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Anomaly Detection methods: A taxonomy
By time...
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Anomaly Detection methods: A taxonomy
By time...

Number of methods proposed that are Number of methods proposed that can handle
Unsupervised or Semi-Supervised Univariate or Multivariate time series
100% 100%
0% : 90%
80% Sem!- 80% Multivariate
0% Supervised 0%
60% & 60%
50% 4§ 50%
40% S 40%
30% 30%
0% Unsupervised 50%
10% 10% Univariate
0% 0%
Q g
S QS
" N
years interval years interval

VLDB 2024 | 27/08/2024 | 77



Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T
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% 1
ST,i = z d(Ti,e, Tk,e) Nearest Cluster
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Anomaly Detection methods: Distance-based

Example of distance computation

AT A

B ! B ;]  It2

(a) Euclidean distance (b) DTW distance
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Anomaly Detection methods: an Example

v

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

Matrix Profile [6] (MP) A

Compute the distance to the
nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score

Unsupervised

Univariate

sequence
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[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

Matrix Profile [6] (MP) A
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[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

Anomaly Detection methods: an Example

Matrix Profile [6] (MP) A

Compute the distance to the
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MASS algorithm z-norm
Euclidean distance
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Anomaly Detection methods: an Example

v

The matrix Profile is computed as follows:
St = [NN(Toe), NN(Te), ..., NN(Tiri—e.e)]

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

Matrix Profile [6] (MP) A

Compute the distance to the
nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score
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Univariate

sequence
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Anomaly Detection methods: an Example

) ) Discord
Time series T

N Ny

Anomaly score St

1 1
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[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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Anomaly Detection methods: an Example

. . N
Matrix Profile [6] (MP)
_ _ Discord Compute the distance to the
Time series T nearest neighbor (using the
[ ] ] ] MASS algorithm z-norm
( ; } b Euclidean distance
Many different extensions... . .
computation) and use it as
- For streaming time series: STAMPi [6], DAMP [8] anomaly score
- For similar recurrent anomalies: left-STAMP [6] ) .
- Anytime or ordered: STAMP [6], STOMP [7] U nsupervised
\ - For multivariate time series: MSTAMP [9] ) - /
,J L Univariate
0 180 280 , 380 430 ( )
' sequence
\ %
[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah VLDB 2024 | 27/08/2024 | 91
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Anomaly Detection methods: an Example

Time series T

0 2000 4000 6000 8000

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931.

4 )
NormA [10]
Distance-based approach that
summarize the time series into
a weighted set of subsequences
and use the distance to them as
anomaly score
Unsupervised
Univariate
segquence
- /
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Anomaly Detection methods: an Example

4 I
Time series T NormA [10]
Distance-based approach that
summarize the time series into
| | | | a weighted set of subsequences
2000 4000 6000 8000 .
and use the distance to them as
anomaly score
Unsupervised
Univariate
sequence
\ J
[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised VLDB 2024 | 27/08/2024 | 93
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Anomaly Detection methods: an Example

Time series T

0 2000 4000 6000 8000
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and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931.
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and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931.

-

NormA [10]

Distance-based approach that
summarize the time series into
a weighted set of subsequences
and use the distance to them as

anomaly score

Unsupervised

Univariate

sequence

VLDB 2024 | 27/08/2024 | 95



Anomaly Detection methods: an Example

4 I
Time series T M \U NormA [10]
Tje T
u Distance-based approach that
SAND [25] a weighted set of subsequences
and use the distance to them as
Distance-based approach that summarize the time seriesinto a anomaly score
weighted set of subsequences, and can be updated incrementally l)} ) .
for new arriving batches of data points i U nsupervised
(N ILM’ WIL) . J : :
Univariate
OI0 2800 4OIOO 6(;00 8800 ( )
Anomaly score Sy sequence
o )
[25] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021. SAND: streaming subsequence anomaly detection. VLDB 2024 | 27/08/2024 | 96
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Anomaly Detection methods: Density-based

Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.
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Anomaly Detection methods: Density-based

Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.
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Anomaly Detection methods: Density-based

Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.
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Anomaly Detection methods: Density-based

Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.

Time series T
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Anomaly Detection methods: an Example

0 splits

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

v

0 splits

v

-

\_

Isolation Forest [11]

Density-based approach that
split the space randomly and

using the depth of the trees to

identify anomalies

~

Unsupervised

~N

J

Univariate/Multivariate

Ve

\\

Point/sequence

~N

J

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp.413-422 VLDB 2024 | 27/08/2024 | 101



Anomaly Detection methods: an Example

4 . I
Isolation Forest [11]
1 splits 1 splits
A A Density-based approach that
o O o O split the space randomly and
OOOOOO °© 4 OOOOOO °© 5 using the depth of the trees to
o ooo. ® oooo identify anomalies
e o0 o 0F
o o
e® © e® ©
o o o o o o ( , )
®° oo ©® oo Unsupervised
Univariate/Multivariate
Point/sequence
\ %
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Anomaly Detection methods: an Example

v

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "
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Anomaly Detection methods: an Example

3 splits

v
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Anomaly Detection methods: an Example
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Anomaly Detection methods: an Example

4 . N
Isolation Forest [11]
ITree,
e Density-based approach that
// split the space randomly and
using the depth of the trees to
o identify anomalies
AN
Instance A ( . )
Unsupervised
Univariate/Multivariate
N \ Point/sequence |
- J
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Anomaly Detection methods: an Example

4 . N
Isolation Forest [11]
I Tre e 1 ITree, ITree,
/ N N itv-
L . S Deh5|ty based approach that
s o’% split the space randomly and
e using the depth of the trees to
N identify anomalies
AN Instance N
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Anomaly Detection methods: an Example
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[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time seriesinto a
graph and detect unusual

trajectories

~

Unsupervised

Univariate

subsequence
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[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

v

Each node is an ensemble of similar

subsequences.

Series2Graph [13]
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Anomaly Detection methods: an Example

ND subsequences.
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o

o
OoooToo ) |
Oy
o ofo° N
o
| o° ©

N —

o Each edge is associated to a weight
w that corresponds to the number
of times a subsequence move from

one node to another.

v

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834
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Anomaly Detection methods: an Example

Each node is an ensemble of similar
subsequences.

Each edge is associated to a weight
w that corresponds to the number
of times a subsequence move from
one node to another.

For a given subsequence T; , and its corresponding path
P, =< NO NGO NE+D 5 e define the normality score as follows:
i+f-1 W(N(j), N(j+1)) deg(N(j) - 1)

Norm(P,,) = Z .
j=i

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time seriesinto a
graph and detect unusual
trajectories

~
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Univariate

subsequence
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Anomaly Detection methods: an Example

N (6)
k_\ (5) Each node is an ensemble of similar
N -

C ‘o subsequences.
4 D
DADS [26] Lt
.
Distributed version of Series2Graph m
o ; 00 N o.‘
N @ N\ A
\ > . )

For a given subsequence T; , and its corresponding path
P, =< NO NGO NE+D 5 e define the normality score as follows:
i+4—1 N(j),N(j"'l) dea(NU) =1
Norm(P,,) = Z ( 2} 8( )
j=i

[26] Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB
Journal 30, 579-602 (2021).

Series2Graph [13]

Density-based approach that
convert the time seriesinto a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

Snippet of SED time series

0 1300 2600 3900 5200 6500

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time seriesinto a
graph and detect unusual
trajectories
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Univariate

subsequence
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Anomaly Detection methods: an Example

Snippet of SED time series

0 1300
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[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834
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Anomaly Detection methods: an Example

Snippet of SED time series [14]

U |

Pattern following
an unusual path in
the graph

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

6500

Pattern following
a recurrent path

\—\ in the graph

-

Series2Graph [13]

Density-based approach that
convert the time seriesinto a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.
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Anomaly Detection methods: an Example

Number of cells n,,

1 h;
|
Ci—1 — 1 > Cj
hi—l __ > hi
AT
hi—q h; hit1
Y A =1
® 0,
[ ]
> hitq
T; Tiv1

[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shro, and Puneet Agarwal. 2015. Long Short Term Memory Networks for Anomaly
Detection in Time Series. (2015).

-

LSTM-AD [15]

Model that stack multiple LSTM
cell and use the output to
predict the next value

Semi-supervised

Univariate/Multivariate

Vs

\\

Point/sequence

~

\_

J
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[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection
in Time Series. IEEE Access 7 (2019), 1991-2005.
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DeepAnT [16] (CNN)

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.

~

Semi-supervised

Univariate/Multivariate

Ve

\\

Point/sequence

~N

J

VLDB 2024 | 27/08/2024 | 125



Anomaly Detection methods: an Example

MaxPooling Conv layer 2
N \/
Conv layer 1 MaxPooling

(Y \ Dense layer

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
N \V/
Conv layer 1 MaxPooling
Ti_pp Dense layer

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
N \/
Conv layer 1 MaxPooling
Ti_pp Dense layer

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

I I I T T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

T . T T

0 Tip 1250 T p 2500 3750 5000

\
_ /
f(Tie) = Tiy

0 20 40 60
Sri =T — Ti/'||

3

| |
| | |
0 1250 2500 3750 5000
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Anomaly Detection methods: Reconstruction-

based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the

time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T
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Anomaly Detection methods: an Example

Anomaly score,
S = LTy, T, |

Reconstructed subsequence

I D I D—l r 0
Ti,g( )Ti,é’( )Ti.f( )

Original subsequence

D) mp(D=1) (0
T'({’ : T T'EEJ

Latent space
E(T,6p) D(Z,6p)
! Original subsequence ' Y /
Reconstructed
_ subsequence
IO ZI{J 41{] 60 | {u 2=0 4:0 61IO |
Normal subsequence Anomalous subsequence

[17] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings

of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia QLD, Australia) (MLSDA’14).

" AutoEncoders [17] (AE) A

Neural Network composed of an
encoder (that reduce the
dimensionality) and decoder
that reconstruct the time series.
The objective is to minimize the
reconstruction error.

Semi-supervised

~N

 Univa riate/Multivariate

( )

Point/sequence
N Y,
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Anomaly Detection methods: Existing
benchmark
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Anomaly Detection methods: Existing
benchmark

HEX/UCR [18] A

-

Set of 250 time series with
labels.

Details

- The labels have been

manually checked and are
reliable

- Each time series contains
only 1 labeled anomaly
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-

HEX/UCR [18]

Anomaly Detection methods: Existing
benchmark

Set of 250 time series with
labels.

Details

TimeEval [5]

The labels have been
manually checked and are
reliable

Each time series contains
only 1 labeled anomaly

Set of 976 time series with
labels.

Details

New synthetic benchmark
GutenTag used to tune
parameters

Only Time series with low
contamination rate (< 0.1)

Time series with at least one

methods above 0.8 AUC-ROC D

VLDB 2024 | 27/08/2024 | 140



-

HEX/UCR [18]

Set of 250 time series with
labels.

Details

TimeEval [5]

The labels have been
manually checked and are
reliable

Each time series contains
only 1 labeled anomaly

Set of 976 time series with
labels.

Details

New synthetic benchmark
GutenTag used to tune
parameters

Only Time series with low
contamination rate (< 0.1)

Time series with at least one

Anomaly Detection methods: Existing
benchmark

TSB-UAD [19]

Set of 2000 time series with
labels.

Details

methods above 0.8 AUC-ROC D

Collected as proposed in the
literature (no filtering based
on contamination, size or
label quality)

Artificial and synthetic data
generation methods for
reliable labels

)
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Anomaly Detection methods: Existing
benchmark

Real datasets collection

OPPORTUNITY IOPS SVDB Daphnet MGAB MITDB
Occupancy ECG GHL ensorScope NASA-MSL SMD
KDD21 NASA-SMAP NAB Genesis Dodgers YAHOO

wvul by

o

W
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Anomaly Detection methods: Existing
benchmark

Artificial dataset generation

Synthetic dataset generation

2
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

- Semi-supervised methods are not
outperforming Unsupervised approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.
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Anomaly Detection methods:
Experimental evaluation

Observations on HEX/UCR [18]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting and
distribution-based approaches

[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp.2421-2429, 2023.
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Anomaly Detection methods:
Experimental evaluation

Observations on HEX/UCR [18]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting and
distribution-based approaches

[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp.2421-2429, 2023.
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Anomaly Detection methods:
Experimental evaluation

Observations on TSB-UAD [19]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting-based
methods.

- Isolation Forest (distribution-based and not
proposed for time series) have also a strong
accuracy

- AutoEncoder (AE) is also very accurate.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an

NORMA ~

MP

AE

IFOREST -+

IFOREST1 ~

CNN

HBOS +

PCA -

LSTM

POLY ~

OCSVM ~

end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection methods:
Experimental evaluation

Observations on TSB-UAD [19]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting-based
methods.

- Isolation Forest (distribution-based and not
proposed for time series) have also a strong
accuracy

- AutoEncoder (AE) is also very accurate.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an

NORMA

MP f

AE H

IFOREST

IFOREST1 i

CNN

HBOS +

PCA -

LSTM

POLY ~

OCSVM ~

end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.

T 1T .| TL

.
Tl

0.0

T
0.2

T T
0.4 0.6
AUC-ROC

[T 1Hh

T
0.8 1.0

VLDB 2024 | 27/08/2024 | 150




Anomaly Detection methods:

Point-based anomaly

Experimental evaluation

CNN -+

NORMA -
mp 1
Observations on TSB-UAD [19]: st |
LOF
AE
IFORESTL1 -
POLY A
IFOREST A
PCA
HBOS 1
[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series OCSVM
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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sequence-based anomaly
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Anomaly Detection methods:

EXp er/m el ta/ E\/alua tlon Point-based anomaly sequence-based anomaly

CNN K .‘ NORMA - I @ —|

NORMA 1 )—{]{ we o | ®
P }—H—{ AE —— @
Observations on TSB-UAD [19]: ol }_E rorest | | o

LOF - |7. —| HBOS - I @

- Forecasting methods (LSTM and CNN) are —
very accurate for point anomalies A€ 1 )—E B rea | o

- But have poor performances on sequence- g
based anomalies.

IFOREST1 A I @

.
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CNN | @
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[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael

J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series OCSVM | _. | | — | ®

anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection methods:

EX,D erimen tG/ EVU/UO tion Ratio>0.1 Ratio<0.001
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- The ratio of normal/abnormal points has a
strong impact on the methods ranking. NoRwA 1 | ® —] POLY 1 F——— o —
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[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series P | ® | ocsvM ® |
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711. l_
O.IO O.IZ 0.I4 O.Iﬁ O.IB l.IO O.IO O.IZ 0.I4 O.Iﬁ O.IB I
AUC-ROC AUC-ROC

VLDB 2024 | 27/08/2024 | 153



Anomaly Detection methods: Experimental evaluation

Observation from the results applied on specific datasets (TSB-UAD [19])

(a.1) Example from ECG dataset - (a.2) ECG . (c.1) Example from Daphnet dataset (c.2) Daphnet
' ! i 0.6 1 .
0.6 i i
O 0.4 1 ! i ! .
2 ' ii = ié (éuz-
0.2 - | .
0ol ! =3 :L.' = . 0.0 L ii :
(b.1) Example from MGAB dataset (b.2) MGAB (d.1) Example from YAHOO dataset (d.2) YAHOO
0.6] = 1.00 {7+ 0 T
co. | B S . BN
énlz i i él:l 50 4 E : : , + i : é
i i 0,25 1 i o !
0.0 {——1___i —————.—‘-‘_— 0.00 -L;';' -'L"Lé;" i
eoqﬁ»‘\?* ® o %“%“i@“‘h‘*‘? oS e ﬁo""L::‘\?? « ‘*“"‘ %“f’@""h‘?@ ® S ot

'\ '\

There is no overall winner.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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New Trends and Opportunities
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Automated Solution: Background

Detection accuracy (VUS-PR) for 6 anomaly detectors
across different datasets in TSB-UAD [19]

Motivation: IForest — PCA msm NORMA mmm HBOS mmm POLY

0.8 4

VUS-PR

- No one-size-fits-all model: How can we 0.6

automatically identify the best anomaly o4
detector given a time series? 2] u L

0.0

Daphnet Occupancy KDD 21 SVDB

[27] Maroua Bahri, Flavia Salutari, Andrian Putina, and Mauro Sozio: AutoML: state of the art with a focus
on anomaly detection, challenges, and research directions. International Journal of Data Science and

Analytics 14(2): 113-126 (2022). VLDB 2024 | 27/08/2024 | 156



Automated Solution: Taxonomy

(a) Model Selection .
(a.2) Meta-learning-based h

(a) Model Selection:

Selecting the best anomaly detector from a Unlabeled Time Series Model Prediction
predefined candidate model set. E Model
e | selector [LLM2
. N A
- (a.1) Internal Evaluation 5 i N 1! Pretraining
- (a.2) Meta-learning-based oo e ’
: (a.1) Internal Evaluation
Synthetic Anomaly Precision 5
M | 06 Top Selection |

hwﬁ.rﬁlﬂ:«j;f / M. | 0.8 —] M2

Synthetic Anomaly Injection M. |05
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Automated Solution: Taxonomy

(a) Model Selection: emmenees (b) Model Generation |......
d (b.1) Ensembling-based
Selecting the best anomaly detector from a v A B Anomaly Score
predefined candidate model set. A
- (a.1) Internal Evaluation : M | ol Mens
- (a.2) Meta-learning-based (b.2) Pseudo-label-based
Inlier . Qutlier
(b) Model Generation: v ( Unsure Inlier
pieten ¢
Creating an entirely new model for the given D M ‘P
time series based on the candidate mode set I TR - v Pseudo Label
' M. . y —»| My
- (b.1) Ensembling-based Majority Voting Outlier Classifer .-

- (b.2) Pseudo-label-based e T ”
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Automated Solution: Internal Evaluation

[ AutoTSAD ]
I

Definition: Evaluate the effectiveness of v v

a model without any reliance on [ Model Selection ] [ Model Generation ]

external information ; [ . ; [

) i . : : Internal Meta-learning- Ensembling- Pseudo-
stand-alone: Clustering Quality, [ Evaluation ][ based J [ based ][ label-based ]
EM&MV, Synthetic anomaly injection o

§ —
- Collective: Model Centrality, Rank "
Aggregation S 7] ca |emamv
o
% N v JF Y
o | gMC RA  Synthetic
=~ i~
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Automated Solution: Internal Evaluation

Metrics on Test TS Rankings

w— Y Anomaly
— ¥_hat Anomaly $cores M s

A=

" Prediction Error

Train TS

Trained Models

Image from [28]: Internal Evaluation workflow.

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection

for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.
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Automated Solution: Internal Evaluation

Metrics on Test TS Rankings
T o ™
| MSE J
. A M,
~ Prediction Error
— TS - TSwioanomaly — Ancenaly .\"‘
Scale o
1l A | AR KMU Anomaly —
AMALANAUANAURAAR

Synthetic Anomaly Injection

Train TS
M,

Trained Models

Image from [28]: Internal Evaluation workflow.

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection
for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.
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Automated Solution: Internal Evaluation

Metrics on Test TS

— - Anomaly
— Anomaly $Sceres .\L

| U l MSE » M, \
. _ , \ M,
~ Prediction Error

— TS s== TS W/o anomaly — Ancenaly
Scale
- M,

UALAAARARAARNRARAA = s

Synthetic Anomaly Injection

Train TS olofofo]r]1|2]o]o]e Dist: to M,
M, ofofof1|1]|2|2|ofo|op—> —— M,
1|ofo]o]o]1f[2]1]0]e NN M

Trained Models Model Centrality l

M,

Rankings

Image from [28]: Internal Evaluation workflow.

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection
for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.
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Automated Solution: Internal Evaluation

Metrics on Test TS

— - Anomaly
— Anomaly $Sceres .\L

| U l MSE » M,
. _ , \ M,
~ Prediction Error

— TS s== TS W/o anomaly — Ancenaly
Scale
- M,

UALAAARARAARNRARAA = s

Synthetic Anomaly Injection

M,

Train TS olofo]Jo|1|1|[2fo]o]o Dist. to M,
M, ofofof1|1]|2|2|ofo|op—> - M,
1|o|ofo]ofa]2f1]o]o M
Trained Models Model Centrality l

Rankings

Image from [28]: Internal Evaluation workflow.

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection
for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.
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|
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Automated Solution: Meta-learning-based

[ AutoTSAD ]
I

Definition: Using insights from historical v v
labeled datasets to select the best [ Model Selection ] [ Model Generation ]
model for new data
- Classification: Auto-Selector, MSAD [ EL:E;::;“ ] Metzgi:;nmg- [Ens::;::ng- ][ hEﬁ::z;d ]
o
- Regression: RG, UReg, Cfact S RG| |isac
wn kNN
- Nearest Neighbor: kNN S 7 ca | EMamMv
o L J
- Other Optimization: ISAC, MetaOD S Vo ! Auto-
@ _| @MC RA  Syntheticy, Selector §
< = MSAD UReg CFact
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Automated Solution: Meta-learning-based

(a) Time series T

MU LA

k('

---------------------------------------------------

L{l e

T
....................................
.......................................................
..........................................................................

Ul il @ ngn";:l)z\ : D‘
SRERT ! > —> P(Tje)=Dy | |5 22
T s Ml e s
,MMMMJL | method _:>P(T,,,)=ED3J £

- )

‘(b) Set of subsequences of length €

Proposed pipeline I

Image from [29]: Model Selection Pipeline.

[29] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, Themis Palpanas. 2023. Choose wisely: An extensive
evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment 16(11): 3418-3432.
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Automated Solution: Meta-learning-based

MMA‘MM:

LML

Time Series
For Training

e

D1

D2

D3

.

)

Candidate
Model Set

D1 | D2 | D3
TS1 | 05 | 0.7 | 0.9
TS, | 06 | 0.4 | 0.7
TS3 | 0.5 | 0.8 | 0.6

Performance

Matrix

Performance measures:
F-score, AUC-PR, VUS-PR ...
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Automated Solution: Meta-learning-based

MJ\M'MJ\WJ\:

LML

Time Series
For Training

1=

/ N\ D1 | D2 | D3
L TS1 | 0.5 | 0.7 | 0.9
Do — |TS, 06 04| 0.7

TS3 05 | 0.8 | 0.6
Dj

\ J

Candidate Performance

Model Set Matrix

—— Classification ?
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Automated Solution: Meta-learning-based

4 h D1 | D2 | D3
. - TS1 | 05 | 0.7 | 0.9
MMMMM — D2 — |TS; | 06 | 04 | 0.7 —
| ]U\MM > 7S3 | 05 | 0.8 | 0.6
\ - I K D3 /
Time Series Candidate Performance
For Training Model Set Matrix

[28] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, Themis Palpanas. 2023. Choose wisely: An extensive
evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment 16(11): 3418-3432.

D1 | D2 | D3

TS; | O 0 1

TS, | 0 | 0 | 1

TS3 0 1 0
Label
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Automated Solution: Meta-learning-based
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[28] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, Themis Palpanas. 2023. Choose wisely: An extensive
evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment 16(11): 3418-3432.
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Automated Solution: Meta-learning-based

MJ\M'MJ\WJ\:

LML

Time Series
For Training

™

D3

.

)

Candidate
Model Set

D1 | D2 | D3

TS1 05 | 0.7 | 0.9

TS, | 0.6 | 0.4 | 0.7

TS3 | 0.5 | 0.8 | 0.6
Performance

Matrix

— Regression ?
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Automated Solution: Meta-learning-based

4 ) D1 | D2 | D3 D1 | D2 | D3
e | L2 TS1 | 0.5 | 0.7 | 0.9 Ts1 | 05 | 0.7 | 0.9
MAMM Mﬂ—> D2 — |TS, | 06 | 0.4 | 0.7 — |TS, | 06 | 04 | 0.7
| M\M I | ~ TS3 | 0.5 | 0.8 | 0.6 N - | 05 | oG
‘ SN J
Time S'er.ies Candidate Performance Label
For Training Model Set Matrix

[30] Lin Xu, Frank Hutter, Holger H Hoos, Kevin Leyton-Brown. 2008. SATzilla: portfolio-based algorithm selection for SAT. Journal
of Artificial Intelligence Research 32: 565-606.
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Definition: Integrate predictions from
the candidate model set

Automated Solution: Ensembling-based

Full: OE

Selective: HITS, IOE

2010

2023 2020 2015

Time

[ AutoTSAD ]

v

[ Model Selection ]

¥
[ Model Generation J
|

Evaluation

[ Internal

I

Meta-learning-
based

based label-based

Ensemhling-J[ Pseudo- J

cQ

C

*l
RG | |i1sac
kNN
EMEMVY
¥
L ] L ] Auto-
RA  Synthetic) Selector | !

MSAD

UReg CFact

OE

HITS I10E
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Automated Solution: Ensembling-based

Definition: Integrate predictions from

the candidate model set M, A aan ) Lonaa
Full: OE e e @" MEI‘IS I f’”v—\,'—v-k/\\/_\
Selective: HITS, IOE Mo | Aggregated
Individual Anomaly Score

Anomaly Score

VLDB 2024 | 27/08/2024 | 173



Automated Solution: Pseudo-label-based

[ AutoTSAD ]
I

Definition: Generate pseudo-labels to v v
transform the unsupervised [ Model Selection ] [ Model Generation ]
anomaly detection problem into a [ . ; [
supervised framework :
[ Internal ] Meta-learning- [ Ensembling- ] [ Pseudo- ]
Evaluation based based label-based
- AutoOD: Augment, Clean o
'_| —
- Booster: UADB S RGN A
a AL OE
S cQ | EM&MV
o L J
N —
~ v Jr v Auto- v
m _ E MC RA S?chEticu SE|EﬂDr L L v ¥ Augment L 2 L
QR |F MSAD UReg CFact HITS 10E Clean UADB
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Automated Solution: Pseudo-label-based

Inlier

l (- Outlier

M, A A (— Unsure Inlier
M: 0
Lo - —> —>»| MLabel
M P Majority Voting Pseudo Outlier
- At J Label Classifer

Detection Results

Pseudo-label-based Method Framework.

[31] Lei Cao, Yizhou Yan, Yu Wang, Samuel Madden, Elke A Rundensteiner. 2023. Autood: Automatic outlier detection.

Proceedings of the ACM on Management of Data, 1(1): 1-27. ACM, New York, NY, USA.
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= Open Problems

S — Towards Reliable and Automated TSAD
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Towards Reliable and Automated TSAD

- Rigorous Benchmark Practice

-

HEX/UCR [18]

Set of 250 time series with
labels.

Details
The labels have been
manually checked and are

reliable

Each time series contains
only 1 labeled anomaly

~

-

TimeEval [5]

Set of 976 time series with
labels.

Details
New synthetic benchmark
GutenTag used to tune

parameters

Only Time series with low
contamination rate (< 0.1)

Time series with at least one

methods above 0.8 AUC-ROC v,

TSB-UAD [19]

Set of 2000 time series with
labels.

Details

Collected as proposed in the
literature (no filtering based
on contamination, size or
label quality)

Artificial and synthetic data
generation methods for
reliable labels
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Towards Reliable and Automated TSAD

- Rigorous Benchmark Practice
- LLM-empowered TSAD

Please find the anomaly point in the time series data. .@.e
‘r— m

( Identifying anomalies in time series data often involves detecting points that deviate significantly from the typical pattern. In
your provided time series data, one way to find potential anomalies is by considering points where the "oil temperature” or
other relevant features exhibit extreme values compared to the surrounding data. Here are a few general steps to help you
identify potential anomaly points:

1.Visual Inspection. (1) Plot the time series data for "oil temperature” and other features. (2) Look for points that stand out from .
the general pattern. Image from [32] Human
2. Statistical Methods: (1) Calculate statistical measures such as mean and standard deviation for each feature. (2) Flag data | nt era Ctl on Wlth C h atG PT for

1 points that fall outside a certain number of standard deviations from the mean as potential anomalies.

\ ) Refused ! TSAD tasks.

Just show me the results but not methods. y @.e

Certainly, based on a simple visual inspection of the provided time series data, here are some potential anomaly points where |
the "oil temperature” or other features deviate significantly from the general pattern:
1.Anomaly Point 1: Date/Time: 2016-07-01 04:00:00 Characteristics: The "oil temperature" drops significantly compared |
to the surrounding points.
. / 2.Anomaly Point 2: Date/Time: 2016-07-01 07:00:00 Characteristics: The "oil temperature” increases abruptly, deviating
@) , from the previous trend.

= - @—Intefpretability !
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Towards Reliable and Automated TSAD

- Rigorous Benchmark Practice
- LLM-empowered TSAD

- Incremental Automated Solution

. Query
L
I il i
. ; Action
I
[ | Reward '
:
)

® i e aiis 6 eb e 40 e i @ ab'en NS

A Labeled Anomaly
‘ Labeled Normality

A =Q— " A

]
6 Feedback |

Applying to unlabeled dataset

Unlabeled Anomaly

Unlabeled Normality

] |

i ] £‘ |

i ! AfterK : :
, Queries | '

, A

' | |

Detected
Anomalies

Image from [33]: Human
in the loop feedback.
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Conclusion and Open Problems

If you are interested in anomaly detection in time series...

Anomaly Detection in Time Series: A Comprehensive Evaluation

Sebastian Schmidl" Phillip Weni,
Hasso Plattner Institute,
University of Potsdam
Potsdam, Germany

Hasso Plattner Institute,
University of Potsdam
Potsdam, Germany

bast

Thorsten Papenbrock
Philipps University of Marburg
Marburg, Germany
papenbrock@informatik.uni-

ABSTRACT

Detecting anomalous subsequences in time series data is an im
portant task in areas ranging from manufacturing processes over
finance applications to health care monitoring. An anomaly can
indicate important events, such as production faults, delivery bot
tenecks, system defects, or heart flicker, and is therefore of central
inteest,Because time sries are oftn arge and exhibit complex

pide marburg de

patterns, data scientists have developed v d algo-

ithims for the automatic detection of such anomalous )unn ns. The
number and variety of anomaly detection algorithms has grown

significantly in the past and, because many of these solutions have

been developed independently and by different research communi-

ties, there is no comprehensive study that systematically evaluates
and compares the different approaches. For this reason, choosing
the best detection technique for a given anomaly detection task is
a difficult challenge.

‘This comprehensive, scientific study carefully evaluates most
state-of-the-art anomaly detection algorithms. We collected and
re-implemented 71 anomaly detection algorithms from different
domains and evaluated them on 976 time series datasets. The al-
gorithms have been selected from different algorithm families and
detection approaches to represent the entire spectrum of anomaly
detection techniques. In the paper, we provide a concise overview
of the techniques and their commonalities; we evaluate their in
dividual strengths and weaknesses and, thereby, (onudcr factors,

such as effectiveness, efficiency, and robustness, Our exper al
results should ease the algorithm selection problem m.j ypen up
new research directions.

] /
subseque (extremum),
and the unnnp T LMD sndSab L8,

VWELN

(b) Synthetic multivariate time series with a correlation anomaly
and the scoring of k-Means.

Figure 1: Example time series with anomalies and scorings.

1 ANOMALY DETECTION WILDERNESS

TSB-UAD: An End-to-End Benchmark Suite for Univariate
Time-Series Anomaly Detection

John Paparrizos
‘The Ohio State University
paparrizos. @osu.edu

Ruey S. Tsay Themis Palpanas
Université de Paris & [UF
f

University of Chicago

Yuhao Kang Paul Boniol
University of Chicago
‘yuhaok@uchicage edu

Université de Pari:
paul boniol @etuu-parisfr
Michael J. Franklin

University of Chicago

ABSTRACT

The detection of anomalies in time series has gained ample aca-
demic and industrial attention. However, no comprehensive bench-
mark exists to evaluate time-series anomaly detection methods. It
is common to use (i) proprietary or synthetic data, often biased

that, shartly, billions of Inemet-of-Things (10T} devices will be re
sponsible for generating zettabytes (Z8) of time series [44, 51]. This
rapid growth of cost-¢fective IoT deployments already empowers
diverse data science applications and has revolutionized the re-
tal healihare, mamafacturing transportaton, agicltre, s
16T data

to support particular elaims; or (ii) a limited collection of publicly
available datasets. Consequently, we often observe methods per.
forming exceptionally well in one dataset but surprisingly poorly
in another, creating an illusion of progress. To address the issues
abave, we thoroughly studied over one hundred papers to iden-

[ss‘ 56,65, 90), time-series armnuz(y detection is particularly impor-

tant for identifying abnormal phenomena (either in the behavior of

the monitored process, or measurement errors) (8, 49, 54, 32],
Despite over six decades of academic and industrial attention

in time- ly detection (AD) (41, 51, 107), anly a few ef-

tify, collect, process,
in the past decades. We summarize our effort in TSB-UAD, a new
benchmark o ease the evaluation of univariate time-series anomal
detection methods. Overall, TSB-UAD contains 13766 time series
with labeled anomalies spanning different domains with high vari-
ability of anomaly types, ratios, and sizes. TSB-UAD includes 18
previously proposed datasets containing 198D time series and we
contribute two collections of datasets. Speeifically, we generate
958 time series using a principled methodology for ransforming
126 time-series classification datasets into time series with labeled
anomalies, In addition, we present data transformations with which
we introduce new anomalies, resulting in 10328 time series with
varying complexity for anomaly detection, Finally, we evaluate 12
representative methods demonstrating that TSB-UAD s a robust
resource for assessing anomaly detection methods. TSB-UAD pro-
vides a valuable, reproducible, and frequently updated resource to
establish a leaderboard of time-series anomaly detection methods.

forts have focused on establ tandard means of evaluating
existing solutions (notable examples (36, 60, 103, 109, 114, 118]).
Unfortunately, there is currently no consensus on using & single
benchmark for assessing the performance of time-series AD meth-
ods. As a result, we observe two standard practices in the literature
y and synthetic
data: or (i} a imited collection of publicly available datasets. How-
ever, both of these practices are often flaved. In the former case,
proprietary o synthetic data may have been collected or generated
biasedly to support particular claims, anomaly types, or methods,
In the latter case, only a small fraction of datasets are available,
some of which suffer from several drawbacks (e.g, trivial anomalies,
unrealistic anomaly density, or mislabeled ground truth [114])
In addition, the ambiguity and the startlingly different interpre-
tation of anomalies across applications further hinders progress It
is not uncommon for methods to achieve high accuracy for some

Benchmarks are Flawed and are Creating the

1

‘back to the dawn of computer science [1]. However,
last five years there has been an explosion of interest in
this topic, with at least one or two papers on the topic
appearing each year in virtually every database, data
mining and machine leaming conference, including and batch size. All of this is to demonstrate “accuracy ex-
ceeding 0.90 (on a subset of the Yahoo's awomaly detection
A large fraction of this increase in interest seems to be  benchmark dataseis).” However, as we will show, much of
the results of this complex approach can be duplicated

SIGKDD [2], [3], ICDM [4], ICDE, SIGMOD, VLDB, ete.

largely driven by rescarchers anxious to transfer the con-

Current Time Series Anomaly Detection

lllusion of Progress

Renjie Wu and Eamonn J. Keogh

Abstract—Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the
1950s. However, in recent years there has been an explosion of interast in this topic, much of it driven by the success of deep
leaming in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular
benchmark datasets, created by Yahoo, Numenta, NASA, elc. In this work we make a surprising claim. The majority of the
individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many
published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent
progress in recent years may be illusionary. In addition ta demonstrating these ciaims, with this paper we introduce the UCR
Time Series Anomaly Archive. We believe that this resource uil perform a similar role as the UCR Time Series Glassification
Archive, by providing a allows. between
meaningful gauge of overall progress

Index Terms—Anomaly detection, benchmark datasets, deep leaming, time series analysis

INTRODUCTION

IME series anomaly detection has been a perennially  meural networks, and a variational arto-encoder (VAE) over-
description sounds like it has many
“moving parts”, and indeed, the dozen or so explicitly
listed parameters include: convolution filter, activation,
kernel size, strides, padding, LSTM input size, dense
put size, softmax loss function, window size, learning rate

important topic in data science, with papers dating  sampling model.” Thi
the

sidezable success of deep learning in other domains and  with a single line of code and a few minutes of effort

from other time series tasks such o

This © de” areument is <o unysual that ||

https://github.com/HPI-
Information-Systems/TimeEval

https://github.com/TheDatumOrg/
TSB-UAD

"The data points of a time series record are one or multiple real- T TR o B e Fre e
\zj d variables. Each variable models or hannel of the ti ables collecting enormous amounts of
it i s deai ol o v ths s s commonly 10 as time series In particulas, analysts estitmat o e berous ke of denity g, coliocting, procesing,

sl one variable the time seric

https://wu.renjie.im/research/ano
maly-benchmarks-are-flawed/

may be unreliable. More importantly, we believe that  ing with mosquitos, and he is impressed

much of the apparent progress in recent years may be

Suppose however that someone downloaded the origi-

A review on outlier/anomaly detection in time series data

ANE BLAZQUEZ-GARCIA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research
and Technology Alliance (BRTA), Spain
USUE MORI, Inteligent Sy p (1SG),

of the Basque Country (UPV/EHU), Spain
JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence,

‘omputer Science and Artificial University

University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematies (BCAM), Spain

Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered

over time and thus generating lime series. Mining this data has become tant task for hers and practiti the past

few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide

a structured and comprehensive state-of-the-art on autlier detection techniques in the context of time series, To this end. a taxonomy

is presented based on the main aspects that characterize an outlier detection technique.

Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software
1 INTRODUCTION

Recent ad i llectal tof data ime i b of

that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series

data mining aims to extract all meaningful knowledge from this data, and several mining tasks (e.g., classification,
clustering, forecasting, and outlier detection) have been considered in the literature (Esling and Agon 2012; Fu 2011;
Ratanamahatana et al. 2010).

Outlier detection has become a field of interest for many researchers and practitioners and is now one of the main
tasks of time series data mining. Outlier detection has been studied in a variety of application domains such as credit
card fraud detection, intrusion detection in cybersecurity, or fault diagnosis in industry. In particular, the analysis of
outliers in time series data examines anomalous behaviors across time [Gupta et al. 2014a]. In the first study on this

topic, which was conducted by Fox [1972], twe types of outliers in univariate time series were defined: type L, which

affects a single observation; and type II, which affects both a particular ion and the
‘This work was first extended to four outlier types [Tsay 1985], and then to the case of multivariate time series [Tsay

et al. 2000]. Since then, many definitions of the term eutlier and numerous detection methods have been proposed in the
literature. However, to this day, there is still no consensus on the terms used [Carreiio et al. 2019); for example, outlier
observations are often referred to as anomalies, discordant observations, discords, exceptions, aberrations, surprises,

peculiarities or contaminants.

Authors' sdd T S 1 Conde. Tkerlan Technology Research Centre. Basque Research
and Teehnology M g6, 20500, Spain: U Intelligent Systems
Group (SG), Department of Computes i university of the Rasgue Country (UPV: amucl de Lardizabal | 20038
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Conclusion and Open Problems

If you are interested in evaluation measures for anomaly detection...

Precision and Recall for Time Series

Nesime Tatbul * Tae Jun Lee " Stan Zdonik
Intel Labs and MIT Microsoft Brown University
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Abstract

Classical anomaly detection is principally concerned with point-based anomalies.
those anomalies that occur at a single point in time. Yet, many real-world anomalies
are range-based, meaning they occur over a period of time. Motivated by this
abservation. we present a new mathematical model to evaluate the accuracy of time
series classification algorithms. Our model expands the well-known Precision and
Recall metries to measure ranges, while simultancously enabling customization
support for domain-specific preferences.

1 Introduction

Anomaly detection (AD) is the process of identifying non-conforming items, events, or behaviors
[1.9). The proper identification of anomalies can be critical for many domains. Examples include
early diagnosis of medical discases [22]. threat detection for cyber-attacks [3. 18, 36], or safety
analysis for sclf-driving cars [38]. Many real-world anomalies can be detected in time series data.
Therefore, systems that detect anomalies should reason about them as they occur over a period of
time. We call such events range-based anomalies. Range-based anomalies constitute a subset of both
contextual and collective anomalies [9]. More preciscly. a range-based anomaly is one that occurs
over a consecutive sequence of time points, where no non-anomalous data points exist between the
beginning and the end of the anomaly. The standard metrics for evaluating time series classification
algorithms today. Precision and Recall. have been around since the 1950s. Originally formulated
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many applications. In contrast to other domains where AD mainly
focuses on point-based anomalies (i.e., outliers in standalone ob-
servations), AD for time series is also concerned with range-ba
anomalies (i.e. outliers spanning multiple observations). Ne
theless, it is common to use traditional point-based information
retrieval measures, such as Precision, Recall, and F-score, to
the quality of methods by thresholding the anomaly score to mark
cach as an anomaly or not. However, mapping discrete la-
bels into continuous data intraduces unavoidable shortcomings.

the evaluation of range-based anomalies. Notably,
significantly bias the ex-
perimental outcome. Despite over six decades of attention, there
has never been a large-scale systematic quantitative and qualita-
tive analysis of time-series AD evaluation measures. This paper
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cardinality ratios. Our results indicate that measures producing
quality values independently of a threshold (i.e., AUC-ROC and
AUC-PR) are more su eries AD. Motivated by this
abservation, we first extend the AUC-based
for range-based anomalics. Then, we introduce a new family of
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19], Notably, there
techniques for effi
ve analysis of zettabytes of time series produced by
millions of Internet-of-Things (10T) devices [23, 25, 27, 25, 33, 48]
10T deploymen ower diverse da
virenmental sciences, astrophysics, neuroscience, and engineering
among others [40, 0], and have revolutionized many industries,
including automobile, healthcare, manufacturing, and utilities [38).
Howe events, or imperfections and inherent complexities
inthe data generation and measurenient pipelines,often infroduce

that appear as anomalies in time-series databases,
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ABSTRACT

In recent years, specific evaluation metrics for time y
detection algorithms have been developed to handle the limitations
of the classical precision and recall. However, such metrics are
te of multiple desirable aspects,
introduce parameters and wipe out the interpretability of the out-
put.In this article, we first highlight the limitations of the classical
Il, as well as the main issues of the recent event
based metries - for instance, we show that an adversary algorithm
can reach high precision and recall on almost any dataset under
assumption. To cope with the above problems, we propose
atheoretically grounded, robust, parameter-free and interpretable
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1 INTRODUCTION
Time seri

anomaly detection is the field consisting in detecting

elements of a time series that behave differently from the rest of
This field att

ed interest in recent years with the rise

ms collecting a large amount of data over time,
mainly for the purpose of troubleshooting and security. Many sci
entific domains are involved: water eontrol industrial systems (8,
24). Web traffic [15, 31). servers of Internet companies [21, 26]
(10], and also medicine or robotics [30, 1)
Due to the nature of the series, each anomaly (referred as an event
in the context of time series) can be a point in time (point-based
iples (range-based

anomaly) or occupy a range of consecutive
anomaly). The detection is performed in a supervised or in a un-
E way, but the resulting performance of the algorithm is
generally always assessed against ground truth labels that have
been previously collected (either in controlled e nts or
Labeled by experts in the field). This assessment is realized with
evaluation metrics taking as input both the ground truth and th

predicted labels, and outputting ane or multiple scores. The most
common metrics for anomaly detection are the classical p
and recall, computed by comparing the predicted and the ground
truth outputs for each sample. In the usual terminology, the posi
tive samples refer o the samples that are predicted as positive, and
are partitioned into the true positives (TP, positive samples that
are also anomalous in the ground truth) and false positives (FP).
the samples predicted as ne re partitioned into
gatives (FN)and u res
proportion TP/ (TP + FP) of e predicted samples that are
correct, whereas the mdlhm.nurullh proportion TP/ (TP + FN)

sion
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ABSTRACT

The field of time series anomaly detection is constantly advancing, with several methods available,
making it a challenge to determine the most appropriate method for a specific domain. The evaluation
of these methods is facilitated by the use of metrics, which vary widely in their properties. Despite
the existence of new cvaluation metrics, there is limited agreement on which metrics are best suited
for specific scenarios and domain, and the most commonly used metrics have faced criticism in the
literature. This paper provides a comprehensive overview of the metrics used for the evaluation of
y detection methods, and also defines a taxonamy of these based on how they are
g a set of properties for evaluation metrics and a set of specific case studies and
experiments, twenty meticsar analyzed and discussed in detal,highlighting the unique siabilty

h for specific tasks. Through extensive experimentation and analysis, this paper argues that the
luation metric must be made with care, taking into account the specific requirements of
the task at hand.
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Informally, Precision is the fraction of all detected anomalies that are real anomalies, whereas, Recall
is the fraction of all real anomalies that are successfully detected. In this sense, Precision and Recall
are complementary. and this characterization proves useful when they are combined (c.g., using
F-Score, where [ represents the relative importance of Recull to Precision) [6]. Such combinations
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