
(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Time-Series Anomaly Detection: 
Overview and New Trends

Paul Boniol
Inria, ENS, PSL University
paul.boniol@inria.fr

John Paparrizos
The Ohio State University
paparrizos.1@osu.edu

Themis Palpanas
Université Paris Cité; IUF
themis@mi.parisdescartes.fr

Qinghua Liu
The Ohio State University
liu.11085@osu.edu



Introduction: Time series are Everywhere
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

VLDB 2024 | 27/08/2024 | 2



Introduction: Time series are Everywhere
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Secondary circuit sensor 
measurements

VLDB 2024 | 27/08/2024 | 3



Introduction: Time series are Everywhere
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Secondary circuit sensor 
measurements

Fiber-acoustic sensors in the 
VIRGO north building

VLDB 2024 | 27/08/2024 | 4



Introduction: Time series are Everywhere
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Secondary circuit sensor 
measurements

Fiber-acoustic sensors in the 
VIRGO north building

Sensor measurements of the Da-
Vinci surgery robot

VLDB 2024 | 27/08/2024 | 5



Introduction: Time series are Everywhere
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Secondary circuit sensor 
measurements

Fiber-acoustic sensors in the 
VIRGO north building

Sensor measurements of the Da-
Vinci surgery robot

Sensor measurements on le Piton 
de la Fournaise

VLDB 2024 | 27/08/2024 | 6



Introduction: with Important Challenges
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Secondary circuit sensor 
measurements

Fiber-acoustic sensors in the 
VIRGO north building

Sensor measurements of the Da-
Vinci surgery robot

Sensor measurements on le Piton 
de la Fournaise

Identification of 
precursors of feed-

water pumps 
vibrations

VLDB 2024 | 27/08/2024 | 7



Introduction: with Important Challenges
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Secondary circuit sensor 
measurements

Fiber-acoustic sensors in the 
VIRGO north building

Sensor measurements of the Da-
Vinci surgery robot

Sensor measurements on le Piton 
de la Fournaise

Identification of 
precursors of feed-

water pumps 
vibrations

Noise detection in 
VIRGO interferometer 

north building

VLDB 2024 | 27/08/2024 | 8



Introduction: with Important Challenges
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Secondary circuit sensor 
measurements

Fiber-acoustic sensors in the 
VIRGO north building

Sensor measurements of the Da-
Vinci surgery robot

Sensor measurements on le Piton 
de la Fournaise

Identification of 
precursors of feed-

water pumps 
vibrations

Noise detection in 
VIRGO interferometer 

north building

Unusual surgeons 
gestures detection

VLDB 2024 | 27/08/2024 | 9



Introduction: with Important Challenges
Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Astrophysics

Virgo: https://www.virgo-gw.eu/

Medicine

tinyurl.com/39dx2us4

Volcanology

tinyurl.com/ybcttmfz

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Secondary circuit sensor 
measurements

Fiber-acoustic sensors in the 
VIRGO north building

Sensor measurements of the Da-
Vinci surgery robot

Sensor measurements on le Piton 
de la Fournaise

Detection of 
abnormal events on 

the volcano for 
predicting eruptions

Identification of 
precursors of feed-

water pumps 
vibrations

Noise detection in 
VIRGO interferometer 

north building

Unusual surgeons 
gestures detection

VLDB 2024 | 27/08/2024 | 10



Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Introduction: with Important Challenges
Large-scale time series database

VLDB 2024 | 27/08/2024 | 11



Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Example of Nuclear production

- 58 nuclear power plants across France

 

Introduction: with Important Challenges
Large-scale time series database

VLDB 2024 | 27/08/2024 | 12



Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Example of Nuclear production

- 58 nuclear power plants across France

 

A total of 1.5 PetaBytes

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

- 2000+ sensors per power plant
- 30 years of data collections

Introduction: with Important Challenges
Large-scale time series database

VLDB 2024 | 27/08/2024 | 13



Energy Production

Edf.fr: tinyurl.com/yc7x5xje

Example of Nuclear production

- 58 nuclear power plants across France

 

Other source of production

- New sensors with higher acquisition rate

A total of 1.5 PetaBytes

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

- 2000+ sensors per power plant
- 30 years of data collections

Introduction: with Important Challenges
Large-scale time series database

VLDB 2024 | 27/08/2024 | 14



Introduction: Anomaly Detection in Time Series

• Time series 𝑇 (example : number of taxi passengers in New York City)

80000 2000 4000 6000

VLDB 2024 | 27/08/2024 | 15



• Time series 𝑇 (example : number of taxi passengers in New York City)

• Subsequence 𝑇𝑖,ℓ
with 𝑖 = 4400, ℓ = 250

46004400 4450 4500 4550 4650

80000 2000 4000 6000

Introduction: Anomaly Detection in Time Series

VLDB 2024 | 27/08/2024 | 16



• Time series 𝑇 (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired

80000 2000 4000 6000

Introduction: Anomaly Detection in Time Series

VLDB 2024 | 27/08/2024 | 17



• Time series 𝑇 (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired

80000 2000 4000 6000

Daylight 
Saving Time 

(DST)

Flooding Snowstorm

Introduction: Anomaly Detection in Time Series

VLDB 2024 | 27/08/2024 | 18



• Time series 𝑇 (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired

80000 2000 4000 6000

Daylight 
Saving Time 

(DST)

Flooding Snowstorm

80000 2000 4000 6000

1

0

Anomaly score S𝑇  

Introduction: Anomaly Detection in Time Series

VLDB 2024 | 27/08/2024 | 19



• Time series 𝑇 (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired

80000 2000 4000 6000

Daylight 
Saving Time 

(DST)

Flooding Snowstorm

80000 2000 4000 6000

1

0

Anomaly score S𝑇

Threshold

Introduction: Anomaly Detection in Time Series

VLDB 2024 | 27/08/2024 | 20



• Time series 𝑇 (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired

80000 2000 4000 6000

Daylight 
Saving Time 

(DST)

Flooding Snowstorm

80000 2000 4000 6000

1

0

Anomaly score S𝑇

Threshold

Introduction: Anomaly Detection in Time Series

VLDB 2024 | 27/08/2024 | 21



Introduction: Outline

• Time series (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired

80000 2000 4000 6000

Daylight 
Saving Time 

(DST)

Flooding Snowstorm

80000 2000 4000 6000

1

0

Anomaly score

Threshold

1. Foundations

1.1. Type of Time Series
1.2. Type of Anomalies

VLDB 2024 | 27/08/2024 | 22



Introduction: Outline

• Time series (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired

80000 2000 4000 6000

Daylight 
Saving Time 

(DST)

Flooding Snowstorm

80000 2000 4000 6000

1

0

Anomaly score

Threshold

1. Foundations

1.1. Type of Time Series
1.2. Type of Anomalies

2. Anomaly Detection 
Methods

2.1. A Taxonomy of Methods
2.2. Existing Benchmarks

VLDB 2024 | 27/08/2024 | 23



Introduction: Outline

• Time series (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired

80000 2000 4000 6000

Daylight 
Saving Time 

(DST)

Flooding Snowstorm

80000 2000 4000 6000

1

0

Anomaly score

Threshold

1. Foundations

1.1. Type of Time Series
1.2. Type of Anomalies

2. Anomaly Detection 
Methods

2.1. A Taxonomy of Methods
2.2. Existing Benchmarks

3. Automated Solution

3.1. Model Selection
3.2. Model Generation

VLDB 2024 | 27/08/2024 | 24



Foundations

(a) Example of multivariate time series T from 
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Foundations: Type of time series
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Anomaly Detection Methods
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Anomaly Detection methods: A taxonomy
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Anomaly Detection methods: A taxonomy
By domains [5] …

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a comprehensive evaluation. Proc. 
VLDB Endow. 15, 9 (May 2022), 1779–1797.

VLDB 2024 | 27/08/2024 | 49



Anomaly Detection methods: A taxonomy
By inputs…

VLDB 2024 | 27/08/2024 | 50



Anomaly Detection methods: A taxonomy

Supervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

By inputs…

VLDB 2024 | 27/08/2024 | 51



Anomaly Detection methods: A taxonomy

Supervised Semi-supervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T

By inputs…

VLDB 2024 | 27/08/2024 | 52



Anomaly Detection methods: A taxonomy

Supervised Semi-supervised Unsupervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T Time Series T

By inputs…



Anomaly Detection methods: A taxonomy

Supervised Semi-supervised Unsupervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T Time Series T

By inputs…

ARE

VVP

ASG

ADG

AHP

GSS

Condensor

GCT

Steam 
generator

Turbine

Secon dary c ircu itPrim a ry circu it

Cold
w aterFeed -w ater Pu m ps 

(TPA)
APP,AGR

GRE

KKO

AGR: feed-water pump turbine lubrication and 
control fluid system
3 2 sensors (tem p eratu re)
APP: turbine-driven feedwater pump system
9  sen sors (flow,  p ressure , tem p erature, sp eed )

AHP: high pressure feed-
water heater system

14 sensors (tem p eratu re)

ASG: auxiliary feed-
water system
1 sen sor (tem p eratu re)

GCT: turbine bypass system
2 sen sors (p re ssu re)

GSS: moisture separator-reheater system
2 sensors  (p ressu re  a nd  tem pera tu re)

VVP: main steam system
28 sensors 

(flow,  p ressure , tem p erature)

CEX

CEX: condensate extraction system
2  sen so rs  (pressu re  a nd tem p eratu re )

GRE: turbine governing system
2 sen sors (p ressu re)

ADG: feed-water tank and gas 
stripper system
2 senso rs (w a ter level)

KKO: energy metering system
1 sen sor (pow er)

ARE: feed-water flow control system
30 senso rs (flow, tem pera ture, w a ter level)

Steam

Low pressure water

High 
pressure 
water

� � � ���������� � ��� ������ (120�������) � � � � �

… … …

V ib ra tio n V ibratio nV ib-20m inV ib -40m inV ib-60m in V ib -20 m inV ib-40m inV ib -60m in

Po ss ib le  p re cu rso rs  fo u n d  
in  tw o  A G R  se n so rs

� ����� � � �� ����� �� �� ������� � �� � ��� �� � � ����� � �� �� � �� � ��



Anomaly Detection methods: A taxonomy

Supervised Semi-supervised Unsupervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T Time Series T

By inputs…

Vibration

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Class 2: Time series with a vibrations

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

c
ti

v
a
ti

o
n
 s

c
o
re

Class 1: Time series without any vibrations

ARE

VVP

ASG

ADG

AHP

GSS

Condensor

GCT

Steam 
generator

Turbine

Secon dary c ircu itPrim a ry circu it

Cold
w aterFeed -w ater Pu m ps 

(TPA)
APP,AGR

GRE

KKO

AGR: feed-water pump turbine lubrication and 
control fluid system
3 2 sensors (tem p eratu re)
APP: turbine-driven feedwater pump system
9  sen sors (flow,  p ressure , tem p erature, sp eed )

AHP: high pressure feed-
water heater system

14 sensors (tem p eratu re)

ASG: auxiliary feed-
water system
1 sen sor (tem p eratu re)

GCT: turbine bypass system
2 sen sors (p re ssu re)

GSS: moisture separator-reheater system
2 sensors  (p ressu re  a nd  tem pera tu re)

VVP: main steam system
28 sensors 

(flow,  p ressure , tem p erature)

CEX

CEX: condensate extraction system
2  sen so rs  (pressu re  a nd tem p eratu re )

GRE: turbine governing system
2 sen sors (p ressu re)

ADG: feed-water tank and gas 
stripper system
2 senso rs (w a ter level)

KKO: energy metering system
1 sen sor (pow er)

ARE: feed-water flow control system
30 senso rs (flow, tem pera ture, w a ter level)

Steam

Low pressure water

High 
pressure 
water

� � � ���������� � ��� ������ (120�������) � � � � �

… … …

V ib ra tio n V ibratio nV ib-20m inV ib -40m inV ib-60m in V ib -20 m inV ib-40m inV ib -60m in

Po ss ib le  p re cu rso rs  fo u n d  
in  tw o  A G R  se n so rs

� ����� � � �� ����� �� �� ������� � �� � ��� �� � � ����� � �� �� � �� � ��

Supervised 
anomaly 

detection (e.g., 
classification)



Anomaly Detection methods: A taxonomy

Supervised Semi-supervised Unsupervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T Time Series T

By inputs…

Vibration

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Class 2: Time series with a vibrations

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

c
ti

v
a
ti

o
n
 s

c
o
re

Class 1: Time series without any vibrations

ARE

VVP

ASG

ADG

AHP

GSS

Condensor

GCT

Steam 
generator

Turbine

Secon dary c ircu itPrim a ry circu it

Cold
w aterFeed -w ater Pu m ps 

(TPA)
APP,AGR

GRE

KKO

AGR: feed-water pump turbine lubrication and 
control fluid system
3 2 sensors (tem p eratu re)
APP: turbine-driven feedwater pump system
9  sen sors (flow,  p ressure , tem p erature, sp eed )

AHP: high pressure feed-
water heater system

14 sensors (tem p eratu re)

ASG: auxiliary feed-
water system
1 sen sor (tem p eratu re)

GCT: turbine bypass system
2 sen sors (p re ssu re)

GSS: moisture separator-reheater system
2 sensors  (p ressu re  a nd  tem pera tu re)

VVP: main steam system
28 sensors 

(flow,  p ressure , tem p erature)

CEX

CEX: condensate extraction system
2  sen so rs  (pressu re  a nd tem p eratu re )

GRE: turbine governing system
2 sen sors (p ressu re)

ADG: feed-water tank and gas 
stripper system
2 senso rs (w a ter level)

KKO: energy metering system
1 sen sor (pow er)

ARE: feed-water flow control system
30 senso rs (flow, tem pera ture, w a ter level)

Steam

Low pressure water

High 
pressure 
water

� � � ���������� � ��� ������ (120�������) � � � � �

… … …

V ib ra tio n V ibratio nV ib-20m inV ib -40m inV ib-60m in V ib -20 m inV ib-40m inV ib -60m in

Po ss ib le  p re cu rso rs  fo u n d  
in  tw o  A G R  se n so rs

� ����� � � �� ����� �� �� ������� � �� � ��� �� � � ����� � �� �� � �� � ��

Supervised 
anomaly 

detection (e.g., 
classification)

Explanation of 
the detection



Anomaly Detection methods: A taxonomy

Supervised Semi-supervised Unsupervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T Time Series T

By inputs…

Vibration

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Class 2: Time series with a vibrations

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

c
ti

v
a
ti

o
n
 s

c
o
re

Class 1: Time series without any vibrations

ARE

VVP

ASG

ADG

AHP

GSS

Condensor

GCT

Steam 
generator

Turbine

Secon dary c ircu itPrim a ry circu it

Cold
w aterFeed -w ater Pu m ps 

(TPA)
APP,AGR

GRE

KKO

AGR: feed-water pump turbine lubrication and 
control fluid system
3 2 sensors (tem p eratu re)
APP: turbine-driven feedwater pump system
9  sen sors (flow,  p ressure , tem p erature, sp eed )

AHP: high pressure feed-
water heater system

14 sensors (tem p eratu re)

ASG: auxiliary feed-
water system
1 sen sor (tem p eratu re)

GCT: turbine bypass system
2 sen sors (p re ssu re)

GSS: moisture separator-reheater system
2 sensors  (p ressu re  a nd  tem pera tu re)

VVP: main steam system
28 sensors 

(flow,  p ressure , tem p erature)

CEX

CEX: condensate extraction system
2  sen so rs  (pressu re  a nd tem p eratu re )

GRE: turbine governing system
2 sen sors (p ressu re)

ADG: feed-water tank and gas 
stripper system
2 senso rs (w a ter level)

KKO: energy metering system
1 sen sor (pow er)

ARE: feed-water flow control system
30 senso rs (flow, tem pera ture, w a ter level)

Steam

Low pressure water

High 
pressure 
water

� � � ���������� � ��� ������ (120�������) � � � � �

… … …

V ib ra tio n V ibratio nV ib-20m inV ib -40m inV ib-60m in V ib -20 m inV ib-40m inV ib -60m in

Po ss ib le  p re cu rso rs  fo u n d  
in  tw o  A G R  se n so rs

� ����� � � �� ����� �� �� ������� � �� � ��� �� � � ����� � �� �� � �� � ��

Supervised 
anomaly 

detection (e.g., 
classification)

Explanation of 
the detection

Identification of 
precursors

� � � � � �� � � :��� �������� ������ �ℎ� ��� �

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

� � � � � �� � � :� ���� �������� ������� �ℎ� ��� �

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

� � � � � �� � � :� ���� ���� ������� �ℎ� ��� �

�.1.1

�.1.2

�.2.1

�.2.2

�.3.1

�.3.2

� � � � � �� � � :��� �������� ������ �ℎ� ��� � � � � � � �� � � :��� �������� ������ �ℎ� ��� � � � � � �� �� � :��� �������� ������ �ℎ� ��� �

� � � � �� �� � :��� �������� ������ �ℎ� ��� � ℎ � � � � � �� � : � ���� �������� ������� �ℎ� ��� � � � � � � �� � � :� ���� ���� ������� �ℎ� ��� �

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

�.1.1

�.1.2

�.2.1

�.2.2

� .3.1

� .3.2

ℎ.1.1

ℎ.1.2

ℎ.2.1

ℎ.2.2

ℎ.3.1

ℎ.3.2

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

�.1.1

�.1.2

�.2.1

�.2.2

�.3.1

�.3.2

� .1.1

� .1.1�.2.1

� .2.1

ℎ.1.1

�.2.1

� .2.1

1
�
�
-�
��
�
�
�
�
��
�
�
�
�
�
:

�
��
�
ℎ
�
��
ℎ
��
ℎ
�
��
��
�
��
��
��
��
�
�
��
��
��
�
��
�
�
��
�
�
��
�
��
�
��
��
��
��
�
�
�
�
�
��
�
��
�
��
ℎ
�
�
��
�
�
�
�

�
ℎ�
�
�
�
�
��
�
�
�
��
��
�
��
�
��
�
�
��
�
��
�
�ℎ
�
�
�
��
��
�
��
ℎ�
�
��
�
�
��
�

(2
)
�
�
��
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
��
�
�
�
�
�
�
��
�
��

�
�
��
ℎ�
�
��
�
�
�
��
�
��
��
�
��
�
�
�
��
��
�



Anomaly Detection methods: A taxonomy

Supervised Semi-supervised Unsupervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T Time Series T

By inputs…

Vibration

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

ct
iv

at
io

n
 s

co
re

Class 2: Time series with a vibrations

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .

1
.0

0
0
.0

0
0
.2

5
0
.5

0
0
.7

5
A

c
ti

v
a
ti

o
n
 s

c
o
re

Class 1: Time series without any vibrations

ARE

VVP

ASG

ADG

AHP

GSS

Condensor

GCT

Steam 
generator

Turbine

Secon dary c ircu itPrim a ry circu it

Cold
w aterFeed -w ater Pu m ps 

(TPA)
APP,AGR

GRE

KKO

AGR: feed-water pump turbine lubrication and 
control fluid system
3 2 sensors (tem p eratu re)
APP: turbine-driven feedwater pump system
9  sen sors (flow,  p ressure , tem p erature, sp eed )

AHP: high pressure feed-
water heater system

14 sensors (tem p eratu re)

ASG: auxiliary feed-
water system
1 sen sor (tem p eratu re)

GCT: turbine bypass system
2 sen sors (p re ssu re)

GSS: moisture separator-reheater system
2 sensors  (p ressu re  a nd  tem pera tu re)

VVP: main steam system
28 sensors 

(flow,  p ressure , tem p erature)

CEX

CEX: condensate extraction system
2  sen so rs  (pressu re  a nd tem p eratu re )

GRE: turbine governing system
2 sen sors (p ressu re)

ADG: feed-water tank and gas 
stripper system
2 senso rs (w a ter level)

KKO: energy metering system
1 sen sor (pow er)

ARE: feed-water flow control system
30 senso rs (flow, tem pera ture, w a ter level)

Steam

Low pressure water

High 
pressure 
water

� � � ���������� � ��� ������ (120�������) � � � � �

… … …

V ib ra tio n V ibratio nV ib-20m inV ib -40m inV ib-60m in V ib -20 m inV ib-40m inV ib -60m in

Po ss ib le  p re cu rso rs  fo u n d  
in  tw o  A G R  se n so rs

� ����� � � �� ����� �� �� ������� � �� � ��� �� � � ����� � �� �� � �� � ��

Supervised 
anomaly 

detection (e.g., 
classification)

Explanation of 
the detection

Identification of 
precursors

� � � � � �� � � :��� �������� ������ �ℎ� ��� �

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

� � � � � �� � � :� ���� �������� ������� �ℎ� ��� �

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

� � � � � �� � � :� ���� ���� ������� �ℎ� ��� �

�.1.1

�.1.2

�.2.1

�.2.2

�.3.1

�.3.2

� � � � � �� � � :��� �������� ������ �ℎ� ��� � � � � � � �� � � :��� �������� ������ �ℎ� ��� � � � � � �� �� � :��� �������� ������ �ℎ� ��� �

� � � � �� �� � :��� �������� ������ �ℎ� ��� � ℎ � � � � � �� � : � ���� �������� ������� �ℎ� ��� � � � � � � �� � � :� ���� ���� ������� �ℎ� ��� �

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

�.1.1

�.1.2

�.2.1

�.2.2

� .3.1

� .3.2

ℎ.1.1

ℎ.1.2

ℎ.2.1

ℎ.2.2

ℎ.3.1

ℎ.3.2

� .1.1

� .1.2

� .2.1

� .2.2

� .3.1

� .3.2

�.1.1

�.1.2

�.2.1

�.2.2

�.3.1

�.3.2

� .1.1

� .1.1�.2.1

� .2.1

ℎ.1.1

�.2.1

� .2.1

1
�
�
-�
��
�
�
�
�
��
�
�
�
�
�
:

�
��
�
ℎ
�
��
ℎ
��
ℎ
�
��
��
�
��
��
��
��
�
�
��
��
��
�
��
�
�
��
�
�
��
�
��
�
��
��
��
��
�
�
�
�
�
��
�
��
�
��
ℎ
�
�
��
�
�
�
�

�
ℎ�
�
�
�
�
��
�
�
�
��
��
�
��
�
��
�
�
��
�
��
�
�ℎ
�
�
�
��
��
�
��
ℎ�
�
��
�
�
��
�

(2
)
�
�
��
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
��
�
�
�
�
�
�
��
�
��

�
�
��
ℎ�
�
��
�
�
�
��
�
��
��
�
��
�
�
�
��
��
�

on this use case

More info :

On the use case

DCE journal 2023

On the method

SIGMOD 2022
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Reconstruction
-based

Forecasting-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
Isolation-

Forest

E.g.,
Series2Graph

E.g.,
HOBS

OCSVM

E.g.,
LSTM,CNN

POLY

E.g.,
PCA

AutoEncoder

E.g.,
LOF

E.g.,
GrammarViz
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Anomaly Detection methods: A taxonomy
By time…
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Anomaly Detection methods: A taxonomy
By time…

Number of methods proposed that can handle
Univariate or Multivariate time series

Univariate

MultivariateSemi-
Supervised

Unsupervised

Number of methods proposed that are 
Unsupervised or Semi-Supervised
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Anomaly Detection methods: Distance-based

50000 1250 3750

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

𝑇𝑖,ℓ

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

…

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ 𝑇𝑚,ℓ 𝑇𝑛,ℓ 𝑇𝑜,ℓ

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

…

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ 𝑇𝑚,ℓ 𝑇𝑛,ℓ 𝑇𝑜,ℓ

Nearest neighbor𝑆𝑇,𝑖 = 𝑑(𝑇𝑖,ℓ, 𝑇𝑗,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

…

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ 𝑇𝑚,ℓ 𝑇𝑛,ℓ 𝑇𝑜,ℓ

K-Nearest neighbor𝑆𝑇,𝑖 = 𝑑(𝑇𝑖,ℓ, 𝑇𝑚,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

…

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ 𝑇𝑚,ℓ 𝑇𝑛,ℓ 𝑇𝑜,ℓ

Nearest Cluster𝑆𝑇,𝑖 = ෍

𝑘∈𝒞

𝑑(𝑇𝑖,ℓ, 𝑇𝑘,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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50000 1250 2500 3750

Anomaly Detection methods: Distance-based

50000 1250 3750

…

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ 𝑇𝑚,ℓ 𝑇𝑛,ℓ 𝑇𝑜,ℓ

Nearest Cluster𝑆𝑇,𝑖 = ෍

𝑘∈𝒞

𝑑(𝑇𝑖,ℓ, 𝑇𝑘,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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50000 1250 2500 3750

Anomaly Detection methods: Distance-based

50000 1250 3750

…

𝑇𝑖,ℓ 𝑇𝑗,ℓ 𝑇𝑘,ℓ 𝑇𝑙,ℓ 𝑇𝑚,ℓ 𝑇𝑛,ℓ 𝑇𝑜,ℓ

Nearest Cluster𝑆𝑇,𝑖 = ෍

𝑘∈𝒞

𝑑(𝑇𝑖,ℓ, 𝑇𝑘,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Example of distance computation
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Anomaly Detection methods: an Example

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score𝑇𝑗,ℓ

𝑇𝑖,ℓ

𝑇𝑘,ℓ

Matrix Profile [6] (MP)

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score𝑇𝑗,ℓ

𝑇𝑖,ℓ

𝑇𝑘,ℓ

Matrix Profile [6] (MP)

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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Anomaly Detection methods: an Example

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score

𝑇𝑘,ℓ

𝑁𝑁 𝑇𝑖,ℓ

𝑇𝑗,ℓ
𝑇𝑖,ℓ

Matrix Profile [6] (MP)

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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Anomaly Detection methods: an Example

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score

𝑆𝑇 = 𝑁𝑁 𝑇0,ℓ , 𝑁𝑁 𝑇1,ℓ , … , 𝑁𝑁 𝑇 𝑇 −ℓ,ℓ

𝑇𝑘,ℓ

𝑁𝑁 𝑇𝑖,ℓ

The matrix Profile is computed as follows:

𝑇𝑗,ℓ
𝑇𝑖,ℓ

Matrix Profile [6] (MP)

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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Anomaly Detection methods: an Example

Matrix Profile [6] (MP)

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score

4000 100 200 300 4000 100 200 300

4000 100 200 300 4000 100 200 300

Discord Motifs

! "′ "′′

(a1)

(a2)

(b1)

(b2)

(a) Discord finding using matrix profile (b) Motifs finding using matrix profile

Time series 𝑇

Anomaly score S𝑇

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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Anomaly Detection methods: an Example

Matrix Profile [6] (MP)

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score

4000 100 200 300 4000 100 200 300

4000 100 200 300 4000 100 200 300

Discord Motifs

! "′ "′′

(a1)

(a2)

(b1)

(b2)

(a) Discord finding using matrix profile (b) Motifs finding using matrix profile

Time series 𝑇

Anomaly score S𝑇

Many different extensions…

- For streaming time series: STAMPi [6], DAMP [8]
- For similar recurrent anomalies: left-STAMP [6]
- Anytime or ordered:  STAMP [6], STOMP [7]
- For multivariate time series: mSTAMP [9]

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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Anomaly Detection methods: an Example

80000 2000 4000 6000

𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑇
NormA [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised 
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909–931. 
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Anomaly Detection methods: an Example

2000 50 100 150

2000 50 100 150

2000 50 100 150

𝑁0
𝑀 , 𝑤0

𝑁1
𝑀 , 𝑤1

𝑁𝑛
𝑀 , 𝑤𝑛

... 

𝑁𝑀

80000 2000 4000 6000

𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑇

... 

NormA  [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised 
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909–931. 

VLDB 2024 | 27/08/2024 | 93



Anomaly Detection methods: an Example

80000 2000 4000 6000

2000 50 100 150

2000 50 100 150

2000 50 100 150

𝑁0
𝑀 , 𝑤0

𝑁1
𝑀 , 𝑤1

𝑁𝑛
𝑀 , 𝑤𝑛

... 

𝑁𝑀

𝑓𝑜𝑟 𝑇𝑗,ℓ 𝑖𝑛 𝑇: 

𝑑 =  ෍
𝑁𝑖

𝑀

𝑤 𝑖 ∗ 𝑚𝑖𝑛𝑥𝜖[0,ℓ𝑁𝑀
−ℓ] 𝑑𝑖𝑠𝑡(𝑇𝑗,ℓ, 𝑁𝑖

𝑀𝑥,𝑙 )
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... 

NormA  [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised 
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909–931. 
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Anomaly Detection methods: an Example
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𝑁𝑖

𝑀
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Distance-based approach that 
summarize the time series into 
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and use the distance to them as 
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Anomaly Detection methods: an Example
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... 

𝑁𝑀

𝑓𝑜𝑟 𝑇𝑗,ℓ 𝑖𝑛 𝑇: 

𝑑 =  ෍
𝑁𝑖

𝑀

𝑤 𝑖 ∗ 𝑚𝑖𝑛𝑥𝜖[0,ℓ𝑁𝑀
−ℓ] 𝑑𝑖𝑠𝑡(𝑇𝑗,ℓ, 𝑁𝑖

𝑀𝑥,𝑙 )
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𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑇
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𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 𝑆𝑇

... 

𝑇′𝑗,ℓ

[25] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021. SAND: streaming subsequence anomaly detection. 
Proc. VLDB Endow. 14, 10 (June 2021), 1717–1729.

SAND  [25]

Distance-based approach that summarize the time series into a 
weighted set of subsequences, and can be updated incrementally 

for new arriving batches of data points

NormA  [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score
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Anomaly Detection methods: Density-based

50000 1250 3750

Methods that estimate the density of the space (points or subsequences) and identify as anomalies 
points (or sequences)that are in low-density subspace.

Time series 𝑇
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Anomaly Detection methods: Density-based

50000 1250 3750

Methods that estimate the density of the space (points or subsequences) and identify as anomalies 
points (or sequences)that are in low-density subspace.

Time series 𝑇

Tree-based approaches [11]
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Anomaly Detection methods: Density-based

50000 1250 3750

Methods that estimate the density of the space (points or subsequences) and identify as anomalies 
points (or sequences)that are in low-density subspace.

Time series 𝑇

Tree-based approaches [11] Distribution-based 
Approaches [12]
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Anomaly Detection methods: Density-based

50000 1250 3750

Methods that estimate the density of the space (points or subsequences) and identify as anomalies 
points (or sequences)that are in low-density subspace.

Time series 𝑇

Tree-based approaches [11] Distribution-based 
Approaches [12]

Graph-based approaches [13]

…
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Anomaly Detection methods: an Example

Isolation Forest [11]

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

0 splits 0 splits

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 VLDB 2024 | 27/08/2024 | 101



Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

1 splits 1 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 VLDB 2024 | 27/08/2024 | 102



Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

2 splits 2 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 VLDB 2024 | 27/08/2024 | 103



Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

3 splits 3 splits

Isolation Forest [11]
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

4 splits 3 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 VLDB 2024 | 27/08/2024 | 105



Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

5 splits 3 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 VLDB 2024 | 27/08/2024 | 106



Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

ITree
1

ITree
2

ITree
3

ITree
n

...

Instance N

Instance N

Instance N

Instance N

Instance A

Instance A

Instance A Instance A

Isolation Forest [11]
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies
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Instance A Instance A

Isolation Forest [11]
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Anomaly Detection methods: an Example

Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834
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Anomaly Detection methods: an Example

Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

Each node is an ensemble of similar 
subsequences.

𝑁(2)

𝑁(1)

𝑁(3)

𝑁(4)

𝑁(5)

𝑁(6)

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834
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Anomaly Detection methods: an Example

Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

Each node is an ensemble of similar 
subsequences.

Each edge is associated to a weight 
𝑤 that corresponds to the number 
of times a subsequence move from 
one node to another.

𝑁(2)

𝑁(1)

𝑁(3)

𝑁(4)

𝑁(5)

𝑁(6)

𝐺ℓ𝐺
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Each node is an ensemble of similar 
subsequences.

Each edge is associated to a weight 
𝑤 that corresponds to the number 
of times a subsequence move from 
one node to another.

[26] Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB 
Journal 30, 579–602 (2021).

DADS  [26]

Distributed version of Series2Graph

VLDB 2024 | 27/08/2024 | 113



Anomaly Detection methods: an Example
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Anomaly Detection methods: an Example

Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

52000 1300 2600 3900 6500

Snippet of SED time series [14]

Pattern following 
an unusual path in 

the graph

Pattern following 
a recurrent path 

in the graph

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used 
to detect if there is an anomaly or not. 

50000 1250 2500 3750

𝑇𝑖−ℓ,ℓ 𝑇𝑖

𝑇𝑖
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Anomaly Detection methods: an Example

LSTM-AD [15]

Semi-supervised

Univariate/Multivariate

Point/sequence

Model that stack multiple LSTM 
cell and use the output to 

predict the next value

[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shro, and Puneet Agarwal. 2015. Long Short Term Memory Networks for Anomaly 
Detection in Time Series. (2015).
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Anomaly Detection methods: an Example

DeepAnT [16] (CNN)

Semi-supervised

Univariate/Multivariate

Point/sequence

Convolutional-based approach 
(2 convolutional layers) taking 

as input a sequence and aims to 
predict the next value.

50000 1250 2500 3750

𝑇𝑖−ℓ,ℓ

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection 
in Time Series. IEEE Access 7 (2019), 1991–2005.
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Anomaly Detection methods: an Example
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Univariate/Multivariate

Point/sequence

Convolutional-based approach 
(2 convolutional layers) taking 

as input a sequence and aims to 
predict the next value.

50000 1250 2500 3750

𝑇𝑖−ℓ,ℓ

𝑇𝑖+1

Conv layer 1

MaxPooling Conv layer 2

MaxPooling

Dense layer

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection 
in Time Series. IEEE Access 7 (2019), 1991–2005.

DeepAnT [16] (CNN)
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Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

VLDB 2024 | 27/08/2024 | 129



Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

50000 1250 2500 3750

Time series 𝑇

VLDB 2024 | 27/08/2024 | 130



Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

0 20 40 60

50000 1250 2500 3750

Time series 𝑇

𝑇𝑖,ℓ 𝑇𝑖,ℓ

𝑓 𝑇𝑖,ℓ =  𝑇𝑖,ℓ′

VLDB 2024 | 27/08/2024 | 131



50000 1250 2500 3750

𝑆𝑇,𝑖 = 𝑇𝑖,ℓ  − 𝑇𝑖,ℓ′

Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

0 20 40 60

50000 1250 2500 3750

Time series 𝑇

𝑇𝑖,ℓ 𝑇𝑖,ℓ

𝑓 𝑇𝑖,ℓ =  𝑇𝑖,ℓ′

VLDB 2024 | 27/08/2024 | 132



50000 1250 2500 3750

𝑆𝑇,𝑖 = 𝑇𝑖,ℓ  − 𝑇𝑖,ℓ′

Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

0 20 40 60

50000 1250 2500 3750

Time series 𝑇

𝑇𝑖,ℓ

0 20 40 60

𝑇𝑗,ℓ

𝑓 𝑇𝑖,ℓ =  𝑇𝑖,ℓ′ 𝑓 𝑇𝑗,ℓ =  𝑇𝑗,ℓ′

VLDB 2024 | 27/08/2024 | 133



50000 1250 2500 3750

𝑆𝑇,𝑖 = 𝑇𝑖,ℓ  − 𝑇𝑖,ℓ′

Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

0 20 40 60

50000 1250 2500 3750

Time series 𝑇

𝑇𝑖,ℓ

0 20 40 60

𝑇𝑗,ℓ

𝑓 𝑇𝑖,ℓ =  𝑇𝑖,ℓ′ 𝑓 𝑇𝑗,ℓ =  𝑇𝑗,ℓ′

𝑆𝑇,𝑗 = 𝑇𝑗,ℓ  − 𝑇𝑗,ℓ′

VLDB 2024 | 27/08/2024 | 134



50000 1250 2500 3750

𝑆𝑇,𝑖 = 𝑇𝑖,ℓ  − 𝑇𝑖,ℓ′

Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

0 20 40 60

50000 1250 2500 3750

Time series 𝑇

𝑇𝑖,ℓ

0 20 40 60

𝑇𝑗,ℓ

𝑓 𝑇𝑖,ℓ =  𝑇𝑖,ℓ′ 𝑓 𝑇𝑗,ℓ =  𝑇𝑗,ℓ′

𝑆𝑇,𝑗 = 𝑇𝑗,ℓ  − 𝑇𝑗,ℓ′

VLDB 2024 | 27/08/2024 | 135



50000 1250 2500 3750

𝑆𝑇,𝑖 = 𝑇𝑖,ℓ  − 𝑇𝑖,ℓ′

Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

0 20 40 60

50000 1250 2500 3750

Time series 𝑇

𝑇𝑖,ℓ

0 20 40 60

𝑇𝑗,ℓ

𝑓 𝑇𝑖,ℓ =  𝑇𝑖,ℓ′ 𝑓 𝑇𝑗,ℓ =  𝑇𝑗,ℓ′

𝑆𝑇,𝑗 = 𝑇𝑗,ℓ  − 𝑇𝑗,ℓ′

VLDB 2024 | 27/08/2024 | 136



Anomaly Detection methods: an Example

AutoEncoders [17] (AE)

Semi-supervised

Univariate/Multivariate

Point/sequence

Neural Network composed of an 
encoder (that reduce the 

dimensionality) and decoder 
that reconstruct the time series. 
The objective is to minimize the 

reconstruction error.

[17] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings 
of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia QLD, Australia) (MLSDA’14 ). 
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Anomaly Detection methods: Existing 
benchmark
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Anomaly Detection methods: Existing 
benchmark

HEX/UCR [18]

Set of 250 time series with 
labels.

Details

- The labels have been 
manually checked and are 
reliable

- Each time series contains 
only 1 labeled anomaly
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GutenTag used to tune 
parameters

- Only Time series with low 
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- Time series with at least one 
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with 
labels.

Details

- Collected as proposed in the 
literature (no filtering based 
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generation methods for 
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Anomaly Detection methods: Existing 
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HEX/UCR [18]

Set of 250 time series with 
labels.

Details
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contamination rate (< 0.1)

- Time series with at least one 
methods above 0.8 AUC-ROC
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Set of 2000 time series with 
labels.

Details

- Collected as proposed in the 
literature.

- No filtering based on 
contamination, size or label 
quality.

Artificial dataset generation Synthetic dataset generation
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Anomaly Detection methods: 
Experimental evaluation

Methods AUC-ROC
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Observations on TimeEval [5]:

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a 
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.

VLDB 2024 | 27/08/2024 | 144



Anomaly Detection methods: 
Experimental evaluation

Methods AUC-ROC

Se
m

i-
su

p
er

vi
se

d
U

n
su

p
er

vi
se

d

Observations on TimeEval [5]:

- Distance-based and Density-based methods 
have a better accuracy (AUC-ROC) than 
forecasting and reconstruction-based 
approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a 
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.
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Observations on TimeEval [5]:

- Distance-based and Density-based methods 
have a better accuracy (AUC-ROC) than 
forecasting and reconstruction-based 
approaches

- Semi-supervised methods are not 
outperforming Unsupervised approaches 

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a 
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.
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Anomaly Detection methods: 
Experimental evaluation

Observations on HEX/UCR [18]:

- Distance-based methods have a better 
accuracy (AUC-ROC) than forecasting and 
distribution-based approaches

[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion 
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023.
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Anomaly Detection methods: 
Experimental evaluation

Observations on TSB-UAD [19]:

- Distance-based methods have a better 
accuracy (AUC-ROC) than forecasting-based 
methods. 

- Isolation Forest (distribution-based and not 
proposed for time series) have also a strong 
accuracy

- AutoEncoder (AE) is also very accurate.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an 
end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Anomaly Detection methods: 
Experimental evaluation

Observations on TSB-UAD [19]:

Point-based anomaly sequence-based anomaly

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael 
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Anomaly Detection methods: 
Experimental evaluation

Observations on TSB-UAD [19]:

- Forecasting methods (LSTM and CNN) are 
very accurate for point anomalies

- But have poor performances on sequence-
based anomalies.

Point-based anomaly sequence-based anomaly

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael 
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Anomaly Detection methods: 
Experimental evaluation

Observations on TSB-UAD [19]:

- The ratio of normal/abnormal points has a 
strong impact on the methods ranking.

Ratio>0.1 Ratio<0.001

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael 
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Anomaly Detection methods: Experimental evaluation

Observation from the results applied on specific datasets (TSB-UAD [19])

There is no overall winner.

(a.1) Example from ECG dataset (b.1) Example from MGAB dataset (c.1) Example from Daphnet dataset (d.1) Example from YAHOO dataset

(a.2) ECG best detector: NormA

(b.2) MGAB best detector: LOF

(c.2) Daphnet best detector: HBOS

(d.2) YAHOO best detector: CNN

(a.1) Example from ECG dataset

(b.1) Example from MGAB dataset

(c.1) Example from Daphnet dataset

(d.1) Example from YAHOO dataset
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[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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New Trends and Opportunities

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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Automated Solution: Background

Motivation:

- No one-size-fits-all model: How can we 
automatically identify the best anomaly 
detector given a time series?

[27] Maroua Bahri, Flavia Salutari, Andrian Putina, and Mauro Sozio: AutoML: state of the art with a focus 
on anomaly detection, challenges, and research directions. International Journal of Data Science and 
Analytics 14(2): 113-126 (2022).

Detection accuracy (VUS-PR) for 6 anomaly detectors 
across different datasets in TSB-UAD [19]
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Automated Solution: Taxonomy

(a) Model Selection:

Selecting the best anomaly detector from a
predefined candidate model set.

- (a.1) Internal Evaluation
- (a.2) Meta-learning-based
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Automated Solution: Taxonomy

(a) Model Selection:

Selecting the best anomaly detector from a
predefined candidate model set.

- (a.1) Internal Evaluation
- (a.2) Meta-learning-based

(b) Model Generation:

Creating an entirely new model for the given 
time series based on the candidate mode set

- (b.1) Ensembling-based
- (b.2) Pseudo-label-based
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Automated Solution: Internal Evaluation

VLDB 2024 | 27/08/2024 | 159

Definition: Evaluate the effectiveness of 
a model without any reliance on 
external information

- Stand-alone: Clustering Quality, 
EM&MV, Synthetic anomaly injection

- Collective: Model Centrality, Rank 
Aggregation

159



Automated Solution: Internal Evaluation

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection 
for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.

Image from [28]: Internal Evaluation workflow.

Rankings
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Automated Solution: Internal Evaluation

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection 
for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.

Image from [28]: Internal Evaluation workflow.
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Automated Solution: Internal Evaluation

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection 
for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.

Image from [28]: Internal Evaluation workflow.
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Automated Solution: Meta-learning-based

Definition: Using insights from historical 
labeled datasets to select the best 
model for new data

- Classification: Auto-Selector, MSAD

- Regression: RG, UReg, Cfact

- Nearest Neighbor: kNN

- Other Optimization: ISAC, MetaOD
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Automated Solution: Meta-learning-based

[29] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, Themis Palpanas. 2023. Choose wisely: An extensive  
evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment 16(11): 3418-3432.

Image from [29]: Model Selection Pipeline.
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Automated Solution: Meta-learning-based

Candidate 
Model Set

Performance 
Matrix

Time Series
For Training

Performance measures:
F-score, AUC-PR, VUS-PR …
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Automated Solution: Meta-learning-based

Candidate 
Model Set

Performance 
Matrix

Time Series
For Training

Classification ?
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Automated Solution: Meta-learning-based

Candidate 
Model Set

Performance 
Matrix

Label
Time Series
For Training

[28] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, Themis Palpanas. 2023. Choose wisely: An extensive  
evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment 16(11): 3418-3432.
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Automated Solution: Meta-learning-based

Candidate 
Model Set

Performance 
Matrix

Label
Time Series
For Training

[28] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, Themis Palpanas. 2023. Choose wisely: An extensive  
evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment 16(11): 3418-3432.
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Automated Solution: Meta-learning-based

Candidate 
Model Set

Performance 
Matrix

Time Series
For Training

Regression ?
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Automated Solution: Meta-learning-based

Candidate 
Model Set

Performance 
Matrix

Label
Time Series
For Training

[30] Lin Xu, Frank Hutter, Holger H Hoos, Kevin Leyton-Brown. 2008. SATzilla: portfolio-based algorithm selection for SAT. Journal 
of Artificial Intelligence Research 32: 565-606.
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Automated Solution: Ensembling-based

Definition: Integrate predictions from 
the candidate model set

- Full: OE

- Selective: HITS, IOE
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Automated Solution: Ensembling-based

Definition: Integrate predictions from 
the candidate model set

- Full: OE

- Selective: HITS, IOE
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Automated Solution: Pseudo-label-based

Definition: Generate pseudo-labels to 
transform the unsupervised
anomaly detection problem into a 
supervised framework

- AutoOD: Augment, Clean
- Booster: UADB
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Automated Solution: Pseudo-label-based

Pseudo-label-based Method Framework.

[31] Lei Cao, Yizhou Yan, Yu Wang, Samuel Madden, Elke A Rundensteiner. 2023. Autood: Automatic outlier detection. 
Proceedings of the ACM on Management of Data, 1(1): 1-27. ACM, New York, NY, USA.
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Towards Reliable and Automated TSAD

(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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Open Problems
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Towards Reliable and Automated TSAD

- Rigorous Benchmark Practice

…
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Towards Reliable and Automated TSAD

- Rigorous Benchmark Practice
- LLM-empowered TSAD

Image from [32]: Human 
interaction with ChatGPT for 
TSAD tasks.
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Towards Reliable and Automated TSAD

- Rigorous Benchmark Practice
- LLM-empowered TSAD
- Incremental Automated Solution

Image from [33]: Human 
in the loop feedback.
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(a) Example of multivariate time series T from 

the vibration class �ℳ .

(b) �� � �
ℳ
� : Dimension-wise Class Activation 

Map of T for the vibration class �ℳ .
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Conclusion and Open Problems

If you are interested in anomaly detection in time series… 

S. Schmidl et al. PVLDB (2022)
[5]

J. Paparrizos et al. PVLDB (2022)
[19]

R. Wu et al. TKDE (2021)
[18]

A. Blazquez-Garcia et al. ACM 
Computing Survey (2021) [24]

https://github.com/TheDatumOrg/
TSB-UAD

https://github.com/HPI-
Information-Systems/TimeEval

https://wu.renjie.im/research/ano
maly-benchmarks-are-flawed/
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Conclusion and Open Problems

If you are interested in evaluation measures for anomaly detection… 

https://arxiv.org/abs/2303.01272https://www.vldb.org/pvldb/vol15
/p2774-paparrizos.pdf

https://arxiv.org/abs/1803.03639 https://arxiv.org/abs/2206.13167

S. Sørbø et al. DAMI 2024 [29]J. Paparrizos et al. PVLDB 2022 [22]N. Tatbul et al. NeurIPS 2018 [23] A. Huet et al. KDD 2022 [31]
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