by studying the

influence of threshold, lag, noise, and normal-abnormal

anomaly ratio to identify robust measures that better

separate accurate from inaccurate methods.

Our results indicate that measures producing qual-

ity values independently of a threshold (i.e., AUC-ROC

and AUC-PR) are more suitable for time-series AD.

This is surprising considering that we include the range-

based Precision, Recall, and F-score measures, which

highlights the strong influence the thresholding of anomaly

scores has in assessing the quality of methods.

Motivated by this observation and to address the

limitations of existing measures, we propose four new

accuracy evaluation measures. We first present Range-

AUC-ROC and Range-AUC-PR, threshold-independent
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Table 1: Analysis of quality measures based on: (i) indepen-
dence to the number of anomalies; (ii) independence to the
threshold; (iii) adaptation to continuous sequences; and (iv)
independence to setting parameters.

Acc. Measure # of anom. Score Thres. Sequence-adapted Param-free

Precision@k ✗ ✗ ✗

Precision ✗ ✗ ✗

Recall ✗ ✗ ✗

F-Score ✗ ✗ ✗

Rprecision ✗ ✗

Rrecall ✗ ✗

RF-Score ✗ ✗

AUC-PR ✗

AUC-ROC ✗

Proposed measures

R-AUC-PR ✗

R-AUC-ROC ✗

VUS-PR

VUS-ROC

(for the anomaly score) evaluation measures that use a

continuous buffer region in the labels to increase the

robustness to potential misalignments with the human

labels. Then, we propose the Volume Under the Surface

(VUS) family of measures that extend the traditional

AUC measures to consider all buffer sizes (in addi-

tion to all thresholds). Therefore, VUS-ROC and VUS-

PR are parameter-free, threshold-independent, and ro-

bust to lags, noise, and anomaly cardinality ratios. Our

analysis demonstrates that VUS-ROC and VUS-PR are

the most reliable accuracy quality measures for both

point-based and range-based anomaly evaluation. Ta-

ble 1 summarizes the accuracy evaluation measures an-

alyzed in this paper based on their independence to four

critical characteristics.

In addition to the accuracy evaluation, we perform

an extensive execution time evaluation. VUS requires

computing accuracy measures (i.e., ROC, Precision, and

Recall) for different values of buffer sizes. As this buffer

size changes the labels of the time series, the naive

implementation of VUS computes accuracy measures

over the entire labels as many times as the number of

buffer sizes we consider. However, the buffer size af-

fects only small sections of the labels, leaving the vast

majority unchanged. Therefore, we introduce two opti-

mized versions of the VUS computation algorithm that

compute accuracy measures over the sections affected

by the buffer length. We demonstrate theoretically and

empirically the execution time improvement of the opti-

mized implementations over the naive implementation

of VUS while remaining exact (i.e., providing the same

values as the naive implementation). Overall, our opti-

mized implementations is up to 10 times faster than the

naive implementation for large time series, and render

the VUS measures easier to use in practice.

Interestingly, even though outside of the scope of

this paper, the flexibility of VUS measures in evaluat-

ing methods while varying parameters of choice may

have implications beyond time-series AD. Specifically,

VUS measures are applicable across binary classifica-

tion tasks for evaluating methods with a single qual-

ity value while considering different parameter choices

(e.g., learning rates, batch sizes, and other critical vary-

ing parameters).

(Sec. 2) We start with a detailed discussion of the rel-

evant background and related work. Then, we present

our contributions1:

(Sec. 3) We discuss the limitations of existing evalu-

ation measures, resulting in a formal definition of the

necessary principles of time-series AD quality measures.

(Sec. 4.1)We present R-AUC (ROC and PR) that rely

on a new label transformation for a more robust and

reliable score for contextual and collective anomalies.

(Sec. 4.2)We introduce VUS (ROC and PR), parameter-

free measures that formally extend AUC-based mea-

sures to consider more varying parameters.

(Sec. 4.3) We introduce V USopt and V USmem
opt , two

optimized versions for the computation of both VUS-

ROC and VUS-PR, with significantly better time com-

plexity properties. These two optimized versions prune

the sections of the time series in which the anomaly

score does not change regardless of the threshold and

the buffer length. The V USmem
opt algorithm further im-

proves time-complexity by using more memory.

(Sec. 5.2 and 5.4)We extensively evaluate, both qual-

itatively and quantitatively, 13 quality measures (9 pre-

viously proposed and our 4 new measures) across 10 AD

methods over 10 diverse datasets containing 900 time

series with marked anomalies.

(Sec. 5.5) We analyze the separability of the measures

by comparing pairs of accurate and inaccurate methods.

(Sec. 5.6)We assess the consistency of the measures by

evaluating changes in methods’ ranks across measures.

(Sec. 5.7) We evaluate the scalability of the VUS-

based measures on different time series characteristics,

and we measure the speed-up of V USopt and V USmem
opt

compared to the naive implementation of VUS.

(Sec. 6) Finally, we conclude with the implications of

our work and discuss future research directions.

2 Background and Related Work

We first introduce formal notations useful for the rest

of the paper (Section 2.1). Then, we review in detail

previously proposed evaluation measures for time-series

AD methods (Section 2.2).

1 A preliminary version has appeared elsewhere [41].
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2.1 Time-Series and Anomaly Score Notations

We review notations for the time series and anomaly

score sequence.

Time Series: A time series T ∈ Rn is a sequence

of real-valued numbers Ti ∈ R [T1, T2, ..., Tn], where

n = |T | is the length of T , and Ti is the ith point of T .

We are typically interested in local regions of the time

series, known as subsequences. A subsequence Ti,ℓ ∈ Rℓ

of a time series T is a continuous subset of the val-

ues of T of length ℓ starting at position i. Formally,

Ti,ℓ = [Ti, Ti+1, ..., Ti+ℓ−1].

Anomaly Score Sequence: For a time series T ∈ Rn,

an AD method A returns an anomaly score sequence

ST . For point-based approaches (i.e., methods that re-

turn a score for each point of T ), we have ST ∈ Rn.

For range-based approaches (i.e., methods that return a

score for each subsequence of a given length ℓ), we have

ST ∈ Rn−ℓ. Overall, for range-based (or subsequence-

based) approaches, we define ST = [ST 1, ST 2, ..., ST n−ℓ]

with ST i ∈ [0, 1].

2.2 Accuracy Evaluation Measures for AD

We present previously proposed quality measures for

evaluating the accuracy of an AD method, given its

anomaly score. We first discuss threshold-based and

then threshold-independent measures.

2.2.1 Threshold-based AD Evaluation Measures

The anomaly score ST produced by an AD method A

highlights the parts of the time series T considered as

abnormal. The highest values in the anomaly score cor-

respond to the most abnormal points. Threshold-based

measures require setting a threshold to mark each point

as an anomaly or not. Usually, this threshold is set to

µ(ST )+α∗σ(ST ), with α set to 3 [7], where µ(ST ) is the

mean and σ(ST ) is the standard deviation ST . Given

a threshold Thres, we compute the pred ∈ {0, 1}n as

follows:

∀i ∈ [1, |ST |], predi =

{
0, if: ST i < Thres

1, if: ST i ≥ Thres
(1)

Threshold-based measures compare pred to label ∈
{0, 1}n, which indicates the true (human provided) la-

beled anomalies. Given the identity vector I = [1, 1, ..., 1],

the points detected as anomalies or not fall into the fol-

lowing four categories:

– True Positive (TP): Number of points that have

been correctly identified as anomalies. Formally: TP =

label⊤ · pred.
– True Negative (TN): Number of points that have

been correctly identified as normal. Formally: TN =

(I − label)⊤ · (I − pred).

– False Positive (FP): Number of points that have

been wrongly identified as anomalies. Formally: FP =

(I − label)⊤ · pred.
– False Negative (FN): Number of points that have

been wrongly identified as normal. Formally: FN =

label⊤ · (I − pred).

Given these categories, several quality measures have

been proposed to assess the accuracy of AD methods.

Precision: We define Precision (or positive predictive

value) as the number of correctly identified anomalies

over the total number of points detected as anomalies

by the method:

Precision =
TP

TP + FP
(2)

Recall: We define Recall (or True Positive Rate (TPR),

tpr) as the number of correctly identified anomalies over

all anomalies:

Recall =
TP

TP + FN
(3)

False Positive Rate (FPR): A supplemental mea-

sure to the Recall is the FPR, fpr, defined as the num-

ber of points wrongly identified as anomalies over the

total number of normal points:

fpr =
FP

FP + TN
(4)

F-Score: Precision and Recall evaluate two different

aspects of the AD quality. A measure that combines

these two aspects is the harmonic mean Fβ , with non-

negative real values for β:

Fβ =
(1 + β2) ∗ Precision ∗Recall

β2 ∗ Precision+Recall
(5)

Usually, β is set to 1, balancing the importance between

Precision and Recall. In this paper, F1 is referred to as

F or F-score.

Precision@k: All previous measures require an anomaly

score threshold to be computed. An alternative approach

is to measure the Precision using a subset of anomalies

corresponding to the k highest value in the anomaly

score ST . This is equivalent to setting the threshold

such that only the k highest values are retrieved.
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To address the shortcomings of the point-based mea-

sures, a range-based definition was proposed, extend-

ing the traditional Precision and Recall [52]. This def-

inition considers several factors: (i) whether a subse-

quence is detected or not (ExistenceReward or ER);

(ii) how many points in the subsequence are detected

(OverlapReward or OR); (iii) which part of the sub-

sequence is detected (position-dependent weight func-

tion); and (iv) how many fragmented regions corre-

spond to one real subsequence outlier (CardinalityFac-

tor or CF). Formally, we define R = {R1, ...RNr} as the

set of anomaly ranges, withRk = {posi, posi+1, ..., posi+j}
and ∀pos ∈ Rk, labelpos = 1, and P = {P1, ...PNp

}
as the set of predicted anomaly ranges, with Pk =

{posi, posi+1, ..., posi+j} and ∀pos ∈ Rk, predpos = 1.

Then, we define ER, OR, and CF as follows:

ER(Ri, P ) =

{
1, if

∑Np

j=1 |Ri ∩ Pj | ≥ 1

0, otherwise

CF (Ri, P ) =

{
1, if ∃Pi ∈ P, |Ri ∩ Pi| ≥ 1

γ(Ri, P ), otherwise

OR(Ri, P ) = CF (Ri, P ) ∗
Np∑
j=1

ω(Ri, Ri ∩ Pj , δ)

(6)

The γ(), ω(), and δ() are tunable functions that capture

the cardinality, size, and position of the overlap respec-

tively. The default parameters are set to γ() = 1, δ() =

1 and ω() to the overlap ratio covered by the predicted

anomaly range [52].

Rprecision and Rrecall [52]: Based on the above,

we define:

Rprecision(R,P ) =

∑Np

i=1 Rprecisions(R,Pi)

Np

Rprecisions(R,Pi) = CF (Pi, R) ∗
Nr∑
j=1

ω(Pi, Pi ∩Rj , δ)

(7)

Rrecall(R,P ) =

∑Nr

i=1 Rrecalls(Ri, P )

Nr

Rrecalls(Ri, P ) = α ∗ ER(Ri, P ) + (1− α) ∗OR(Ri, P )

(8)

The parameter α is user defined. The default value is

α = 0.

Range F-score (RF) [52]: As described previously,

the F-score combines Precision and Recall. Similarly,

we define RFβ , for β > 0 as follows:

RFβ =
(1 + β2) ∗Rprecision ∗Rrecall

β2 ∗Rprecision+Rrecall
(9)

As before, β is set to 1. In this paper, RF1 is referred

to as RF-score.

2.2.2 Threshold-independent AD Evaluation Measures

Until now, we introduced accuracy measures requiring

to threshold the produced anomaly score of AD meth-

ods. However, the accuracy values vary significantly

when the threshold changes. To evaluate a method holis-

tically using its corresponding anomaly score, two mea-

sures from the AUC family of measures are used.

AUC-ROC [20]: The Area Under the Receiver Op-

erating Characteristics curve (AUC-ROC) is defined as

the area under the curve corresponding to TPR on

the y-axis and FPR on the x-axis when we vary the

anomaly score threshold. The area under the curve is

computed using the trapezoidal rule. For that purpose,

we define Th as an ordered set of thresholds between

0 and 1. Formally, we have Th = [Th0, Th1, ...ThN ]

with 0 = Th0 < Th1 < ... < ThN = 1. Therefore,

AUC-ROC is defined as follows:

AUC-ROC =
1

2

N∑
k=1

∆k
TPR ∗∆k

FPR

with:

{
∆k

FPR = FPR(Thk)− FPR(Thk−1)

∆k
TPR = TPR(Thk−1) + TPR(Thk)

(10)

AUC-PR [18]: The Area Under the Precision-Recall

curve (AUC-PR) is defined as the area under the curve

corresponding to the Recall on the x-axis and Precision

on the y-axis when we vary the anomaly score thresh-

old. As before, the area under the curve can be calcu-

lated using the trapezoidal rule, defined as follows:

AUC-PR =
1

2

N∑
k=1

∆k
Precision ∗∆k

Recall

with:

{
∆k

Recall = Recall(Thk)−Recall(Thk−1)

∆k
Precision = Precision(Thk−1) + Precision(Thk)

(11)

As discussed in [18], linear interpolation in PR space

may result in an overly optimistic estimate of perfor-

mance. Therefore, we adopt an alternative interpola-

tion method, Stepwise Interpolation, to approximate

the area under the curve by calculating the average pre-

cision of the PR curve:

AUC-PR =

N∑
k=1

Precision(Thk) ∗∆k
Recall (12)

For consistency, we use the above equation in this paper

to compute AUC-PR.
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Fig. 2: Evaluation measures when we vary the (a) threshold,
(b) lag, (c) noise, and (d) normal/abnormal ratio. Example
with Isolation Forest methods over a snippet of an ECG time
series [23].

3 Problem motivation and limitations

Having introduced existing measures to assess the qual-

ity of range-based anomalies, we now elaborate on their

critical limitations.

3.1 Limitations of Threshold-based Measures

The need to threshold the anomaly score severely im-

pacts the accuracy measures. First, Figure 2(a) depicts

an electrocardiogram time series with an arrhythmia

in red (Figure 2(a.1)) and the corresponding anomaly

score computed with Isolation Forest [34] (Figure 2(a.2))

for one threshold equal to µ(score) + σ(score) and for

another threshold µ(score)+0.6∗σ(score) (Figures 2(a.3)
and (a.4)). We compute the different accuracy mea-

sures for the first threshold (blue bars in Figure 2(a.5))

and the second threshold (orange bars in Figure 2(a.5))

and their differences (Figure 2(a.6)). We observe that

the threshold choice has a substantial impact on Preci-

sion, Rprecision, F and RF scores. On the contrary, the

threshold-independent measures (i.e., measures comput-

ing all possible thresholds), namely, AUC-ROC and AUC-

PR, show a clear advantage.

Overall, the threshold choice depends on the appli-

cation and the type of input time series. Setting the

threshold automatically is hard and almost impossi-

ble when we compare different categories of AD meth-

ods across heterogeneous benchmarks. To illustrate this

point, we consider two transformations of the anomaly

score that correspond to practical cases we observed

(e.g., different methods introduce different lag and noise

levels to the anomaly score).

Influence of Noise: Some AD methods applied to

some specific time series might result in a noisy anomaly

score. In addition, due to manufacturing issues or ex-

ternal causes, a sensor can inject noise into the time

series, which then propagates on the anomaly score.

Figure 2(c) depicts two cases: the first corresponds to

an anomaly score without any noise (Figure 2(c.2)).

The second corresponds to an anomaly score with noise

(Figure 2(c.2)). We applied on both cases the same

threshold µ(score)+σ(score). We observe in Figure 2(c.6)

that most of the threshold-based measures are strongly

impacted by noise. This is caused by the fact that the

score fluctuates around the threshold, making threshold-

based measures less robust to noise. On the contrary,

AUC-ROC and AUC-PR are much less influenced by

noise, returning approximately the same value.

Influence of Normal/Abnormal Ratio: Depending

on the domain and the task, the number of anomalies

and, consequently, the normal/abnormal ratio changes

drastically. A variation in this ratio might cause a varia-

tion in the threshold, which leads to variations in threshold-

based accuracy measure values. This is explained by

the fact that if an anomaly score detects the anoma-

lies correctly, the standard deviation of that score will

be higher for a time series with more anomalies. Fig-

ure 2(d) depicts two cases: one time series snippet with

a 0.2 ratio (Figure 2(d.2)) and one time series snippet

with a 0.05 ratio (Figure 2(d.4)). We observe that this

change implies a larger variation for several threshold-

based measures. Thus, the latter confirms the limita-

tions and the non-robustness of threshold-based mea-

sures to the anomaly cardinality ratio.

3.2 Limitations of Point-based Measures

In the previous section, we illustrated the limitations

of threshold-based measures. By design and because
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of their independence from the threshold choice, AUC-

ROC and AUC-PR measures are robust to those limita-

tions. However, those measures are designed for point-

based outliers. Each point is considered independently

and the detection of each point has an equivalent con-

tribution to AUC. In contrast, we need to consider two

factors, the range detection and the existence detection,

for the subsequence AD problem.

The range detection has the same methodology as

point detection. We prefer that the algorithm detects

every point in the subsequence anomaly. The existence

detection is a loose but crucial estimation for the anomaly

subsequence detector: detecting a tiny segment of one

subsequence outlier is still of great value.

Mismatch between the anomaly score and la-

bels: Compared to point-based AD, range-based AD

encourages accurate capturing of each subsequence anomaly,

but the existence detection is good enough to be par-

tially rewarded. Two other reasons support the appli-

cation of this coarse estimation.

First, there is no consistent labeling tradition among

datasets. Some may label the whole period as an anomaly

if this period does not repeat the typical pattern, while

others may only mark a partial period. Figure 3(3) de-

picts different labeling strategies. Figures 3(ex1), (ex2),

and (ex3) depict three real examples corresponding to

three different labeling strategies that we observed in

existing datasets (see Table 3). Even if we specify that

each period should share the same label, the next ques-

tion is how to define the starting and end points of a

period. Given accurate starting or end points, it is also

challenging to label a small segment in one period. Un-

like a point outlier, which is an evident deviation from

the trend line of the time series, range-based anomalies

may not have outrageous values. This difficulty of la-

beling is inevitable when we assign the discrete labels

to a continuous time series. There may be a transition

region between the two statuses, but we have to decide

on a discontinuous jumping point artificially.

Second, many algorithms, for instance, LOF [17]

and iForest [34], would first apply a sliding window to

convert a 1-D time series to a set of high-dimensional

data points. We denote the original time series as (T1,

T2, . . . , Tn), and suppose the length of window is ℓ, then

the converted data set is {(Ti, . . . , Ti+ℓ−1)|i ∈ {1, . . . T−
ℓ + 1}}. The label of point Tk in the time series is de-

fined as the label of high-dimensional point (Tk−ℓ/2, . . . ,

Tk+ℓ/2−1) in the transformed dataset. The conversion

from a time series to a dataset has one consequence: ev-

ery dimension in the high-dimensional point is equally

important. So, an abnormal value at the middle or end

of this point has the same ability to make it an out-

lier in the high-dimensional space. Usually, if the slid-
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Fig. 3: Influence of the anomaly detection method score (2)
and labeling strategy (3), illustrated with three examples.

ing window covers more anomaly points, a good algo-

rithm should give a higher anomaly score to the con-

verted data point. However, there are some exceptions,

such as that one abnormal value at the beginning or

the end of sliding windows is enough to make the con-

verted point an outlier. To summarize, an anomaly sub-

sequence (Ts, . . . , Te) may induce a high anomaly score

for the range [Ts−ℓ/2, Te+ℓ/2]. A perfect result is that

the peak of the anomaly score is slightly broader than

the whole abnormal region. The latter is illustrated in

Figure 3(2). However, the anomaly score is not perfect.

A high score may be assigned at the range [Ts−ℓ/2, Ts],

which fails to reveal the entire range of the outlier but

succeeds in indicating the starting region. AUC-based

measures will give a low value since there is no overlap

between the peak and the outlier.

Overall Limitations due to Lag: A lag can be in-

jected into the anomaly score depending on the choice

of AD methods. Overall, such a lag may also exist due

to the approximation made during the labeling phase.

As illustrated in Figure 2(b), such a lag (even small)

has a substantial impact on all existing evaluation mea-

sures. For example, in Figure 2(b) AUC-PR fluctuates

between 0.75 and 0.50 for a lag of 0.25 of the labeled sec-

tion length. Among all measures, only the AUC-ROC

measure demonstrates to be less sensitive to such lag

(as well as noise and normal/abnormal ratio).

3.3 Problem Definition

In summary, our goal is to develop a new anomaly score

threshold-independent evaluation measure based on the

robust principles of AUC. A promising direction is an

extension of AUC for the range-based AD with the fol-

lowing desired properties:
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Robust to Lag: Two similar anomaly scores with a

slight lag difference should return approximately the

same accuracy measures. For example, a high anomaly

score near the border of the anomaly should be re-

warded as close as a high anomaly score in the middle

of the range-based anomaly.

Robust to Noise: Two similar anomaly scores with

and without noise should return similar accuracy.

Robust to the Anomaly Cardinality Ratio: This

ratio should not impact the accuracy measures.

High Separability between Accurate and Inac-

curate Methods: The accuracy measure should well

separate accurate from inaccurate methods.

Consistent: Finally, an appropriate accuracy measure

should produce consistent scores for similar time se-

ries (i.e., rank different anomaly detection methods in

a consistent manner).

Next, we present new accuracy measures to satisfy these

properties.

4 Our Measures: Range-AUC and VUS

We first present new range-based extensions for ROC

and PR curves by introducing a new continuous label to

enable more flexibility in measuring detected anomaly

ranges. We then present the Volume Under the Surface

(VUS) for ROC and PR curves. VUS extends the math-

ematical model of Range-AUC measures by varying the

buffer length. An alternative solution is to learn the

necessary parameters and thresholds. However, such a

solution works only under supervised settings and may

impact the generalizability to new datasets. For the spe-

cific case of unsupervised learning, the threshold selec-

tion can only be achieved using statistical heuristics.

The most common strategy to set the threshold unsu-

pervisely is to set it to µ(ST )+α∗σ(ST ), with α = 3 [7].

We will use this strategy when comparing our proposed

measures to threshold-based measures.

4.1 Range-AUC-ROC and Range-AUC-PR

To compute the ROC curve and PR curve for a subse-

quence, we need to extend to definitions of TPR, FPR,

and Precision. The first step is to add a buffer region at

the boundary of outliers. The idea is that there should

be a transition region between the normal and abnor-

mal subsequences to accommodate the false tolerance

of labeling in the ground truth (as discussed, this is un-

avoidable due to the mapping of discrete data to con-

tinuous time series). An extra benefit is that this buffer

will give credit to the high anomaly score in the vicin-

ity of the outlier boundary, which is what we expected

with the application of a sliding window originally.

Figure 4(b) shows the original binary labels (in

blue), and Figure 4(c) the new label with buffer re-

gion (in orange). By default, the width of the buffer

region at each side is half of the period w of the time

series (the period is an intrinsic characteristic of the

time series). Differently, this parameter can be set into

the average length of anomaly sizes or can be set to a

desired value by the user.

The traditional binary label is extended to a con-

tinuous value. Formally, for a given buffer length ℓ, the

positions s, e ∈ [0, |label|] the beginning and end in-

dexes of a labeled anomaly (i.e., sections of continuous

1 in label), we define the continuous labelr as follows:

∀i ∈ [0, |label|], labelℓi

=



(
1− |s−i|

ℓ

) 1

2

, if s− ℓ
2
≤ i < s and predi = 1,

1, if s ≤ i < e,(
1− |e−i|

ℓ

) 1

2

, if e ≤ i < e+ ℓ
2
and predi = 1,

0, else.

(13)

Specifically, if no predicted anomaly exists within

the extended buffer region, we set labelℓi to 0 to prevent

unnecessary false negatives caused by excessive label

extension, as illustrated in Figure 5. When the buffer

regions of two discontinuous outliers overlap, the la-

bel will be the superposition of these two orange curves

with one as the maximum value. Using this new contin-

uous label, one can compute TPℓ, FPℓ, TNℓ and FNℓ

similarly as follows:

TPℓ = label⊤ℓ · pred FPℓ = (I − labelℓ)
⊤ · pred

TNℓ = (I − labelℓ)
⊤ · (I − pred) FNℓ = label⊤ℓ · (I − pred)

(14)

The total number of positive points P in this case naively

should be Pℓ0 = TPℓ+FNℓ = label⊤ℓ ·I. Here, we define

it as:

Pℓ = (label + labelℓ)
⊤ · I

2
, Nℓ = |labelℓ| − Pℓ (15)

The reason is twofold. When the length of the outlier

is several periods, Pℓ0 and Pℓ are similar because the

ratio of the buffer region to the whole anomaly region is

small. When the length of the outlier is only half-period,

the size of the buffer region is nearly two times the

original abnormal region. In other words, to pursue false

tolerance, the relative change we make to the ground

truth is too significant. We use the average of label and

labelℓ to limit this change.



VUS: Effective and Efficient Accuracy Measures for Time-Series Anomaly Detection 9

!"
#$

!%
&'
(#
)*

+,$* ,"-*.

0

1

s e

/ℎ)*'ℎ#%- /

12)

+2
)

%!
3*
%

!"
#$

!%
&'
(#
)*

+,$* ,"-*.

0

1

s e

4*+ #1
+ℎ)*'ℎ#%- /

12)

+2
)

%!
3*
%

(a) Threshold-based Accuracy measure
(ex: Precision, Recall, Rprecision)

(b) AUC-based Accuracy measure
(ex: AUC-ROC, AUC-PR)

!"
#$

!%
&'
(#
)*

+,$* ,"-*.

0

1

, -
4*+ #1

+ℎ)*'ℎ#%- /

12)

+2
)

%!
3*
% ℓ

(c) R-AUC-based Accuracy measure
(ex: R-AUC-ROC, R-AUC-PR)

" + ℓ/2−ℓ/2 + '

1/ 2

!"
#$

!%
&'
(#
)*

+,$* ,"-*.

0

1

, -
4*+ #1

+ℎ)*'ℎ#%- /

%!
3*
% ℓ

(d) VUS-based Accuracy measure
(ex: VUS-ROC, VUS-PR)

5,"-#5 ℓ
'*+ #1
5,"-#5 ℓ

+2
)

12)
ℓ

Proposed Accuracy measures

1/ 2

" + ℓ/2−ℓ/2 + '

Fig. 4: Illustration of previous quality measures compared to our proposed measures. By varying the buffer window, VUS
constructs a surface of TPR, FPR, and window. The volume under the surface is a measure of AUC for various windows.
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Fig. 5: Illustration of proposed label extension strategy.

We finally generalize the point-basedRecall, Precision,

and FPR to the range-based variants. Formally, follow-

ing the definition of R and P as the set of anomalies

range and detected predicted anomaly range (see Sec-

tion 2.2), we define TPRℓ, FPRℓ, and Precisionℓ:

TPRℓ = Recallℓ =
TPℓ

Pℓ

∗
∑

Ri∈R

ExistenceR(Ri, P )

|R|

FPRℓ =
FPℓ

Nℓ

, Precisionℓ =
TPℓ

TPℓ + FPℓ

(16)

Note that TPRr = Recallr. Moreover, for the recall

computation, we incorporate the idea of Existence Re-

ward [52], which is the ratio of the number of detected

subsequence outliers to the total number of subsequence

outliers. However, consistent with their work [52], we

do not include the Existence ratio in the definition

of range-precision. We can then compute R-AUC-ROC

and R-AUC-PR using Equation 10 and Equation 11.

Relation between Range-ROC and Range-PR:

PR curve is a supplement to the ROC curve. In a highly

unbalanced dataset, because the number of positive points

is too small, at the same level of FPR, it is easy to

have a high TPR (or TPRℓ) at the cost of low preci-

sion. There are deep connections between ROC and PR

[18]. First, ROC and PR have one-to-one mapping for a

given dataset because the confusion matrix is uniquely

determined given TPR and FPR. This relation is bro-

ken for the range method because we include an extra

Existence factor for range-TPR. Therefore, the confu-

sion matrix cannot be decided in the range-ROC space.

Secondly, for a point-based version, if one ROC curve

dominates another ROC curve, its corresponding PR

curve would also dominate another one. Here, domi-

nate means the curve is always higher or equal to an-

other one. Because of the Existence factor, this rule is

also lifted for the range definition. This is true only

if both of the methods have the same existence ratio.

However, this is not always guaranteed. Finally, a max-

imized AUC does not necessarily correspond to a max-

imized AP. This holds for the range definition.

4.2 VUS: Volume Under the Surface

Our range-AUC family of measures chooses the width

of the buffer region to be half of a subsequence length

ℓ of the time series. Such buffer length can be either

set based on the knowledge of an expert (e.g., the usual

size of arrhythmia in an electrocardiogram) or set au-

tomatically using the time series’s period. The lat-

ter can be computed using different strategies: (I) us-

ing the Fourier transform to identify the most rele-

vant period of the time series, or (ii) computing the
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cross-correlation and retrieving the lag value (i.e., sub-

sequence length) that locally maximize the correlation.

In practice, we observe that computing the cross-correlation

of a time series and selecting the length correspond-

ing to the first local maximal is accurate. In addition,

the latter allows users to consider the shortest period

length, significantly limiting the execution time of most

of the AD methods and the range-AUC measures.

Since the period is an intrinsic property of the time

series, we can compare various algorithms on the same

basis. However, a different approach may get a slightly

different period. In addition, there are multi-period time

series. So other groups may get different range-AUC be-

cause of the difference in the period. As a matter of fact,

the parameter ℓ, if not well set, can strongly influence

range-AUC measures. To eliminate this influence, we

introduce two generalizations of range-AUC measures.

The solution is to compute ROC and PR curves for

different buffer lengths from 0 to ℓ as shown in Fig-

ure 4(d). Therefore, ROC and PR curves become a sur-

face in a three-dimensional space. Then, the overall ac-

curacy measure corresponds to the Volume Under the

Surface (VUS) for either the ROC surface (VUS-ROC)

or PR surface (VUS-PR). As the R-AUC-ROC and

R-AUC-PR are measures independent of the thresh-

old on the anomaly score, the VUS-ROC and VUS-

PR are independent of both the threshold and buffer

length. Formally, given Th = [Th0, Th1, ...ThN ] with

0 = Th0 < Th1 < ... < ThN = 1, and L = [ℓ0, ℓ1, ..., ℓL]

with 0 = ℓ0 < ℓ1 < ... < ℓL = ℓ, we have:

V US-ROC =
1

4

L∑
w=1

N∑
k=1

∆(k,w) ∗∆w, with:
∆(k,w) = ∆k

TPRℓw
∗∆k

FPRℓw
+∆k

TPRℓw−1
∗∆k

FPRℓw−1

∆k
FPRℓw

= FPRℓw
(Thk)− FPRℓw

(Thk−1)

∆k
TPRℓw

= TPRℓw
(Thk−1) + TPRℓw

(Thk)

∆w = |ℓw − ℓw−1|

(17)

V US-PR =
1

2

L∑
w=1

N∑
k=1

∆(k,w) ∗∆w, with:
∆(k,w) = Precisionℓw

(Thk) ∗∆k
Reℓw

+Precisionℓw−1
(Thk) ∗∆k

Reℓw−1

∆k
Reℓw

= Recallℓw
(Thk)−Recallℓw

(Thk−1)

∆w = |ℓw − ℓw−1|

(18)

From the above equations, VUS measures are more

expensive to compute than range-AUC measures. Thus,

the application of VUS versus range-AUC depends on

our knowledge of which buffer length to set. If one

user knows which would be the most appropriate buffer

length, range-AUC-based measures are preferable com-

pared to VUS-based measures. However, if there exists

an uncertainty on ℓ, then setting a range and using

VUS increases the flexibility of the usage and the ro-

bustness of the evaluation. Finally, more parameters

than ℓ can be included in VUS-based measures. If, in

addition to ℓ, there is a need to define a range for an-

other parameter (such as the normal model length ℓNM

of NormA), the two-dimensional surface is transformed

into a three-dimensional hyper-surface. In general, for

P parameters, the value is the volume under a |P | − 1

hyper-surface.

4.2.1 Complexity Analysis

This section analyzes the complexity of the VUS-

based measures. We take into account both computa-

tion time, and memory usage.

[Time Complexity] The time complexity of VUS

(both VUS-ROC and VUS-PR) is determined by vary-

ing two parameters, namely the buffer length ℓ ∈ L and

the number of thresholds N . This is further illustrated

in Algorithm 1, which breaks down the computation

steps. It comprises a nested loop that demonstrates the

variation of the parameters buffer length (L lengths

in total) and number of thresholds (N thresholds in

total). Therefore, VUS complexity is quadratic to N

and L. Then, for each threshold and length (inside the

loop) the computational complexity is O(αℓa+T1+T2),

where α is the number of anomalies, ℓa refers to the

mean length of anomalies, and T1, T2 refer to compu-

tations in the order of length of the time series T in-

volved in the anomaly detection. There is a distinction

between T1 and T2 because their practical implementa-

tions are optimized to different extents, producing very

different execution times. Here, O(T1) is the complexity

of the calculations involving the entire time series, such

as pred (i.e., a boolean sequence indicating if a point

of the anomaly score ST is above a given threshold),

and labelℓ (i.e., the modified label sequence with buffer

regions). O(T2) refers to the complexity of the compu-

tation of product, TPℓ, FPℓ, Pℓ, and Nℓ, which has a

cost of |T |, but is less optimized than the previously de-

scribed computation. Moreover, αℓa corresponds to the

computation of Existence. Thus, the total complexity

of the algorithm is O(NL(αℓa + T1 + T2)). In practice,

αℓa is negligible compared to T1 or T2, and VUS com-

plexity can be approximated to O(NL(T1 + T2)).

[Space Complexity] The space complexity can be

obtained from the pseudo-code in Algorithm 1. The

computation of VUS-ROC and VUS-PR is performed



VUS: Effective and Efficient Accuracy Measures for Time-Series Anomaly Detection 11

Algorithm 1: VUS algorithm

input : Original Labels label, anomaly score ST ,
maximum Buffer Length L, thresholds N

output: VUS ROC, VUS PR

1 Th ← Thresholds(N);
2 L ← Buffer Lengths(L);
3 AUC ← [], AP ← [];

// Iterate through the buffer Lengths

4 foreach ℓ ∈ L do
5 Create labelℓ from label and ℓ;
6 seq= Anomaly Index(labelℓ);
7 list TPRℓ ← [], list FPRℓ ← [], list Precℓ ← [];

// Iterate through the thresholds

8 foreach threshold ∈ Th do
9 pred ← ST > threshold;

10 Change labelℓ to labelthres
ℓ based on pred;

11 product ← labelthres
ℓ ∗ pred;

12 SumPred ←
∑

p∈pred p;

13 SumLabel ←
∑

p∈labelthres
ℓ

p;

14 TPℓ ← 0;
15 foreach seg ∈ seqL do
16 TPℓ ← TPℓ +∑

p∈product[seg[0]:(seg[1]+1)] p

17 Compute FPℓ, Pℓ, Nℓ from TPℓ, SumPred,
SumLabel;

18 Existenceseq ← 0;
// Iterate through the anomalies

19 foreach seg ∈ seq do
20 if

∑
p∈product[seg[0]:(seg[1]+1)] p > 0

then
21 Existenceseq ← Existenceseq + 1

22 Existence ← Existenceseq

|seq|

23 Append TPℓ∗Existence
Pℓ

in list TPRℓ;

24 Append FPℓ

Nℓ
in list FPRℓ;

25 Append TPℓ

TPℓ+FPℓ
in list Precℓ;

26 Compute AUC r, AP r from
list TPRℓ,list FPRℓ and list Precℓ;

27 Append AUC r, AP r in AUC, AP;

// Avg. across thresholds and buffer lengths

28 VUS ROC ←
∑

a∈AUC a

|L| , VUS PR ←
∑

a∈AP a

|L| ;

by iterating over the set of buffer lengths (L) and the

set of thresholds (N). Thus, the space complexity of

VUS is O(NL).

4.3 A faster Implementation of VUS

As theoretically explained in the previous section, VUS’s

computation heavily depends on the time series length,

as well as on the number of buffer lengths considered.

In this section, we propose a novel implementation that

significantly reduces the theoretical computation of the

VUS measures.

(b) Labels with Buffer Region
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100000

Static Section Static Section Static SectionStatic 
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Fig. 6: Synthetic illustration of an anomaly score (a) and
labels (b) of a given time series. We differentiate static sec-
tions that are invariant to the change of threshold and buffer
length, and dynamic sections that have an impact on the
accuracy.
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Fig. 7: Synthetic illustration of the labels evolution with L.
In contrast to dynamic sections (in green), the buffer length
has no impact on VUS within the static sections (in grey).

4.3.1 Dynamic versus Static sections

The variations of thresholds and buffer length affect

the modified labels (i.e., labelℓ) and pred, which cause

changes in the values of True and False Positive Rates

(TPR and FPR). However, not all sections of the time

series are affected by these variations. The data points,

whose labels are not affected by the change in the buffer

length for a given threshold, have the same TPR and

FPR (i.e., data points that lie outside the maximum

possible buffer length of an anomaly).

As a result, we can segment the time series into two

categories: Dynamic and Static. The first category cor-

responds to sections of the time series containing labels

affected by the variation of buffer length. The second

category corresponds to sections that are not affected

by these changes. Figure 6 illustrates this segmenta-

tion, enabling us to compute the same measures with

significantly reduced computational costs.
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Algorithm 2: VUSopt

input : Original Labels T , anomaly score ST ,
maximum Buffer Length L, thresholds N

output: VUS-ROC, VUS-PR

1 Th ← Thresholds(N), L ← Buffer Lengths(L);
2 Create labelL from label and L;

// Extract anomalies positions for buffer

length L

3 seqL ← Anomaly Index(labelL);
4 AUC ← [], AP ← [];

// Static Part

// Iterate through thresholds only

5 foreach threshold ∈ Th do
6 pred ← ST > threshold;
7 SumPred ←

∑
p∈pred p;

// Dynamic Part

// Iterate through the buffer Lengths

8 foreach ℓ ∈ L do
9 Create labelℓ from label and ℓ;

10 seq= Anomaly Index(labelℓ);
11 l TPRℓ ← [], l FPRℓ ← [], l P recℓ ← [];

// Iterate through the thresholds

12 foreach threshold ∈ Th do
13 pred ← ST > threshold;

14 Change labelℓ to labelthres
ℓ based on pred;

15 product ← labelthres
ℓ *pred;

16 SumLabel ←
∑

p∈labelthres
ℓ

p;

17 TPℓ ← 0;
18 foreach seg ∈ seqL do
19 TPℓ ← TPℓ +∑

p∈product[seg[0]:(seg[1]+1)] p

20 Compute FPℓ, Pℓ, Nℓ from TPℓ, SumPred,
SumLabel;

21 Existenceseq ← 0;
// Iterate through the anomalies

22 foreach seg ∈ seq do
23 if

∑
p∈product[seg[0]:(seg[1]+1)] p > 0

then
24 Existenceseq ← Existenceseq + 1

25 Existence ← Existenceseq

|seq|

26 Append TPℓ∗Existence
Pℓ

in l TPRℓ;

27 Append FPℓ

Nℓ
in l FPRℓ;

28 Append TPℓ

TPℓ+FPℓ
in l P recℓ;

29 Compute AUCr, APr from l TPRℓ,l FPRℓ

and l P recℓ;
30 Append AUCr, APr in AUC, AP ;

// Avg. across thresholds and buffer lengths

31 VUS-ROC ←
∑

a∈AUC a

|L| , VUS-PR ←
∑

a∈AP a

|L| ;

4.3.2 Algorithmic Implementation

The optimization described above can be performed

following two different strategies:

– VUSopt: In this version, we split the time series

anomaly scores ST and labelℓ into static and dy-

namic sections. We compute the constant required

Algorithm 3: VUSmem
opt

input : Original Labels T , anomaly score ST ,
maximum Buffer Length L, thresholds N

output: VUS-ROC, VUS-PR

1 Th ← Thresholds(N), L ← Buffer Lengths(L);
2 Create labelL from label and L;

// Extract anomalies positions for buffer

length L

3 seqL ← Anomaly Index(labelL);
4 AUC ← [], AP ← [];
5 PredTh ← [];

// Static Part

// Iterate only through thresholds

6 foreach threshold ∈ Th do
7 pred ← ST > threshold;
8 PredTh ← Append with pred;
9 SumPred ←

∑
p∈pred p;

// Dynamic Part

// Iterate through the buffer Lengths

10 foreach ℓ ∈ L do
11 Create labelℓ from label and ℓ;
12 seq= Anomaly Index(labelℓ);
13 l TPRℓ ← [], l FPRℓ ← [], l P recℓ ← [];

// Iterate through the thresholds

14 count ← 0;
15 foreach threshold ∈ Th do
16 Change labelℓ to labelthres

ℓ based on
PredTh[threshold];

17 product ← labelthres
ℓ ∗ PredTh[threshold];

18 SumLabel ←
∑

p∈labelthres
ℓ

p;

19 TPℓ ← 0;
20 foreach seg ∈ seqL do
21 TPℓ ← TPℓ +∑

p∈product[seg[0]:(seg[1]+1)] p

22 Compute FPℓ, Pℓ, Nℓ from TPℓ, SumPred,
SumLabel;

23 Existenceseq ← 0;
// Iterate through the anomalies

24 foreach seg ∈ seq do
25 if

∑
p∈product[seg[0]:(seg[1]+1)] p > 0

then
26 Existenceseq ← Existenceseq + 1

27 Existence ← Existenceseq

|seq|

28 Append TPℓ∗Existence
Pℓ

in l TPRℓ;

29 Append FPℓ

Nℓ
in l FPRℓ;

30 Append TPℓ

TPℓ+FPℓ
in l P recℓ;

31 Compute AUC r, AP r from l TPRℓ,l FPRℓ

and l P recℓ;
32 Append AUC r, AP r in AUC, AP;

// Avg. across thresholds and buffer lengths

33 VUS ROC ←
∑

a∈AUC a

|L| , VUS PR ←
∑

a∈AP a

|L| ;

to calculate VUS only once for the static sections,

and once for each buffer length and threshold value

for the dynamic sections.

– VUSmem
opt : This version is an extension of the pre-

vious, with a code-wise modification that leads to a

further decrease in time complexity at the expense
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of increased space complexity. Given the large main

memory sizes of modern servers (and even desktops

and laptops), VUSmem
opt represents a very attractive

solution in practice.

Due to the consideration of splitting data into static

and dynamic regions, the implementation has the fol-

lowing advantages:

– The static split avoids repetitive calculations that

would have involved the same values repeatedly in a

nested loop (i.e., computing only the accuracy val-

ues for each threshold for the static region, since

buffer size does not affect static regions).

– The calculations of TP and N in Equation 16 es-

sentially add up to zero in the above consideration

of the static part, and do not need to be computed.

– The overall computational time is similar to that

of the Range-AUC measures for a relatively small

number of anomalies, but even more importantly,

it does not increase when the number of anomalies

gets significantly larger.

The computational steps of V USopt and V USmem
opt

are shown in Algorithm 2 and Algorithm 3, respectively.

These two algorithms are divided into two different sec-

tions: (i) the static part in which we compute VUS for

sections of the time series without anomalies, and (ii)

the dynamic part in which we compute VUS only for

the time series sections that contain anomalies. In the

following sections, we analyze in detail the theoretical

complexity (space and time).

[VUSopt Time and Space Complexity]: The VUSopt
computation is similar to the original VUS computa-

tion (cf. Algorithm 1) for the calculations of the dy-

namic part. However, it differs in the static part, as its

calculations that involve predictions and labels are un-

affected by buffer length. The static part computation

(Lines 5-7) involves the predictions (according to all

possible thresholds in Th) and their summation. Thus,

the complexity for the static sections is O(N(T1+T2)).

For the dynamic part (Lines 8-30), the computations

(for each threshold and buffer length) are only per-

formed for the sections containing anomalies (i.e., dy-

namic sections in Figure 6). Thus, the complexity of

the dynamic part computation is O(αℓa). We also have

to compute the predictions (score values above a given

threshold) for each dynamic section, which have a com-

plexity of O(T2). Thus the total complexity adds up to

O(N(T1 + T2)) + O(NL(αℓa + T2)). In addition, the

space complexity of the dynamic computation with the

nested loop of thresholds and buffer length is O(NL),

and O(N) for the static part. Therefore, the overall

space complexity of VUSopt is O(NL).

Table 2: Space and time complexity of VUS implementations

Version Time Space
V US O(NL(αℓa + T1 + T2)) O(NL)

VUSopt O(N(T1 + T2 + L(αℓa + T2))) O(NL)
VUSmem

opt O(N(T1 + T2 + Lαℓa)) O(N(L+ T ))

[VUSmem
opt Time and Space Complexity] As shown

in Algorithm 3, the complexity of the static sections

remains unchanged compared to VUSopt. However, the

complexity related to the dynamic sections is reduced

by reusing the saved predictions calculated in the static

part (as illustrated in Figure 7, it is not affected by

buffer lengths). This reduces the dynamic complexity

to O(αℓa), adding up to a total complexity of O(N(T1+

T2) + NLαℓa). For VUSmem
opt , similarly to VUSopt, the

space complexity of the dynamic computation contain-

ing the nested loop of thresholds and buffer length is

O(NL). However, due to the storage and indexing of

predictions, the computations related to the static sec-

tions result in a space complexity of O(NT ). Thus, the

total space complexity of VUSmem
opt is O(N(L+T )). The

time and space complexity of all three VUS implemen-

tations are listed in Table 2.

5 Experimental Analysis

We now describe in detail our experimental analysis.

The experimental section is organized as follows:

In Section 5.1, we introduce the datasets and methods

to evaluate the previously defined accuracy measures.

In Section 5.2, we illustrate the limitations of existing

measures with some selected qualitative examples.

In Section 5.4, we continue by measuring quantita-

tively the benefits of our proposed measures in terms

of robustness to lag, noise, and normal/abnormal ratio.

In Section 5.5, we evaluate the separability degree of

accurate and inaccurate methods, using the existing

and our proposed approaches.

In Section 5.6, we conduct a consistency evaluation,

in which we analyze the variation of ranks that an AD

method can have with an accuracy measures used.

In Section 5.7, we conduct an execution time evalu-

ation, in which we analyze the impact of different pa-

rameters related to the accuracy measures and the time

series characteristics. We focus especially on the com-

parison of the different VUS implementations.

5.1 Experimental Setup and Settings

We implemented the experimental scripts in Python 3.8

with the following main dependencies: sklearn 0.23.0,

tensorflow 2.3.0, pandas 1.2.5, and networkx 2.6.3. In
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Fig. 8: Comparison of evaluation measures (proposed measures illustrated in subplots (b,c,d,e); all others summarized in
subplots (f)) on two examples ((A)AE and OCSM applied on MBA(805) and (B) LOF and OCSVM applied on MBA(806)),
illustrating the limitations of existing measures for scores with noise or containing a lag.

addition, we used implementations from our TSB-UAD

benchmark suite.2 For reproducibility purposes, we make

our datasets and code available.3

Datasets: For our evaluation purposes, we use the

public datasets identified in our TSB-UAD benchmark.

The latter corresponds to 10 datasets proposed in the

past decades in the literature containing 900 time series

with labeled anomalies. Specifically, each point in every

time series is labeled as normal or abnormal. Table 3

summarizes relevant characteristics of the datasets, in-

cluding their size, length, and statistics about the anoma-

lies. In more detail:

2 https://www.timeseries.org/TSB-UAD
3 https://www.timeseries.org/VUS

– SED [2], from the NASA Rotary Dynamics Labora-

tory, records disk revolutions measured over several

runs (3K rpm speed).

– ECG [23] is a standard electrocardiogram dataset

and the anomalies represent ventricular premature

contractions. MBA(14046) is split to 47 series.

– IOPS [1] is a dataset with performance indicators

that reflect the scale, quality of web services, and

health status of a machine.

– KDD21 [28] is a composite dataset released in a

SIGKDD 2021 competition with 250 time series.

– MGAB [53] is composed of Mackey-Glass time se-

ries with non-trivial anomalies. Mackey-Glass data

series exhibit chaotic behavior that is difficult for

the human eye to distinguish.

https://www.timeseries.org/TSB-UAD
https://www.timeseries.org/VUS
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Table 3: Summary characteristics (averaged per dataset) of
the public datasets of TSB-UAD (S.: Size, Ano.: Anomalies,
Ab.: Abnormal, Den.: Density)

Dataset S. Len.
#

Ano.

#
Ab.

Points

Ab.
Den.
(%)

Dodgers [25] 1 50400 133.0 5612.0 11.14
SED [2] 1 100000 75.0 3750.0 3.7

ECG [23] 52 230351 195.6 15634.0 6.8
IOPS [1] 58 102119 46.5 2312.3 2.1

KDD21 [28] 250 77415 1 196.5 0.56
MGAB [53] 10 100000 10.0 200.0 0.20

NAB [4] 58 6301 2.0 575.5 8.8
NASA-M. [8] 27 2730 1.33 286.3 11.97
NASA-S. [8] 54 8066 1.26 1032.4 12.39
SensorS. [55] 23 27038 11.2 6110.4 22.5
YAHOO [29] 367 1561 5.9 10.7 0.70

– NAB [4] is composed of labeled real-world and arti-

ficial time series including AWS server metrics, on-

line advertisement clicking rates, real time traffic

data, and a collection of Twitter mentions of large

publicly-traded companies.

– NASA-SMAP and NASA-MSL [8] are two real

spacecraft telemetry data with anomalies from Soil

Moisture Active Passive (SMAP) satellite and Cu-

riosity Rover on Mars (MSL).

– SensorScope [55] is a collection of environmental

data, such as temperature, humidity, and solar radi-

ation, collected from a sensor measurement system.

– Yahoo [29] is a dataset consisting of real and syn-

thetic time series based on the real production traffic

to some of the Yahoo production systems.

Anomaly Detection Methods: For the experi-
mental evaluation, we consider the following baselines.

– Isolation Forest (IForest) [34] constructs binary

trees based on random space splitting. The nodes

(subsequences in our specific case) with shorter path

lengths to the root (averaged over every random

tree) are more likely to be anomalies.

– The Local Outlier Factor (LOF) [17] computes

the ratio of the neighbor density to the local density.

– Matrix Profile (MP) [57] detects as anomaly the

subsequence with the most significant 1-NN distance.

– NormA [12] identifies the normal patterns based

on clustering and calculates each point’s distance to

normal patterns weighted using statistical criteria.

– Principal Component Analysis (PCA) [3] projects

data to a lower-dimensional hyperplane. Outliers are

points with a large distance from this plane.

– Autoencoder (AE) [48] projects data to a lower-

dimensional space and reconstructs it. Outliers are

expected to have larger reconstruction errors.

– LSTM-AD [35] use an LSTM network that pre-

dicts future values from the current subsequence.

The prediction error is used to identify anomalies.

– Polynomial Approximation (POLY) [30] fits a

polynomial model that tries to predict the values

of the data series from the previous subsequences.

Outliers are detected with the prediction error.

– CNN [36] built, using a convolutional deep neural

network, a correlation between current and previous

subsequences, and outliers are detected by the devi-

ation between the prediction and the actual value.

– One-class Support Vector Machines (OCSVM)

[49] is a support vector method that fits a training

dataset and finds the normal data’s boundary.

5.2 Qualitative Analysis

We first use two examples to demonstrate qualitatively

the limitations of existing accuracy evaluation measures

in the presence of lag and noise, and to motivate the

need for a new approach. These two examples are de-

picted in Figure 8. The first example, in Figure 8(A),

corresponds to OCSVM and AE on the MBA(805) dataset

(named MBA ECG805 data.out in the ECG dataset).

We observe in Figure 8(A)(a.1) and (a.2) that both

scores identify most of the anomalies (highlighted in

red). However, the OCSVM score points to more false

positives (at the end of the time series) and only cap-

tures small sections of the anomalies. On the contrary,

the AE score points to fewer false positives and cap-

tures all abnormal subsequences. Thus we can conclude

that, visually, AE should obtain a better accuracy score

than OCSVM. Nevertheless, we also observe that the
AE score is lagged with the labels and contains more

noise. The latter has a significant impact on the ac-

curacy of evaluation measures. First, Figure 8(A)(c) is

showing that AUC-PR is better for OCSM (0.73) than

for AE (0.57). This is contradictory with what is visu-

ally observed from Figure 8(A)(a.1) and (a.2). However,

when using our proposed measure R-AUC-PR, OCSVM

obtains a lower score (0.83) than AE (0.89). This con-

firms that, in this example, a buffer region before the

labels helps to capture the true value of an anomaly

score. Overall, Figure 8(A)(f) is showing in green and

red the evolution of accuracy score for the 13 accuracy

measures for AE and OCSVM, respectively. The latter

shows that, in addition to Precision@k and Precision,

our proposed approach captures the quality order be-

tween the two methods well.

We now present a second example, on a different

time series, illustrated in Figure 8(B). In this case, we

demonstrate the anomaly score of OCSVM and LOF

(depicted in Figure 8(B)(a.1) and (a.2)) applied on the
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Fig. 9: Comparison of evaluation measures for synthetic data
examples across various scenarios. S8 represents the oracle
case, where predictions perfectly align with labeled anoma-
lies. Problematic cases are highlighted in the red region.

MBA(806) dataset (named MBA ECG806 data.out in

the ECG dataset). We observe that both methods pro-

duce the same level of noise. However, LOF points to

fewer false positives and captures more sections of the

abnormal subsequences than OCSVM. Nevertheless, the

LOF score is slightly lagged with the labels such that

the maximum values in the LOF score are slightly out-

side of the labeled sections. Thus, as illustrated in Fig-

ure 8(B)(f), even though we can visually consider that

LOF is performing better than OCSM, all usual mea-

sures (Precision, Recall, F, precision@k, and AUC-PR)

are judging OCSM better than AE. On the contrary,

measures that consider lag (Rprecision, Rrecall, RF)

rank the methods correctly. However, due to threshold

issues, these measures are very close for the two meth-

ods. Overall, only AUC-ROC and our proposed mea-

sures give a higher score for LOF than for OCSVM.

5.3 Quantitative Analysis

(a) Overall Averaged standard deviation (for MBA(805) electrocardiogram) 
with different lags.
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(b) Averaged standard deviation for different anomaly scores (computed on 
MBA(805) electrocardiogram) with different lags.

(a) Overall Averaged standard deviation (for MBA(805) electrocardiogram) 
with different lags.
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(b) Averaged standard deviation for different anomaly scores (computed on 
MBA(805) electrocardiogram) with different lags.

Fig. 10: For each method, we compute the accuracy measures
10 times with random lag ℓ ∈ [−0.25 ∗ ℓ, 0.25 ∗ ℓ] injected in
the anomaly score. We center the accuracy average to 0.

We present the evaluation results for different syn-

thetic data scenarios, as shown in Figure 9. These sce-

narios range from S1, where predictions occur before

the ground truth anomaly, to S12, where predictions

fall within the ground truth region. The red-shaded re-

gions highlight problematic cases caused by a lack of

adaptability to lags. For instance, in scenarios S1 and

S2, a slight shift in the prediction leads to measures

(e.g., AUC-PR, F score) that fail to account for lags,

resulting in a zero score for S1 and a significant dis-

crepancy between the results of S1 and S2. Thus, we

observe that our proposed VUS effectively addresses

these issues and provides robust evaluations results.

5.4 Robustness Analysis

We have illustrated with specific examples several of

the limitations of current measures. We now evaluate

quantitatively the robustness of the proposed measures

when compared to the currently used measures. We first

evaluate the robustness to noise, lag, and normal versus

abnormal points ratio. We then measure their ability to

separate accurate and inaccurate methods. We first an-

alyze the robustness of different approaches quantita-

tively to different factors: (i) lag, (ii) noise, and (iii)

normal/abnormal ratio. As already mentioned, these

factors are realistic. For instance, lag can be either in-

troduced by the anomaly detection methods (such as
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methods that produce a score per subsequences are only

high at the beginning of abnormal subsequences) or

by human labeling approximation. Furthermore, even

though lag and noises are injected, an optimal evalua-

tion metric should not vary significantly. Therefore, we

aim to measure the variance of the evaluation measures

when we vary the lag, noise, and normal/abnormal ra-

tio. We proceed as follows:

1. For each anomaly detection method, we first com-

pute the anomaly score on a given time series.

2. We then inject either lag l, noise n or change the

normal/abnormal ratio r. For 10 different values of

l ∈ [−0.25 ∗ ℓ, 0.25 ∗ ℓ], n ∈ [−0.05 ∗ (max(ST ) −
min(ST )), 0.05 ∗ (max(ST ) − min(ST ))] and r ∈
[0.01, 0.2], we compute the 13 different measures.

3. For each evaluation measure, we compute the stan-

dard deviation of the ten different values. Figure 10(b)

depicts the different lag values for six AD methods

applied on a data series in the ECG dataset.

4. We compute the average standard deviation for the

13 different AD quality measures. For example, fig-

ure 10(a) depicts the average standard deviation for

ten different lag values over the AD methods applied

on the MBA(805) time series.

5. We compute the average standard deviation for the

every time series in each dataset (as illustrated in

Figure 11(b to j) for nine datasets of the benchmark.

6. We compute the average standard deviation for the

every dataset (as illustrated in Figure 11(a.1) for

lag, Figure 11(a.2) for noise and Figure 11(a.3) for

normal/abnormal ratio).

7. We finally compute the Wilcoxon test [54] and dis-

play the critical diagram over the average standard

deviation for every time series (as illustrated in Fig-

ure 12(a.1) for lag, Figure 12(a.2) for noise and Fig-

ure 12(a.3) for normal/abnormal ratio).

The methods with the smallest standard deviation

can be considered more robust to lag, noise, or nor-

mal/abnormal ratio from the above framework. First,

as stated in the introduction, we observe that non-

threshold-based measures (such as AUC-ROC and AUC-

PR) are indeed robust to noise (see Figure 11(a.2)),

but not to lag. Figure 12(a.1) demonstrates that our

proposed measures VUS-ROC, VUS-PR, R-AUC-ROC,

and R-AUC-PR are significantly more robust to lag.

Similarly, Figure 12(a.2) confirms that our proposed

measures are significantly more robust to noise. How-

ever, we observe that, among our proposed measures,

only VUS-ROC and R-AUC-ROC are robust to the nor-

mal/abnormal ratio and not VUS-PR and R-AUC-PR.

This is explained by the fact that Precision-based mea-

sures vary significantly when this ratio changes. This is

confirmed by Figure 11(a.3), in which we observe that
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Fig. 11: Robustness Analysis for nine datasets: we report,
over the entire benchmark, the average standard deviation of
the accuracy values of the measures, under varying (a.1) lag,
(a.2) noise, and (a.3) normal/abnormal ratio.

Precision and Rprecision have a high standard devia-

tion. Overall, we observe that VUS-ROC is significantly

more robust to lag, noise, and normal/abnormal ratio

than other measures.

5.5 Separability Analysis

We now evaluate the separability capacities of the dif-

ferent evaluation metrics. The main objective is to

measure the ability of accuracy measures to separate

accurate methods from inaccurate ones. More precisely,

an appropriate measure should return accuracy scores

that are significantly higher for accurate anomaly scores

than for inaccurate ones. We thus manually select ac-

curate and inaccurate anomaly detection methods and
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Fig. 12: Critical difference diagram computed using the signed-rank Wilkoxon test (with α = 0.1) for the robustness to (a.1)
lag, (a.2) noise and (a.3) normal/abnormal ratio.

verify if the accuracy evaluation scores are indeed higher

for the accurate than for the inaccurate methods. Fig-

ure 13 depicts the latter separability analysis applied

to the MBA(805) and the SED series. The accurate

and inaccurate anomaly scores are plotted in green and

red, respectively. We then consider 12 different pairs

of accurate/inaccurate methods among the eight pre-

viously mentioned anomaly scores. We slightly mod-

ify each score 50 different times in which we inject lag

and noises and compute the accuracy measures. Fig-

ure 13(a.4) and Figure 13(b.4) are divided into four dif-

ferent subplots corresponding to 4 pairs (selected among

the twelve different pairs due to lack of space). Each

subplot corresponds to two box plots per accuracy mea-

sure. The green and red box plots correspond to the

50 accuracy measures on the accurate and inaccurate

methods. If the red and green box plots are well sep-

arated, we can conclude that the corresponding accu-

racy measures are separating the accurate and inac-

curate methods well. We observe that some accuracy

measures (such as VUS-ROC) are more separable than

others (such as RF). We thus measure the separability

of the two box-plots by computing the Z-test.

We now aggregate all the results and compute the

average Z-test for all pairs of accurate/inaccurate datasets

(examples are shown in Figures 13(a.2) and (b.2) for ac-

curate anomaly scores, and in Figures 13(a.3) and (b.3)

for inaccurate anomaly scores, for the MBA(805) and

SED series, respectively). Next, we perform the same

operation over three different data series: MBA (805),

MBA(820), and SED. Then, we depict the average Z-

test for these three datasets in Figure 14(a). Finally, we

show the average Z-test for all datasets in Figure 14(b).

We observe that our proposed VUS-based and Range-

based measures are significantly more separable than

other current accuracy measures (up to two times for

AUC-ROC, the best measures of all current ones). Fur-

thermore, when analyzed in detail in Figure 13 and Fig-

ure 14, we confirm that VUS-based and Range-based

are more separable over all three datasets.

Global Analysis: Overall, we observe that VUS-ROC

is the most robust (cf. Figure 12) and separable (cf.

Figure 14) measure. On the contrary, Precision and

Rprecision are non-robust and non-separable. Among

all previous accuracy measures, only AUC-ROC is ro-

bust and separable. Popular measures, such as, F, RF,

AUC-ROC, and AUC-PR are robust but non-separable.

In order to visualize the global statistical analysis,

we merge the robustness and the separability analysis

into a single plot. Figure 15 depicts one scatter point

per accuracy measure. The x-axis represents the av-

eraged standard deviation of lag and noise (averaged

values from Figure 11(a.1) and (a.2)). The y-axis cor-

responds to the averaged Z-test (averaged value from

Figure 14). Finally, the size of the points corresponds

to the sensitivity to the normal/abnormal ratio (values

from Figure 11(a.3)). Figure 15 demonstrates that our

proposed measures (located at the top left section of the

plot) are both the most robust and the most separable.

Among all previous accuracy measures, only AUC-ROC

is on the top left section of the plot. Popular measures,

such as, F, RF, AUC-ROC, AUC-PR are on the bot-

tom left section of the plot. The latter underlines the

fact that these measures are robust but non-separable.

Overall, Figure 15 confirms the effectiveness and superi-

ority of our proposed measures, especially of VUS-ROC

and VUS-PR.

5.6 Consistency Analysis

In this section, we analyze the accuracy of the anomaly

detection methods provided by the 13 accuracy mea-

sures. The objective is to observe the changes in the

global ranking of anomaly detection methods. For that

purpose, we formulate the following assumptions. First,

we assume that the data series in each benchmark dataset

are similar (i.e., from the same domain and sharing

some common characteristics). As a matter of fact, we

can assume that an anomaly detection method should

perform similarly on these data series of a given dataset.

This is confirmed when observing that the best anomaly

detection methods are not the same based on which

dataset was analyzed. Thus the ranking of the anomaly

detection methods should be different for different datasets,

but similar for every data series in each dataset. There-

fore, for a given method A and a given dataset D con-

taining data series of the same type and domain, we
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assume that a good accuracy measure results in a con-

sistent rank for the method A across the dataset D.

The consistency of a method’s ranks over a dataset

can be measured by computing the entropy of these

ranks. For instance, a measure that returns a random

score (and thus, a random rank for a method A) will re-

sult in a high entropy. On the contrary, a measure that

always returns (approximately) the same ranks for a

given method A will result in a low entropy. Thus, for a

given method A and a given dataset D containing data

series of the same type and domain, we assume that a

good accuracy measure results in a low entropy for the

different ranks for method A on dataset D.
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We now compute the accuracy measures for the nine

different methods (we compute the anomaly scores ten

different times, and we use the average accuracy). Fig-

ures 16(b.1) and (b.2) report the average ranking of

the anomaly detection methods obtained on the YA-
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Example of (b.1) average rank and (c.1) entropy on the YAHOO dataset, KDD21 dataset (b.2, c.2).

HOO and KDD21 datasets, respectively. The x-axis cor-

responds to the different accuracy measures. We first

observe that the rankings are more separated using

Range-AUC and VUS measures for these two datasets.

Figure 16(b) depicts the average ranking over the entire

benchmark. The latter confirms the previous observa-

tion that VUS measures provide more separated rank-

ings than threshold-based and AUC-based measures.

We also observe an interesting ranking evolution for the

YAHOO dataset illustrated in Figure 16(b.1). We no-

tice that both LOF and MatrixProfile (brown and pink

curve) have a low rank (between 4 and 5) using thresh-

old and AUC-based measures. However, we observe that

their ranks increase significantly for range-based and

VUS-based measures (between 2.5 and 3). As we no-

ticed by looking at specific examples (see Figure 5.2),

LOF and MatrixProfile can suffer from a lag issue even

though the anomalies are well-identified. Therefore, the

range-based and VUS-based measures better evaluate

these two methods’ detection capability.

Overall, the ranking curves show that the ranks

appear more chaotic for threshold-based than AUC-

, Range-AUC-, and VUS-based measures. In order to

quantify this observation, we compute the Shannon En-

tropy of the ranks of each anomaly detection method.

In practice, we extract the ranks of methods across one

dataset and compute Shannon’s Entropy of the different

ranks. Figures 16(c.1) and (c.2) depict the entropy of

each of the nine methods for the YAHOO and KDD21

datasets, respectively. Figure 16(c) illustrates the aver-

aged entropy for all datasets in the benchmark for each

measure and method, while Figure 16(a) shows the av-

eraged entropy for each category of measures. We ob-

serve that both for the general case (Figure 16(a) and

Figure 16(c)) and some specific cases (Figures 16(c.1)

and (c.2)), the entropy is reducing when using AUC-,

Range-AUC-, and VUS-based measures. We report the

lowest entropy for VUS-based measures. Moreover, we

notice a significant drop between threshold-based and

AUC-based. This confirms that the ranks provided by

AUC- and VUS-based measures are consistent for data

series belonging to one specific dataset.

Therefore, based on the assumption formulated at

the beginning of the section, we can thus conclude that

AUC, range-AUC, and VUS-based measures are pro-

viding more consistent rankings. Finally, as illustrated

in Figure 16, we also observe that VUS-based measures

result in the most ordered and similar rankings for data

series from the same type and domain.

5.7 Execution Time Analysis

In this section, we evaluate the execution time required

to compute different evaluation measures. In Section 5.7.1,

we first measure the influence of different time series

characteristics and VUS parameters on the execution

time. In Section 5.7.2, we measure the execution time

of VUS (VUS-ROC and VUS-PR simultaneously), R-

AUC (R-AUC-ROC and R-AUC-PR simultaneously),

and AUC-based measures (AUC-ROC and AUC-PR si-

multaneously) on the TSB-UAD benchmark. As demon-

strated in the previous section, threshold-based mea-
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Table 4: Value ranges for the parameters: number of anoma-
lies (α), average and standard deviation anomaly length
(µ(ℓa),σ(ℓa)), time series length (|T |), maximum buffer
length (L), and number of thresholds (N).

Param. α µ(ℓa) σ(ℓa) |T | L N

Default 10 10 0 105 5 250
Min. 0 0 0 103 0 2
Max. 2 ∗ 103 103 10 105 103 103

sures are not robust, have a low separability power,

and are inconsistent. Such measures are not suitable

for evaluating anomaly detection methods. Thus, in this

section, we do not consider threshold-based measures.

5.7.1 Evaluation on Synthetic Time Series

We first analyze the impact that time series charac-

teristics and parameters have on the computation time

of VUS-based measures. to that effect, we generate syn-

thetic time series and labels, where we vary the follow-

ing parameters: (i) the number of anomalies α in the

time series, (ii) the average µ(ℓa) and standard devia-

tion σ(ℓa) of the anomalies lengths in the time series

(all the anomalies can have different lengths), (iii) the

length of the time series |T |, (iv) the maximum buffer

length L, and (v) the number of thresholds N .

We also measure the influence on the execution time

of the R-AUC- and AUC- related parameter, that is,

the number of thresholds (N). The default values and

the range of variation of these parameters are listed in

Table 4. For VUS-based measures, we evaluate the ex-

ecution time of the initial VUS implementation, as well

as the two optimized versions, VUSopt and VUSmem
opt .

Figure 17 depicts the execution time (averaged over

ten runs) for each parameter listed in Table 4. Overall,

we observe that the execution time of AUC-based and

R-AUC-based measures is significantly smaller than VUS-

based measures. In the following paragraph, we analyze

the influence of each parameter and compare the ex-

perimental execution time evaluation to the theoretical

complexity reported in Table 2.

[Influence of α]: In Figure 17(a), we observe that the

VUS, VUSopt, and VUSmem
opt execution times are lin-

early increasing with α. The increase in execution time

for VUS, VUSopt, and VUSmem
opt is more pronounced

when we vary α, in contrast to la (which nevertheless,

has a similar effect on the overall complexity). We also

observe that the VUSmem
opt execution time grows slower

than V USopt when α increases. This is explained by

the use of 2-dimensional arrays for the storage of pre-

dictions, which use contiguous memory locations that

allow for faster access, decreasing the dependency on α.

[Influence of µ(ℓa)]: As shown in Figure 17(b), the ex-

ecution time variation of VUS, VUSopt, and VUSmem
opt

caused by ℓa is rather insignificant. We also observe that

the VUSopt and VUSmem
opt execution times are signifi-

cantly lower when compared to VUS. This is explained

by the smaller dependency of the complexity of these

algorithms on the time series length |T |. Overall, the

execution time for both VUSopt and VUSmem
opt is signif-

icantly lower than VUS, and follows a similar trend.

[Influence of σ(ℓa)]: As depicted in Figure 17(d) and

inferred from the theoretical complexities in Table 2,

none of the measures are affected by the standard de-

viation of the anomaly lengths.

[Influence of |T |]: For short time series (small val-

ues of |T |), we note that O(T1) becomes comparable to

O(T2). Thus, the theoretical complexities approximate

to O(NL(T1 + T2)), O(N ∗ (T1 + T2)) +O(NLT2) and

O(N(T1+T2)) for VUS, VUSopt, and VUSmem
opt , respec-

tively. Indeed, we observe in Figure 17(c) that the exe-

cution times of VUS, VUSopt, and VUSmem
opt are similar

for small values of |T |. However, for larger values of |T |,
O(T1) is much higher compared to O(T2), thus result-

ing in an effective complexity of O(NLT1) for VUS, and

O(NT1) for VUSopt, and VUSmem
opt . This translates to

a significant improvement in execution time complexity

for VUSopt and VUSmem
opt compared to VUS, which is

confirmed by the results in Figure 17(c).

[Influence of N ]: Given the theoretical complexity

depicted in Table 2, it is evident that the number of

thresholds affects all measures in a linear fashion. Fig-

ure 17(e) demonstrates this point: the results of vary-

ing N show a linear dependency for VUS, VUSopt, and

VUSmem
opt (i.e., a logarithmic trend with a log scale on

the y axis). Moreover, we observe that the AUC and

range-AUC execution time is almost constant regard-

less of the number of thresholds used. The latter is ex-

plained by the very efficient implementation of AUC

measures. Therefore, the linear dependency on the num-

ber of thresholds is not visible in Figure 17(e).

[Influence of L]: Figure 17(f) depicts the influence of

the maximum buffer length L on the execution time

of all measures. We observe that, as L grows, the ex-

ecution time of VUSopt and VUSmem
opt increases slower

than VUS. We also observe that VUSmem
opt is more scal-

able with L when compared to VUSopt. This is con-

sistent with the theoretical complexity (cf. Table 2),

which indicates that the dependence on L decreases

from O(NL(T1+T2+ℓaα)) for VUS to O(NL(T2+ℓaα)

and O(NL(ℓaα)) for V USopt, and V USmem
opt .
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Fig. 17: Execution time of VUS, R-AUC, AUC-based measures when we vary the parameters listed in Table 4. The solid lines
correspond to the average execution time over 10 runs. The colored envelopes are to the standard deviation.

Table 5: Linear regression slope coefficients (C.) for VUS ex-
ecution times, for each parameter independently.

Measure Param. α la |T | L N

V US
C. 21.9 0.02 2.13 212 6.24
R2 0.99 0.15 0.99 0.99 0.99

V USopt
C. 24.2 0.06 0.19 27.8 1.23
R2 0.99 0.86 0.99 0.99 0.99

V USmem
opt

C. 21.5 0.05 0.21 15.7 1.16
R2 0.99 0.89 0.99 0.99 0.99

In order to obtain a more accurate picture of the in-

fluence of each of the above parameters, we fit the exe-

cution time (as affected by the parameter values) using

linear regression; we can then use the regression slope

coefficient of each parameter to evaluate the influence

of that parameter. In practice, we fit each parameter

individually, and report the regression slope coefficient,

as well as the coefficient of determination R2. Table 5

reports the coefficients mentioned above for each pa-

rameter associated with VUS, VUSopt, and VUSmem
opt .

Table 5 shows that the linear regression between α

and the execution time has a R2 = 0.99. Thus, the

dependence of execution time on α is linear. We also

observe that VUSopt execution time is more dependent

on α than VUS and VUSmem
opt execution time. Moreover,

the dependence of the execution time on the time series

length (|T |) is higher for VUS than for VUSopt and

VUSmem
opt . More importantly, VUSopt and VUSmem

opt are

significantly less dependent than VUS on the number

of thresholds and the maximal buffer length.

5.7.2 Evaluation on TSB-UAD Time Series

In this section, we verify the conclusions outlined

in the previous section with real-world time series from
the TSB-UAD benchmark. In this setting, the parame-

ters α, ℓa, and |T | are calculated from the series in the

benchmark and cannot be changed. Moreover, L and N

are parameters for the computation of VUS, regardless

of the time series (synthetic or real). Thus, we do not

consider these two parameters in this section.

Figure 18 depicts the execution time of AUC, R-

AUC, and VUS-based measures versus α, µ(ℓa), and

|T |. We first confirm with Figure 18(a) the linear re-

lationship between α and the execution time for VUS,

VUSopt and VUSmem
opt . On further inspection, it is possi-

ble to see two separate lines for almost all the measures.

These lines can be attributed to the time series length

|T |. The convergence of VUS and V USopt when α grows

shows the stronger dependence that V USopt execution

time has on α, as already observed with the synthetic

data (cf. Section 5.7.1).

In Figure 18(b), we observe that the variation of the

execution time with ℓa is limited when compared to the

two other parameters. We conclude that the variation
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Fig. 18: Execution time of VUS, R-AUC, AUC-based measures on the TSB-UAD benchmark, versus α, ℓa, and |T |.

Table 6: Linear regression slope coefficients (C.) for VUS ex-
ecution time, for all time series parameters all-together.

Measure α |T | la R2

V US 7.87 13.5 -0.08 0.99
V USopt 10.2 1.70 0.09 0.96
V USmem

opt 9.27 1.60 0.11 0.96

of ℓa is not a key factor in determining the execution

time of the measures. Furthermore, as depicted in Fig-

ure 18(c), V USopt and V USmem
opt are more scalable than

VUS when |T | increases. We also confirm the linear de-

pendence of execution time on the time series length

for all the accuracy measures, which is consistent with

the experiments on the synthetic data. The two abrupt

jumps visible in Figure 18(c) are explained by signifi-

cant increases of α in time series of the same length.

We now perform a linear regression between the ex-

ecution time of VUS, VUSopt and VUSmem
opt , and α, ℓa

and |T |. We report in Table 6 the slope coefficient for

each parameter, as well as the R2. The latter shows

that the VUSopt and VUSmem
opt execution times are im-

pacted by α at a larger degree than α affects VUS.

On the other hand, the VUSopt and VUSmem
opt execution

times are impacted to a significantly smaller degree by

the time series length when compared to VUS. We also

confirm that the anomaly length does not impact the

execution time of VUS, VUSopt, or VUSmem
opt . Finally,

our experiments show that our optimized implementa-

tions VUSopt and VUSmem
opt significantly speedup the

execution of the VUS measures (i.e., they can be com-

puted within the same order of magnitude as R-AUC),

rendering them practical in the real world.

5.8 Summary of Results

Figure 19 depicts the ranking of the accuracy measures

for the different tests performed in this paper. The ro-

bustness test is divided into three sub-categories (i.e.,

lag, noise, and Normal vs. abnormal ratio). We also

show the overall average ranking of all accuracy mea-

sures (most right column of Figure 19). Overall, we see

that VUS-ROC is always the best, and VUS-PR and

Range-AUC-based measures are, on average, second,

third, and fourth. We thus conclude that VUS-ROC

is the overall winner of our experimental analysis.

In addition, our experimental evaluation shows that

the optimized version of VUS accelerates the computa-

tion by a factor of two. Nevertheless, VUS execution

time is still significantly slower than AUC-based ap-

proaches. However, it is important to mention that the

efficiency of accuracy measures is an orthogonal prob-

lem with anomaly detection. In real-time applications,

we do not have ground truth labels, and we do not use

any of those measures to evaluate accuracy. Measuring

accuracy is an offline step to help the community assess

methods and improve wrong practices. Thus, execution

time should not be the main criterion for selecting an

evaluation measure.

6 Conclusions

Time-series AD is a challenging problem, and an ac-

tive area of research. Given the multitude of solutions

proposed in the literature, it is important to be able to

properly evaluate them. In this paper, we demonstrate

the limitations of threshold-based accuracy measures.

Even though AUC-based measures solve the thresh-

old issues, we show that they cannot handle lag and

noise. Overall, we show that the proposed VUS-based

measures are more robust, and better separate accurate

methods from inaccurate ones.

Despite the significant scalability improvement brought

by V USopt and V USmem
opt , the execution time is still

higher than that of the simple AUC-based and the threshold-
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Robustness Separability Consistency Overall
Lag Noise N/A ratio Z-test Entropy

1 VUS-ROC VUS-ROC VUS-ROC VUS-ROC VUS-ROC 1 VUS-ROC

2 R-AUC-ROC VUS-PR AUC-ROC R-AUC-ROC R-AUC-ROC 2 R-AUC-ROC

3 VUS-PR R-AUC-ROC R-AUC-ROC R-AUC-PR R-AUC-PR 3 VUS-PR

4 R-AUC-PR R-AUC-PR F VUS-PR VUS-PR 4 R-AUC-PR

5 F AUC-PR RF AUC-ROC AUC-PR 5 AUC-ROC

6 RF AUC-ROC AUC-PR Recall AUC-ROC 6 AUC-PR

7 Precision F VUS-PR Precision@k F 7 F

8 Rprecision Precision@k Precision AUC-PR RF 8 RF

9 AUC-PR Recall Rrecall Precision Rrecall 9 Precision@k

10 Precision@k RF Rprecision F Precision@k 10 Precision

11 Recall Precision R-AUC-PR Rprecision Recall 11 Recall

12 AUC-ROC Rrecall Precision@k RF Precision 12 Rprecision

13 Rrecall Rprecision Recall Rrecall Rprecision 13 Rrecall

Ra
nk
s

VUS Range-AUC AUC Traditional
Proposed measures

Extended
Threshold-based measures

Fig. 19: Ranks of the accuracy evaluation measures for the
three different tests (i.e., on robustness, separability, and con-
sistency) performed in the experimental evaluation, as well as
the overall ranks (averaged for each measure on all tests).

based approaches. Nevertheless, since the VUS-based

measures are more robust, separable, and consistent,

studying further optimization strategies is an impor-

tant research direction. Even though VUS-based meth-

ods are only relevant to the offline accuracy evaluation

step, improving the execution time would benefit the

relevant benchmarks.
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