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ABSTRACT

The increased availability of unprecedented amounts of se-
quential data (generated by Internet-of-Things, as well as
scientific applications) has led in the past few years to a
renewed interest and attention to the field of data series
processing and analysis. Data series collections are processed
and analyzed using a large variety of techniques, most of
which are based on the computation of some distance func-
tion. In this study, we revisit this basic operation of data
series distance calculation. We observe that the popular
distance measures are oblivious to the correlations inherent
in neighboring values in a data series. Therefore, we eval-
uate the plausibility and benefit of incorporating into the
distance function measures of correlation, which enable us
to capture the associations among neighboring values in the
sequence. We propose four such measures, inspired by sta-
tistical and probabilistic approaches, which can effectively
model these correlations. We analytically and experimen-
tally demonstrate the benefits of the new measures using
the 1NN classification task, and discuss the lessons learned.
Finally, we propose future research directions for enabling
the proposed measures to be used in practice.
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1 INTRODUCTION

Data series (i.e., ordered sequences of values) 1 have gathered
the attention of the data management community for almost
two decades [7, 28, 36, 42, 47]. Data series are one of the
most common types of data, and are present in virtually
every scientific and social domain: they appear as audio
sequences [24], shape and image data [45], financial [41],
telecommunications [29, 38], environmental monitoring [40]
and scientific data [1, 21], and they have many diverse appli-
cations, such as in health care, astronomy, biology, economics,
and others.

The field of data series processing has seen a tremendous
progress in the database community thanks to the increased
availability of an unprecedented amount of data. Recent
advances in sensing, networking, data processing and storage
technologies have significantly eased the process of generating
and collecting tremendous amounts of data series at extremely
high rates and volumes. It is not unusual for applications
to involve numbers of sequences in the order of hundreds of
millions to billions [1, 2, 8, 29, 35, 39, 46].

These data series collections are then processed and ana-
lyzed using a large variety of techniques. Examples of such
analysis operations are queries by content (range and simi-
larity queries, nearest neighbors), clustering, classification,
outlier patterns, frequent sub-sequences, and others. In this
context, the nearest neighbor operation is of paramount im-
portance, since it forms the basis of virtually every analysis
technique. Any data series complex analysis task can be re-
duced to modeling a distance measure that captures the most
discriminating features across different classes or patterns in
the data [26].

The most widely used distance models are variations of
the Euclidean distance and are characterized by the invariant
properties that they support. For example, the Dynamic
Time Warping (DTW) distance [5] allows accelerations and
decelerations of the signal along the x-axis, and the Longest
Common Subsequence (LCSS) distance [14] allows gaps in
the sequence. The same applies to normalization [39] that
makes any subsequent analysis invariant to shifts and scaling
of the series. This invariance proved to be a very effective
way to extract strong features.

1Time series are a special case of data series, where the values are
measured over time, but a series can also be defined over other measures
(e.g., angle in radial profiles in astronomy, mass in mass spectroscopy,
position in genome sequences, etc.). For the rest of this paper, we are
going to use the terms data series (or simply series) and sequence
interchangeably.
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Figure 1: Euclidean distance fails to distinguish between

the X and Y series, given query Q.

The Euclidean distance is widely used, and has been shown
to be very effective for large data collections, performing
equally well or outperforming new distance models (such as
SpADe and TQuEST), as well as traditional elastic distance
measures (such as DTW) [16], especially when dealing with
large data series collections. Therefore, in this work we will
concentrate on Euclidean distance.

We observe that the distance measures mentioned above
do not model the correlations that do exist among neigh-
boring points in the series. Nevertheless, previous work has
shown that modeling explicitly the correlation inherent in
the data series leads to better results [11–13, 31, 32]. An ex-
ample is illustrated in Figure 1. The graph shows four series,
namely X, Y , Z and Q. The point values of the series are
the following: X =< 2, 3, 2, 3, 2 >, Y =< 2,−1, 2,−1, 2 >,
Z =< −1,−2,−1,−2,−1 > and Q =< 1, 1, 1, 1 >. The
Euclidean distance between Q and the other series X, Y and
Z is the same,

√
11. The series X and Z are equally similar

to the series Q. Despite the larger deviations in the values
of series Y , the distance between Q and Y is exactly the
same. A similar result can be obtained for other Minkowski
distances and their extensions, such as the DTW and LCSS
distances, as well as for z-normalized series. (A formal dis-
cussion of the invariant properties of these distance measures
is presented in Section 3.1).

In this study, we answer the following question: can dis-
tance measures that take into account the neighboring-point
correlations in the series outperform the Euclidean distance
in mining tasks such as classification? As we will see, the
answer to this question is yes.

In order to demonstrate the importance of taking into
account the temporal correlation among values in a data
series, we use a simple example from the biomedical domain.
Our dataset represents thirty minutes of ECG annotated
readings for forty-eight individuals [34]. The series has been
discretized into thirty-two states using the iSAX symboliza-
tion algorithm [7]. First, we estimate the Auto-Regressive
Integrated Moving Average (ARIMA) model, using the train-
ing part of ECG dataset. The modeled series together with
true observations are shown in Figure 2. Figure 3(a) shows
that the best ARIMA prediction accuracy is observed for AR
lag 60 (very close to the period: 64), which also the value
where the Root Mean Squared Error (RMSE) of prediction
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Figure 2: Predicting ECG Signal using an ARIMA

model (with AR lag = 60, which is very close to the

period of the signal).
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Figure 3: Effect of AR-Lag/Order on ARIMA/Markov

Chain models in terms of (a) prediction accuracy and
(b) root mean squared error. Results are averaged with

20-fold cross-validation.

is minimum (Figure 3(b)). In addition, we tried a Markov
chain model with 9 states, which was also used to estimate
the ECG data. We observed that as the chain order increases
up to 60, the model becomes more accurate in predicting the
series values (refer to Figures 3(a) and (b)).

The above example shows that knowledge of the correlation
among the values of a series can be exploited to improve
effectiveness. While prediction is not the aim of this study,
models that proved to be successful in this field can be also
used to build correlation-aware distance measures.

In this work, we make the following contributions.

• We review the state of the art on similarity measures
for data series, and describe the desired properties of
distance measures, as well as the invariant properties
of the Euclidean distance, in particular.

• We present four models inspired by statistical and
probabilistic approaches that have been designed
to capture the temporal correlation in data series:
auto-correlation distance, Markov chain distance, lo-
cal distance distribution (value-difference histograms
defined over sliding windows), and probabilistic local
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nearest neighbor distance (most probable nearest
neighbor over sliding windows).

• We provide an analytical discussion of the proposed
approaches, and complement that with a detailed
experimental evaluation using real datasets.

The rest of this paper is organized as follows. We discuss
related work in Section 2. Preliminaries and properties of
common distance measures are introduced in Section 3. In
Section 4, we describe the proposed distance measures, and
in Section 5 we explain how they can be used. We present
our experimental evaluation in Section 6, and we conclude in
Section 7.

2 RELATED WORK

The class of Minkowski distance measures include the Man-
hattan (L1), Euclidean (L2) and Supremum (L∞) distances.
These distance measures are also referred to as Lp norms.
Elastic distance measures based on the Euclidean distance
include the Dynamic Time Warping (DTW) distance [5] and
the class of edit distance measures. The DTW distance is
invariant to temporal shifts by allowing accelerations and
decelerations of the signal along the x-axis. The class of
edit distances is inspired by the edit distance on strings
and measure the minimum number of operations required to
transform one series into the other. It includes the Longest
Common Subsequence (LCSS) distance [14] and the Edit Dis-
tance on Real sequences (EDR) [9]. Novel distance models
include the Spatial Assembling Distance (SpADe [10]) and
threshold-based distance (TQuEST) [4]. A comprehensive
discussion of distance measures for time series is included
in [44].

An experimental comparison of the aforementioned tech-
niques can be found in [16], which concludes that SpADe and
TQuEST models are in general inferior to elastic distance
measures. Moreover, there is nearly no difference between
the elastic distance measures and the Euclidean distance
on the time series classification task, when the size of the
training dataset is large. For this reason, we have chosen the
Euclidean distance to compare to.

Normalization [39] of the values along the series is usually
applied as a standard preprocessing step, thus making any
subsequent distance computation invariant to value shifts
and amplitude changes. Invariant properties in the distance
measure proved to be a good strategy in order to capture
strong features, and model the underlying dynamics of the
data series.

We observe that in the aforementioned methods there is no
explicit modeling of time correlation, a well known property
of data series. Previous studies have shown experimentally
that explicit modeling of the local correlations inherent in
data series is advantageous [12]. We argue that modeling the
correlation within a distance measures for data series can
provide added value.

An approach that uses correlation coefficients to track local
correlations among data streams has been studied in the liter-
ature [37]. Data streams are processed using sliding windows,

and a new score measurement is produced as the windows
move forward. The LoCo correlation score is defined in this
work as the difference of the auto-covariance matrices of the
data points in the two windows using their eigen decomposi-
tion. We do not consider this approach in our setting, since
we do not use streaming series. Though, we consider similar
window-based and correlation-based approaches described in
Sections 4.3 and 4.4.

There is a class of distance measures, which relate to the
generation model of data series. One such distance measure
uses cepstral coefficients, which are sensitive to the position
of the autoregressive coefficients [23]. This measure was used
on the task of clustering, and outperformed measures based
on various representations of time series, namely Discrete
Fourier Transform [3], which preserves the Euclidean dis-
tance; Discrete Wavelet Transform [43], which keeps local
correlations of the data points; and Principal Component
Analysis [19], where the Euclidean distance was calculated
among principal components of time series. The results show
that comparison of the statistical generation models of time
series leads to more accurate results in cases where the data
follow these models accurately. Put in other words, the
time series used with an ARIMA-based similarity measure
should be ARIMA-like [23]. We observe that the usage of
cepstral coefficients is rather involved. For example, it re-
quires that after a certain level of integration, the data series
is stationary, while seasonal and trend components should
be considered separately. Inspired by this approach, we use
an autocorrelation distance measure, which is similar to cep-
stral coefficients for the autoregressive model, but is much
more lightweight in terms of computation. We describe this
approach in Section 4.1.

PLiF (Parsimonious Linear Fingerprinting) is a similarity
measure that contains feature extraction and forecasting
components [27]. This is a model-based distance measure,
which estimates a Linear Dynamical System (LDS) to model
multiple data series. Time correlations in PLiF are taken
into account via hidden features that are used to build a
distance function between data series. This model is designed
specifically for motion sequences.

Ge and Smyth describe a model-based technique, where
a segmental Hidden Markov Model (HMM) is used for pat-
tern representation in order to solve a problem of waveform
recognition [20]. This study shows that distance measures
like DTW and Euclidean distance in several cases lack the
desired properties of continuity, compactness and true repre-
sentation (see Section 3.1). This means that small variations
in the values of the two series may lead to large distance
differences, while large variations in the series may lead to
small distance differences. The approach described in [20] is
based on probabilistic generative models that try to capture
the probability with which a series is generated. In this ap-
proach, it is necessary to set the number of hidden and visible
states, as well as the distribution of the duration of each state.
Note also that segmental HMM considers only the first order
dependencies between states, while our goal is to exploit
high order dependencies. Consequently, we propose distance
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measure based on a Markov chain model that can take high
order dependencies into account, and where only number of
states and order should be decided (see Section 4.2).

3 NEED FOR A NEW DISTANCE

A data series X is a sequence of real valued points X =
{xi}ni=1 where n is the length of X, and xi is the value of data
series X at position i. A data series is z-normalized (or simply
normalized)if its mean is equal zero and its variance is equal
to one. The Euclidean distance between data series X and
Y is defined as follows: DEucl(X,Y ) =

√∑n
i=1(xi − yi)2.

Though it is very efficient in many applications, euclidean and
euclidean-like distances cannot capture correlations among
neighboring data points in the sequence.

We note that the Euclidean distance between two series
X and Y , formally denoted by DEucl(X,Y ), is invariant
to two transform rules as defined below. First, a pair of
corresponding points xi and yi can be swapped with any
other pair of points xj and yj , i 6= j without any change
in the distance value. For example, the Euclidean distance
between series X =< 1, 2, 3, 4 > and Q =< 5, 6, 7, 8 > does
not change if we swap the second and the fourth values
(obtaining series X ′ =< 1, 4, 3, 2 > and Q′ =< 5, 8, 7, 6 >,
respectively), though the new series are obviously not the
same.

Second, the value of the Euclidean distance does not change
when new values x′i and x′j are assigned respectively to points
xi and xj , where x′i and x′j satisfy the following condition:

(xi − yi)2 + (xj − yj)2 = (x′i − yi)2 + (x′j − yj)2

Consider for instance, the Euclidean distance between series
Q = {0, 0, 0, 0} and X = {5, 5, 5, 5} is the same to the Eu-
clidean distance between the seriesQ and Y = {4.3563, 5.5698,
4.3563, 5.5698}. The Euclidean norm distance for both pairs
Q,X and Q,Y is 10, while the shape of the series is drastically
different.

We conclude that Euclidean distance fails to capture im-
portant semantics of data series, as shown in the above ex-
amples. In contrast, the correlation-aware distance measures
presented in Section 4 aim to reveal such differences.

3.1 Properties of a Good Distance
Measure

We now consider the important properties of distance mea-
sures. In general, a distance measure, or a dissimilarity repre-
sentation, is a way to generalize the structural representation
of an object. A distance measure is a good representation
of objects if similar objects are close and dissimilar objects
are distant. An ideal distance measure D(x, y) between two
objects x and y should have the following properties (where
δ is a small positive number):

(1) Non-negativity : D(x, y) ≥ 0;
(2) Coincidence axiom: D(x, y) = 0 iff x = y;
(3) Symmetry : D(x, y) = D(x, y);
(4) Triangle inequality : D(x, y) < D(x, z) + D(z, y),

where z is another object;

(5) Compactness: if x and y are very similar thenD(x, y) < δ;
(6) True representation: if D(x, y) < δ then z and y are

very similar;
(7) Continuity of D.

Properties 5, 6 and 7 were introduced several times in the pat-
tern recognition literature. They force the preferred distance
measure to have a large discriminative power, and at the
same time the value of the distance measure should increase
gradually [17], which means that the continuity property
holds.

Metric distances satisfy the first four properties, which
also enables them to serve as the basis of indexing techniques.
At the same time, there are many cases when non-metric
distance measures lead to much higher accuracy for real-
world classification problems, such as the classification in the
presence of partially occluded objects in computer vision [22],
or the classification of proteins, when structural alignment is
needed [18]. For this reason, in our study we also consider
non-metric distances.

In this study, we compare different distance measures in
terms of the 1-NN classification task. For this task, good
distance measures should differentiate objects from different
classes — the distance among objects in the same class
should be smaller than the distance among objects from
different classes. Therefore, the properties of compactness,
true representation and continuity are important in this
context.

4 PROPOSED DISTANCE MEASURES

In this section, we introduce and describe four distance mea-
sures which take into account the correlations among neigh-
boring points in the series.

4.1 Autocorrelation Distance (ACD)

The distance measure based on autocorrelation coefficient is
not new, it comes from the statistical domain and is widely
exploited in a data mining community [23]. In this work, we
calculate the autocorrelation vector R = {r(τ)}nτ=1, which
consists of autocorrelation coefficients r(τ) with different lags
up to n:

r(τ) =
E[(xt − µ)(xt+τ − µ)]

σ2
,

µ is a mean and σ2 is a variance of a data series X = xi.
The distance between two series is defined as the Euclidean
distance between their autocorrelation vectors. The length
of autocorrelation vector n is a training parameter.

Let n be the series length, and k the number of series
used for comparison. The time complexity of the ACD mea-
sure is equal to the time complexity of the computation of
Euclidean distance O(nk) plus O(nk log(n)) for the prepro-
cessing step (assuming that Fast Fourier transform is used
for the computation of the correlation coefficients).

4.2 Markovian Distance (MD)

Markovian models are commonly used to capture correlations
among points of a data series. A Markov chain of order k is
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a sequence of random variables, which satisfy the Markovian
property that the current state of the chain depends only
on the previous k states. A Markov chain model is fully
characterized by the initial probabilities of the states and the
transition probability matrix, which consists of conditional
probabilities of all the values of the alphabet. To have a
Markov chain model of order k and alphabet size m, we
need to estimate |A|k+1 parameters, which are the values
of transition probability matrix. In our study, we consider
Markov chains with alphabet size m = 32, and treat the
order as a parameter, which we need to estimate during the
training phase. For the testing phase, we estimate a transition
probability matrix M , which characterizes a Markov chain
by estimating the conditional probabilities of the query X.
We do this by looking across the series and first calculating
the frequencies of all sequences of length k and k + 1, and
then calculating all the conditional probabilities:

M(xt−k, xt−k+1..., xt) = Pr[xt|xt−1, ..., xt−k] =

Freq[xt, xt−1, ..., xt−k]

Freq[xt−1, ..., xt−k]
,

where t = k + 1, ..., n, n is the length of the series. We then
identify the nearest neighbor, that is, the series Y with the
highest probability of being generated by the model of the
query series:

Pr(y1, ..., yn|M) = Pr[y1, ..., yk]

n∏
t=k+1

M(yt−k, ..., yt), (1)

where Pr[y1, ..., yk] is the initial state of the Markov chain.
Since we estimate the model using only one series, we

cannot estimate the initial state, so we set all the states to be
equiprobable. We can now choose the nearest neighbor only
by computing the product of the entries in the transition
probability matrix. Note, that the entries, which correspond
to the same prefix [xt−1, ..., xt−k], form a discrete probability
density function, whose total mass should be 1. If a prefix
was not observed in the query time series, we distribute the
probability mass among all the entries equally, for each entry
it is 1/m. In order to avoid the accumulation of machine error
caused by the multiplications in Equation 1, we calculate the
log of the probabilities:

logPr(y1, ....., yn|M) ∼
n∑

t=k+1

log[M(yt−k, yt−k+1..., yt)].

(2)
This leads to a natural distance measure, which is a probabil-
ity that one sequence is generated using a model of another
sequence. As logPr defined by Equation 2 is a similarity
measure, the distance between X and Y can be defined as
− logPr.

This distance measure satisfies the properties of non-
negativity, continuity (refer to Section 3.1), as well as com-
pactness and true representation (assuming that two series
are similar if they have similar generation models). The
ACD measure captures similar phenomena as the MD, but
it focuses on the correlations among values, rather than on
the states of the series. This makes ACD more suitable for

real-valued series with high correlations among all values
up to n, while MD is preferable when the most significant
correlation is equal to the order k.

The time complexity of MD is linear, O(n + (m − k)),
as it requires only one scan over the query series of length
n to build the model, and (m− k) searches in a transition
probability matrix, which can be implemented as a HashMap
with average search time O(1) (m is the length of the series we
compare to, and k is the order of the Markov chain model).
Note that this distance can also be efficiently computed
in an online setting, where streaming series for very large
alphabet sizes should be compared, using Conditional Heavy
Hitters [30, 33] for estimating the most significant elements
of the transition probability matrix.

4.3 Local Distance Distribution (LDD)

In this section, we propose the Local Distance Distribution
(LDD), a ranking function that is based on the distribution
of Euclidean distances determined on sub-sequences from
candidate series Xi and query Q.

Given a series Xi, let X
[a,b]
i be the sub-sequence of Xi

between positions a and b. Let Wh(Xi, w) be the content
of the sliding window on series Xi of length w whose first
point is xh, i.e., Wh(Xi, w) =< xh, ..., xh+w−1 >. The set of
distance samples between Xi and Q is denoted by D(Q,Xi)
and is defined as:

D(Q,Xi) =

{Euclidean(Wh(Xi, w),Wh(Q,w)) : h ∈ {1, ..., n− w + 1}},
where Euclidean(Xi, Xj) denotes the Euclidean distance
between series Xi and Xj and n is the length of the series.
D(Q,Xi) is a set of pairwise point distances along the series
Q and Xi. Let Hi be the equi-width histogram composed of
B buckets that summarizes the distance values in D(Q,Xi).

Given two series Xi and Xj , the probability that a random
distance value di ∈ D(Q,Xi) is lower than a random distance
value dj ∈ D(Q,Xj) can be estimated as follows:

Pr(di < dj) =

B∑
b=1

Hi,b

b∑
l=b+1

Hi,l,

where Hi,l is the value of the lth bucket of the equi-width
histogram Hi. We can now introduce the probability for a
candidate series Xi to be the nearest neighbor to a query
series Q as:

PNN(Xi, Q) =
∏
j 6=i

Pr(di < dj), (3)

where di and dj are two random distance values fromD(Q,Xi)
and D(Q,Xj), respectively. The function PNN(Xi, Q) is
a ranking function that can be used to implement a near-
est neighbor classifier. We observe that the LDD ranking
function is not a distance measure, but incorporates pairwise
point distance values.

The LDD ranking function is invariant to swaps of pairs of
values in the two series to be compared. Any modification in
the series values can affect the overall pairwise point distance
distribution D(Q,Xi). We observe that the good distance
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measure properties (refer to Section 3.1), compactness, true
representation, and continiuty, are satisfied.

The time complexity of LDD is as follows. We need to
compute Euclidean distance n times (n is the length of the
series) over sub-sequences of size w, with an overall cost of
O(nw). The computation of equi-width histograms costs
O(n), and histogram comparisons cost O(BN). Therefore,
the LDD complexity is O(nw +BN).

4.4 Probabilistic Local Nearest Neighbor
(PLNN)

In this section, we introduce the Probabilistic Local Nearest
Neighbor (PLNN) ranking function. PLNN is inspired by
the Lp-norm as follows: the Euclidean distance between
neighboring points induces a series of distance distributions
that capture the local semantics of the series. These distance
distributions are then aggregated by taking into considering
their dependencies.

Given a query Q and series Xi, let Dh(Q,Xi) be the set of

pairwise point distances within the sub-sequences X
[h,h+w−1]
i

and Q[h,h+w−1]:

Dh(Q,Xi) = {|xk − qk|}, (4)

where k ∈ {h, ..., h+ w − 1}. We observe that the sum of
samples in Dh(Q,Xi) is equivalent to the L1-norm (Manhat-
tan distance) between sub-sequencesWh(Xi, w) andWh(Q,w).

Let NNh(i) be the event that Xi is the nearest neighbor
to query Q within the content of sub-sequences Wh(Q,w)
and Wh(Xi, w). The probability Pr(NNh(i)) is formulated
as follows:

Pr(NNh(i)) =

Pr

∧
j 6=i

Euclidean(0, dhi ) < Euclidean(0, dhj )

 ,

where di and dj are two random point values fromDh(Q,Xi)
and Dh(Q,Xj), respectively. Pr(NNh(i)) can be estimated
as in [6], Eq.1 under the independence assumption. Pr(NN(i))
is formulated as follows.

Pr(NN(i)) = Pr

(∧
i

NNh(i)

)
. (5)

P (NN(i)) is the marginal probability of i to be the nearest
neighbor to query Q. The multiplicands in Eq. 5 are not
independent. However, we can estimate their joint probability
considering samples in Dh(Q,Xi). For ease of exposition, we
discuss how to deal with dependencies using a small dataset
of three time series (X0, X1, X2). Eq. 5 can be decomposed
as follows:

P (NN(i)) = P (NN0(i))·

P (NN1(i)|NN0(i))·

P (NN2(i)|NN0(i) ∧NN1(i))

(6)

We already know how to estimate P (NN0(i)). To esti-
mate P (NN1(i)|NN0(i)), we proceed as follows. During

the evaluation of NN1(i) we consider only a subset of the
distance samples in Sh0 , such that they match the distance
constraints in NN0(i) (and in addition slide the windows).
We proceed similarly for the other multiplicands in Eq. 6.

Similarly to LDD, PLNN is invariant to swaps of pairs of
corresponding values in the compared series. Modification
in the series values may affect the overall pairwise point
distance distribution D(Q,Xi). The desired distance measure
properties, compactness, true representation, and continuity,
are satisfied (refer to Section 3.1).

The time complexity of PLNN is as follows. Evaluating
Eq. 5 costs O(w2N), where w is the window length, and N
is the number of series. Eq. 5 is evaluated on all possible
windows in Eq. 5, resulting in O(nNw2), where n is the
series length. Assuming that we look back to the previous k
windows in Eq. 6, the total cost is O(knNw2).

5 USING THE PROPOSED METHODS

Using the Euclidean distance for 1NN classification leads
to the fastest and simplest classification. In this work, we
combine Euclidean distance with the proposed techniques
for 1NN classification: when the discrimination confidence
of the Euclidean distance is low, then we switch to using
our techniques. In this way, we aim to combine the speed of
Euclidean with the accuracy of the proposed techniques.

Given an oracle, we can choose to use our techniques only
when Euclidean fails. In practice though, we have to predict
when this will happen. We use the following strategy for
this classification failure prediction [15]. First, we compute a
confidence value based on the distances to the two nearest
neighbors belonging to two different classes:

Conf = 1− di
mini 6=jdj

, dj = min{dist(Q,Xj)|j ∈ C},

where C denotes a class. Then, we use the proposed distance
measures when this confidence value is below some threshold.
Our experiments show that the accuracy of this prediction is
slightly above 75%, and fairly robust for thresholds between
0.2-0.8.

6 EXPERIMENTAL EVALUATION

We performed the experiments on a computer with an Intel
Core i7-3612 CPU @ 2.1GHz x 2 processor, with 8GB RAM,
running MS Windows 7. All algorithms were implemented
in Matlab.

Datasets: We use the 43 UCR datasets with normalized
series of different lengths from several domains [25]. All the
time series are normalized. (The importance of normalization
and its usefulness on real datasets has been demonstrated
in earlier studies [39].) Most of the datasets have multiple
labels, as well as data imbalance. We use the 1NN classifier
because of its simplicity, as we do not need to optimize any
parameters for the classifier per se.

Measures: We compare our methods to the widely-used
Euclidean distance for the 1NN classification task. For the
evaluation, we use the F1-measure, because it takes into
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account both precision and recall. These measures are calcu-
lated as follows:

precisioni =
tp

tp+ fp
, i ∈ C (7)

recalli =
tp

tp+ fn
, i ∈ C (8)

where, tp, fp and fn represent true positives, false positives
and false negatives respectively, and Ci is the i-th class.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(9)

Precision and recall are calculated for each class Ci, and
their arithmetic mean is used to calculate the mean F1 value.

6.1 Parameter Optimization

The proposed distance methods depend on some parameters.
We optimize these parameters on training data, using leave-
one-out cross-validation for each training dataset in order
to avoid overtraining. Below we discuss the parameters and
their domains:

• ACD depends on the lag, or number of autocorrela-
tion coefficients, which we use. We performed grid
search over the of 5 to 100 coefficients, with step 2
from 5 to 30, and step 5 from 30 to 100.

• Markovian distance depends on the order of the
Markov chain, and on the number of states of the
series. We decide on the number of states during
the pre-processing step, which generates discretized
series: we use iSAX[7] and generate 32 state for each
dataset. During the training phase we focus on the
order of Markov chain, and search for the optimal
order in the range between 3 and 30 with a step
size 2.

• LDD depends on the window and bin sizes of the
histograms (for simplicity, the number of bins were
set to 10). During the training phase, we optimize
the window size over the range 3 to 30 with a step
size 2.

• PLNN depends on the window size, which is opti-
mized in the range between 5 and 50 using a step
size of 5.

6.2 Description of Experiments

We organized our evaluation along the following four exper-
iments. These experiments correspond to the four graphs
(namely, a-d) presented in the figures with the results for the
proposed measures.
Experiment (a) compares the correlation-aware distances
with the Euclidean distance for the 1NN classification task.
This experiment also help us to establish the importance of
the Euclidean distance for these tasks.
Experiment (b) compares the proposed methods with a
random classifier. We use the mean of 20 fold random clas-
sifier for comparison. This comparison evaluates whether
the use of a classifier based on the proposed measures has
advantage over random choice.

Experiment (c) uses an oracle that switches to one of the
proposed techniques when a failure caused by the classifier
using the Euclidean distance occurs. Here we evaluate the
improvement in the accuracy of classification which can be
achieved by building a classifier, which uses both the Eu-
clidean distance and correlation-aware distances.
Experiment (d) builds a combined classifier based on the
Euclidean and correlation-aware distances. Correlation-aware
distances are used when the confidence of Euclidean classi-
fication is lower than a threshold. Evidently, the results of
this experiment are upper bounded by the results of Experi-
ment 3.

6.3 Results

In the first set of experiments, we perform a sanity check
by comparing the accuracy of using the proposed distance
measures in a 1NN classifier, against the accuracy of a random
classifier. The results, depicted in Figures 4(b), 5(b), 6(b),
and 7(b), show that all three methods consistently outperform
the random classifier (i.e., points above the diagonal). This is
especially true for the case where (with the help of an oracle)
we use the three proposed methods only when Euclidean
distance fails to identify the correct class (i.e., square green
points).

6.3.1 Autocorrelation Distance (ACD)
. We now focus on the performance of the ACD distance,
shown in Figure 4. As mentioned in Section 4.1, the autocor-
relation function is a cross-correlation of a data series with
itself within a given time lag. The resulting autocorrelation
vectors are then used to compute the Euclidean distance
between the series.

The results of Experiment (a), depicted in Figure 4(a),
show that ACD performs better than Euclidean for a few
datasets. The Euclidean distance works better on average,
which establishes the fact that replacing the Euclidean dis-
tance entirely will not provide any statistical advantages.

Figure 4(c) shows that switching to ACD when we know
for sure that the Euclidean distance will fail leads to a re-
markable improvement in accuracy. Thus, using a perfect
oracle for predicting failure of Euclidean distance based clas-
sification and then switching to ACD based classification
shows significant accuracy improvement for all 43 datasets.

Figure 4(d) shows that the ACD distance assisted by
failure-prediction performs better than Euclidean only for
some of the datasets (i.e., points above the diagonal). Failure-
prediction is used in the way described in Section 5, where we
predict (with a less than perfect accuracy) the cases that the
Euclidean-based classification fails. A close look at the exper-
imental results reveals that ACD significantly improves the
classification accuracy for several datasets. One such dataset
is Trace, for which the classification accuracy with ACD is
100%, while the Euclidean distance based classification has
an accuracy of only 76%.

6.3.2 Markovian Distance
. Classification based on the proposed Markovian distance
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Figure 4: Results for ACD.

uses the transition probability matrix for each query data
series in order to capture the correlation among adjacent
points in the sequence. This transition probability matrix is
used to find the series of the training set, which is the most
likely to be generated by the query model. Since estimating
the Markov model requires data series with discrete values,
we used iSAX2.0 [7] to generate 32 discrete states for our
data series. The experiments focus on the effect of the order
of the Markov chain on classification accuracy. Our cross
validation experiments showed that the transition matrix for
chains of order 3 gives the best performance for most datasets
(though some datasets produce better cross validation results
when using different orders). Based on this, we used Markov
chains of order 3 for the rest of our experiments with the
Markovian distance.

Figure 5(a) shows that the Euclidean distance in almost all
cases performs better than the proposed method. However,
switching to the Markovian distance only when Euclidean
truly fails (i.e., failure prediction with a perfect oracle) re-
sults in a significant improvement in almost all the datasets
(refer to Figure 5(c)). This improvement signifies that the
Markovian distance is able to capture semantics embedded
in the series, which the Euclidean distance fails to uncover.

Figure 5(d) shows that the Markovian method with failure-
prediction outperforms the Euclidean distance in 20 datasets.
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Figure 5: Results for MD (based on Jensen-Shannon
divergence).

6.3.3 Local Distance Distribution (LDD)
. We now turn our attention to the LDD distance. This
method uses a series of distances calculated using a sliding
window over the query series Q and each series Xi in the
dataset. The distribution of the resulting sliding window
based distances is represented as a histogram. We then cal-
culate the joint probability of each Xi being the nearest
neighbor (i.e., the corresponding LDD value is the smallest).
Maximizing this probability gives us the most probable class
Ci for a query Q. The sliding window sizes were set indepen-
dently for each dataset, and were selected during the training
phase by maximizing F1.

The results in Figure 6(a) show that Euclidean distance
outperforms the proposed methodology, with very few excep-
tions. Once again, when the failure of the Euclidean distance
based classifier can be perfectly predicted, then the advan-
tage of switching to the LDD measure is significant for all
datasets (see Figure 6(c)).

Figure 6(d) depicts the results of the comparison between
the combination of LDD with Euclidean (i.e., LDD is used
when Euclidean is predicted to fail), and Euclidean. As with
the other two proposed measures, the methodology that uses
the LDD distance is able to outperform Euclidean in some,
but not all datasets we tested.
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Figure 6: Results for LDD.

6.3.4 Probablistic Local Nearest Neighbor (PLNN)
. PLNN employs the distance distributions across subse-
quences in order to capture local semantics. It examines
all the data series in the collection, and identifies the series
Xi that is the nearest neighbor across all subsequences.

Figure 7 provides the results for the four experiments.
As we can see from the results of the first experiment (Fig-
ure 7(a)), the proposed method is unable to model the data
series better than Euclidean distance for the given datasets,
except for 2 datasets.

When we use PLNN on series, for which we know that
Euclidean has failed, our method can lead to considerably bet-
ter performance. These results are illustrated in Figure 7(c).
Figure 7(d) depicts the case where we need to predict when
Euclidean will fail and subsequently use PLNN. The results
show that in this case PLNN achieves an average improve-
ment of almost 9%, by providing more accurate results for
nearly 60% of the cases.

6.3.5 Time Performance
. We now present the time performance of the proposed
methods. The reported time values are the means over 5
executions of each method.

Figure 8 shows that all methods have a linear growth
with respect to the series length (note that the y-axis is
logarithmic). As expected, the Euclidean distance is the
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Figure 7: Results for PLNN.

fastest measure, followed by ACD and MD. The LDD and
PLNN measures are significantly slower. This is especially
true for PLNN, which requires more than one second in order
to perform a distance computation, even for moderately-sized
series (i.e., 300 points long).

6.4 Discussion

The results presented in the previous sections indicate that
there is a certain benefit to be gained when using correlation-
aware distance measures, which can lead to a significant
improvement in the quality of the results. Nevertheless, this
benefit is not immediately available: for the 1NN classification
task, the benefit emerges only under certain conditions.

In particular, after a careful inspection of the results and
the datasets, we observed that the proposed distance mea-
sures work better only for some datasets, for which they can
accurately model the inherent correlations in the sequences
of values, while for other datasets they cannot provide a ben-
efit with respect to Euclidean. Figure 9 illustrates one such
example. The two graphs in this figure are the histograms of
the 1NN distances for all the series in Class 1 of the FaceALL
dataset. We observe that in this case, there is a clear sep-
aration between the classes, with all intra-class distances
being smaller than the inter-class distances. This means that
even a simple distance measure, such as Euclidean that does
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Figure 9: The 1NN histograms for intra-class (left) and
inter-class distances, computed over all series in Class 1
of dataset FaceALL.

not take into account correlations, can correctly differentiate
between the classes.

The benefit of correlation-aware distance measures be-
comes apparent in cases where the intra- and inter-class
Euclidean distances are similar, but the characteristics of the
data series in the various classes are different. This case is
depicted in Figure 10, where we visualize several series from
different classes of two distinct datasets. Even though the
series in both datasets have intra- and inter-class Euclidean
distances that are very close to one another, the series ex-
hibit evolution characteristics that are similar for the same
class, and distinct from the other classes. It is exactly these
correlations (which determine the shape of each series) that

our proposed distance measures take into consideration, and
which can lead to improved results.

For example, when using ACD on the Trace dataset (Fig-
ure 10(b)), we obtain an F1 value of 100%, while the F1
for euclidean is only 80%. For the OSULeaf dataset (Fig-
ure 10(a)), even though the differences in the characteristics
of the two classes are more subtle, the correlation-aware
methods can enhance the performance of the 1NN classifier
(when used in combination with Euclidean) by 19% for ACD,
21% for MD, 9% for LDD, and 18%( for PLNN, according
to the F1-messure.

Table 1 provides the summarized comparison of the results
for the 1NN classification task, where we use the proposed
correlation-aware methods only when a failure is predicted in
the classification done using Euclidean distance. The results
are the improvement on precision and recall when compare
to the case where we only use Euclidean distance.

The improvements in precision range between 12-42%,
and in recall between 12-40%. These results showcase the
added value that the proposed distance measures bring with
them, by capturing the correlations in neighboring values of
the series, which the traditional distance measures (such as
Euclidean) ignore.

7 CONCLUSIONS AND FUTURE
WORK

In this work, we argued about the utility of taking into
account the correlations inherent among neighboring values of
a sequence, when designing distance measures for data series.
We proposed three different measures that are correlation
aware, based on autocorrelation, Markov chains, and the
subsequence distance distributions.

Our preliminary experimental results with 43 real datasets
show that these more complex distance measures have the
potential to compute distances more accurately, as demon-
strated using the 1NN classification results. This result is
explained by the fact that they can effectively encode infor-
mation about the sequentiality of the points in a data series,
which is completely ignored by the Euclidean distance.

In our future work, we plan to conduct more detailed
experiments for the characterization of the performance be-
havior of the proposed distances, as well as new ones. More-
over, we will study in depth the problem of when to use
the correlation-aware measures, and how to combine them
with other distance measures. This proves to be a critical
step in order to exploit the benefits of the proposed distance
measures.
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ACD Markovian LDD PLNN

Improvement on Precision/Recall 12.09%/12.25% 38.14%/32.67% 41.77%/30.79% 42.13%/40.34%

Table 1: Improvement on precision and recall when combining each one of the correlation-aware methods
with Euclidean.
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