
The Lernaean Hydra of Data Series Similarity Search:
An Experimental Evaluation of the State of the Art

Karima Echihabi
IRDA, Rabat IT Center,

ENSIAS, Mohammed V Univ.
karima.echihabi@gmail.com

Kostas Zoumpatianos
Harvard Univ.

kostas@seas.harvard.edu

Themis Palpanas
Paris Descartes Univ.

themis@mi.parisdescartes.fr

Houda Benbrahim
IRDA, Rabat IT Center,

ENSIAS, Mohammed V Univ.
houda.benbrahim@um5.ac.ma

ABSTRACT
Increasingly large data series collections are becoming com-
monplace across many different domains and applications.
A key operation in the analysis of data series collections is
similarity search, which has attracted lots of attention and
effort over the past two decades. Even though several rele-
vant approaches have been proposed in the literature, none
of the existing studies provides a detailed evaluation against
the available alternatives. The lack of comparative results
is further exacerbated by the non-standard use of terminol-
ogy, which has led to confusion and misconceptions. In this
paper, we provide definitions for the different flavors of simi-
larity search that have been studied in the past, and present
the first systematic experimental evaluation of the efficiency
of data series similarity search techniques. Based on the
experimental results, we describe the strengths and weak-
nesses of each approach and give recommendations for the
best approach to use under typical use cases. Finally, by
identifying the shortcomings of each method, our findings
lay the ground for solid further developments in the field.

PVLDB Reference Format:
Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and
Houda Benbrahim. The Lernaean Hydra of Data Series Similarity
Search: An Experimental Evaluation of the State of the Art.
PVLDB, 12(2): 112-127, 2018.
DOI: https://doi.org/10.14778/3282495.3282498

1. INTRODUCTION
Data Series. A data series is an ordered sequence of data
points1. Data series are one of the most common types of
data, covering virtually every scientific and social domain,

1When the sequence is ordered on time, it is called a time
series. However, the order can be defined by angle (e.g., in
radial profiles), mass (e.g., in mass spectroscopy), position

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 2
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3282495.3282498

such as astrophysics, neuroscience, seismology, environmen-
tal monitoring, biology, health care, energy, finance, crimi-
nology, social studies, video and audio recordings, and many
others [41, 72, 61, 75, 56, 39, 68, 8, 47, 53, 84, 38]. As
more devices, applications, and users are connected with
IoT technologies, an increasingly large number of data se-
ries is generated, leading to multi-TB collections [59]. We
note that, when these collections are analyzed, the com-
mon denominator of most analysis algorithms and machine
learning methods, e.g., outlier detection [17, 25], frequent
pattern mining [66], clustering [45, 69, 67, 82], and classifi-
cation [18], is that they are based on similarity search. That
is, they require to compute distances among data series, and
this operation is repeated many times.
Data Series Similarity Search. Similarity search is the
operation of finding the set of data series in a collection,
which is close to a given query series according to some
definition of distance (or similarity). A key observation is
that similarity search needs to process a sequence (or subse-
quence) of values as a single object, rather than as individ-
ual, independent points, which is what makes the manage-
ment and analysis of data sequences a hard problem with a
considerable cost. Therefore, improving the performance of
similarity search can improve the scalability of data analysis
algorithms for massive data series collections.

Nevertheless, despite the significance of data series simi-
larity search, and the abundance of relevant methods that
have been proposed in the past two decades [3, 22, 73, 63,
23, 13, 42, 66, 71, 81, 14, 89, 58, 85, 52, 51, 62], no study has
ever attempted to compare these methods under the same
conditions. We also point out that we focus on the efficiency
of similarity search methods, whereas previous works stud-
ied the accuracy of dimensionality reduction techniques and
similarity measures, focusing on classification [44, 27, 9].

In this experimental and analysis paper, we thoroughly as-
sess different data series similarity search methods, in order
to lay a solid ground for future research developments in the
field. In particular, we focus on the problem of exact whole
matching similarity search in collections with a very large
number of data series, i.e., similarity search that produces
exact (not approximate) results, by calculating distances on

(e.g., in genome sequences), and others [60]. The terms data
series, time series and sequence are used interchangeably.

112

the whole (not a sub-) sequence. This problem represents a
common use case across many domains [1, 2, 38, 29]. This
work is the most extensive experimental comparison of the
efficiency of similarity search methods ever conducted.
Contributions. We make the following contributions:

1. We present a thorough discussion of the data series sim-
ilarity search problem, formally defining its different varia-
tions that have been studied in the literature under diverse
and conflicting names. Thus, establishing a common lan-
guage that will facilitate further work in this area.

2. We include a brief survey of data series similarity search
approaches, bringing together studies presented in different
communities that have been treated in isolation from each
other. These approaches range from smart serial scan meth-
ods to the use of indexing, and are based on a variety of
classic and specialized data summarization techniques.

3. We make sure that all approaches are evaluated under
the same conditions, so as to guard against implementation
bias. To this effect, we used implementations in C/C++ for
all approaches, and reimplemented in C the ones that were
only available in other programming languages. Moreover,
we conducted a careful inspection of the code bases, and ap-
plied to all of them the same set of optimizations (e.g., with
respect to memory management, Euclidean distance calcu-
lation, etc.), leading to considerably faster performance.

4. We conduct the first comprehensive experimental eval-
uation of the efficiency of data series similarity search ap-
proaches, using several synthetic and 4 real datasets from
diverse domains. In addition, we report the first large scale
experiments with carefully crafted query workloads that
include queries of varying difficulty, which can effectively
stress-test all the approaches. Our results reveal charac-
teristics that have not been reported in the literature, and
lead to a deep understanding of the different approaches and
their performance. Based on those, we provide recommen-
dations for the best approach to use under typical use cases,
and identify promising future research directions.

5. We make available online all source codes, datasets, and
query workloads used in our study [28]. This will render our
work reproducible and further help the community to agree
on and establish a much needed data series similarity search
benchmark [44, 91, 90].

2. DEFINITIONS AND TERMINOLOGY
Similarity search represents a common problem in various

areas of computer science. However, in the particular case
of data series, there exist several different flavors that have
been studied in the literature, often times using overloaded
and conflicting terms. This has contributed to an overall
confusion, which hinders further advances in the field.

In this section, we discuss the different flavors of data se-
ries similarity search, and provide corresponding definitions,
which set a common language for the problems in this area.
On Sequences. A data series S(p1, p2, ..., pn) is an or-
dered sequence of points, pi, 1 ≤ i ≤ n. The number of
points, |S| = n, is the length of the series. We denote the i-
th point in S by S[i]; then S[i : j] denotes the subsequence
S(pi, pi+1, ..., pj−1, pj), where 1 ≤ i ≤ j ≤ n. We use S to
represent all the series in a collection (dataset).

In the above definition, if each point in the series repre-
sents the value of a single variable (e.g., temperature) then
each point is a scalar, and we talk about a univariate se-
ries. Otherwise, if each point represents the values of mul-

tiple variables (e.g., temperature, humidity, pressure, etc.)
then each point is a vector, and we talk about a multivari-
ate series. The values of a data series may also encode
measurement errors, or imprecisions, in which case we talk
about uncertain data series [7, 88, 70, 24, 25].

Especially in the context of similarity search, a data series
of length n can also be represented as a single point in an
n-dimensional space. Then the values and length of S are
referred to as dimensions and dimensionality, respectively.
On Distance Measures. A data series distance is a func-
tion that measures the (dis)similarity of two data series. The
distance between a query series, SQ, and a candidate series,
SC , is denoted by d(SQ, SC).

Even though several distance measures have been pro-
posed in the literature [11, 26, 6, 19, 80, 57], the Euclidean
distance is the one that is the most widely used, as well as
one of the most effective for large data series collections [27].
We note that an additional advantage of Euclidean dis-
tance is that in the case of Z-normalized series (mean=0,
stddev=1), which are very often used in practice [91], it can
be exploited to compute Pearson correlation [63].

In addition to the distance used to compare data series in
the high-dimensional space, some similarity search methods
also rely on lower-bounding [14, 89, 71, 81, 85, 52, 22, 42]
and upper-bounding distances [81, 42]. A lower-bounding
distance is a distance defined in the reduced dimensional
space satisfying the lower-bounding property, i.e., the dis-
tance between two series in the reduced space is guaranteed
to be smaller than or equal to the distance between the se-
ries in the original space [30]. Inversely, an upper-bounding
distance ensures that distances in the reduced space are
larger than the distances in the original space [81, 42].
On Similarity Search Queries. We now define the differ-
ent forms of data series similarity search queries. We assume
a data series collection, S, a query series, SQ, and a distance
function d(·, ·).

A k-Nearest-Neighbor (k-NN) query identifies the k
series in the collection with the smallest distances to the
query series.

Definition 1. Given an integer k, a k-NN query re-
trieves the set of series A = {{SC1 , ..., SCk} ⊆ S|∀ SC ∈
A and ∀ SC′ /∈ A, d(SQ, SC) ≤ d(SQ, SC′)}.

An r-range query identifies all the series in the collection
within range r form the query series.

Definition 2. Given a distance r, an r-range query re-
trieves the set of series A = {SC ∈ S|d(SQ, SC) ≤ r}.

We additionally identify the following two categories of k-
NN and range queries. In whole matching (WM) queries,
we compute the similarity between an entire query series
and an entire candidate series. All the series involved in the
similarity search have to have the same length. In subse-
quence matching (SM) queries, we compute the similarity
between an entire query series and all subsequences of a can-
didate series. In this case, candidate series can have different
lengths, but should be longer than the query series.

Definition 3. A whole matching query finds the candi-
date data series S ∈ S that matches SQ, where |S| = |SQ|.

Definition 4. A subsequence matching query finds the
subsequence S[i : j] of a candidate data series S ∈ S that
matches SQ, where |S[i : j]| = |SQ| < |S|.

113

In practice, we encounter situations that cover the en-
tire spectrum: WM queries on large collections of short se-
ries [29, 2], SM queries on large collections of short series [1],
and SM queries on collections of long series [32].

Note that SM queries can be converted to WM: create a
new collection that comprises all overlapping subsequences
(each long series in the candidate set is chopped into overlap-
ping subsequences of the length of the query), and perform
a WM query against these subsequences [52, 51].
On Similarity Search Methods. When a similarity
search algorithm (k-NN or range) produces answers that are
(by definition) always correct and complete: we call such an
algorithm exact. Nevertheless, we can also develop algo-
rithms without such strong guarantees: we call such algo-
rithms approximate. As we discuss below, there exist dif-
ferent flavors of approximate similarity search algorithms.

An ε-approximate algorithm guarantees that its dis-
tance results have a relative error no more than ε, i.e., the
approximate distance is at most (1 + ε) times the exact one.

Definition 5. Given a query SQ, and ε ≥ 0, an ε-
approximate algorithm guarantees that all results, SC , are
at a distance d(SQ, SC) ≤ (1 + ε)d(SQ, [k-th NN of SQ]) in
the case of a k-NN query, and distance d(SQ, SC) ≤ (1+ ε)r
in the case of an r-range query.

A δ-ε-approximate algorithm, guarantees that its dis-
tance results will have a relative error no more than ε (i.e.,
the approximate distance is at most (1 + ε) times the exact
distance), with a probability of at least δ.

Definition 6. Given a query SQ, ε ≥ 0, and δ ∈ [0, 1], a
δ-ε-approximate algorithm produces results, SC , for which
Pr[d(SQ, SC) ≤ (1 + ε)d(SQ, [k-th NN of SQ])] ≥ δ in the
case of a k-NN query, and Pr[d(SQ, SC) ≤ (1 + ε)r] ≥ δ) in
the case of an r-range query.

An ng-approximate (no-guarantees approximate) algo-
rithm does not provide any guarantees (deterministic, or
probabilistic) on the error bounds of its distance results.

Definition 7. Given a query SQ, an ng-approximate
algorithm produces results, SC , that are at a distance
d(SQ, SC) ≤ (1 + θ)d(SQ, [k-th NN of SQ]) in the case of
a k-NN query, and distance d(SQ, SC) ≤ (1 + θ)r in the
case of an r-range query, for an arbitrary value θ ∈ R>0.

In the data series literature, ng-approximate algorithms
have been referred to as approximate, or heuristic search [14,
89, 71, 81, 85, 52]. Unless otherwise specified, for the rest of
this paper we will refer to ng-approximate algorithms simply
as approximate. Approximate matching in the data series
literature consists of pruning the search space, by traversing
one path of an index structure representing the data, visiting
at most one leaf, to get a baseline best-so-far (bsf) match.

Observe that when δ = 1, a δ-ε-approximate method be-
comes ε-approximate, and when ε = 0, an ε-approximate
method becomes exact [21]. It it also possible that the
same approach implements both approximate and exact al-
gorithms [73, 81, 14, 89, 71]. Methods that provide ex-
act answers with probabilistic guarantees are considered δ-
0-approximate. These methods guarantee distance results
to be exact with probability at least δ (0 ≤ δ ≤ 1 and ε =
0). (We note that in the case of k-NN queries, Def. 5 cor-
responds to the approximately correct NN [21] and (1 + ε)-
approximate NN [5], while Def. 6 corresponds to the probably
approximately correct NN [21].)

Scope. In this paper, we focus on univariate series with
no uncertainty, and we examine exact methods for whole
matching in collections with a very large number of series,
using k-NN queries and the Euclidean distance. This is a
very popular problem that lies at the core of several other
algorithms, and is important for many applications in var-
ious domains in the real world [82, 91, 60], ranging from
fMRI clustering [35] to mining earthquake [40], energy con-
sumption [48], and retail data [49]. Note also that some of
the insights gained by this study could carry over to other
settings, such as, r-range queries, dynamic time warping dis-
tance, or approximate search.

3. SIMILARITY SEARCH PRIMER
Similarity search methods can be classified into sequential,

and indexing methods. Sequential methods proceed in one
step to answer a similarity search query. Each candidate is
read sequentially from the raw data file and compared to the
query. Particular optimizations can be applied to limit the
number of these comparisons [66]. Some sequential meth-
ods work with the raw data in its original high-dimensional
representation [66], while others perform transformations on
the raw data before comparing them to the query [58].

On the other hand, answering a similarity query using an
index involves two steps: a filtering step where the pre-built
index is used to prune candidates and a refinement step
where the surviving candidates are compared to the query
in the original high dimensional space [36, 83, 31, 14, 89, 71,
81, 10, 85, 52, 51]. Some indexing methods first summarize
the original data and then index these summarizations [10,
71, 83, 31], while others interwine data reduction and in-
dexing [14, 89, 81]. Some methods index high dimensional
data directly [22]. We note that all indexing methods de-
pend on lower-bounding, since it allows indexes to prune the
search space with the guarantee of no false dismissals [30]
(the DSTree index [81] also supports an upper-bounding dis-
tance, but does not use it for similarity search). Metric
indexes (such as the M-tree [22]) additionally require the
distance measure triangle inequality to hold. Though, there
exist (non-metric) indexes for data series that are based on
distance measures that are not metrics [46].

There also exist hybrid approaches that fall in-between
indexing and sequential methods. In particular, multi-step
approaches, where data are transformed and re-organized in
levels. Pruning then occurs at multiple intermediate filtering
steps as levels are sequentially read one at a time.

Stepwise is such a method [42], relying on Euclidean dis-
tance, and lower- and upper-bounding distances.

3.1 Summarization Techniques
We now briefly outline the summarization techniques used

by the methods that we examine in this study.
The Discrete Haar Wavelet Transform (DHWT) [16] uses

the Haar wavelet decomposition to transform each data se-
ries S into a multi-level hierarchical structure. Resulting
summarizations are composed of the first l coefficients.

The Discrete Fourier Transform (DFT) [3, 30, 64, 65]
decomposes S into frequency coefficients. A subset of l
coefficients constitutes the summary of S. In our experi-
ments, we use the Fast Fourier Transform (FFT) algorithm,
which is optimal for whole matching scenarios (the MFT al-
gorithm [4] is faster than FFT for computing DFT on sliding
windows, thus beneficial for subsequence matching queries).

114

Dimensionality SAX/DHWT/VA+: predefined number of dimensions (segments/coefficients)
SFA: predefined maximum number of dimensions (coefficients)
EAPCA: dynamic number of dimensions

Discretization

Bit Allocation (each dimension is represented with a bit string)
SAX/SFA: uniform (total bit budget divided equally among dimensions)
VA+: non-uniform (dimensions with high energy are allocated more bits)
Decision Intervals/Breakpoints
SAX: same for all dimensions (equi-depth binning in each dimension)
SFA: different across dimensions (equi-depth or equi-width binning)
VA+: different across dimensions (k-means binning)

Splitting SAX: adds a new breakpoint
SFA: adds a new dimension
EAPCA: adds a new dimension or redistributes points along a dimension

c

d

e

g

h

SAX(S)
cdee
010 011 100 100

f

b

a

h

c

b

g

e
d

a

d

e

g

h

a

c
c

f

h

g

f

a

e

g

d

c

b

SFA(S)
afbe
000 101 001 100

b

EAPCA(S)
Mean and sd of
each dimension

0

1

00

2

3 Original
Series

d

e

f

g

h

b

Series
Mean

DHWT(S)
A tree of
coefficients

f

p

c
b

o

k

d

a

d

a

c

b

...

VA+(S)
akaf
000 0110 00 101

h

c

b

g

e

d

a

f

h

c

b

g

e
d

a

f

j

...

h

g

a

Figure 1: Summarizations

The Piecewise Aggregate Approximation (PAA) [43] and
Adaptive Piecewise Constant Approximation (APCA) [15]
methods are segmentation techniques that divide S into
l (equi-length and varying-length, respectively) segments.
Each segment represents the mean value of the correspond-
ing points. The Extended Adaptive Piecewise Approxima-
tion (EAPCA) [81] technique extends APCA by using more
information to represent each segment. In addition to the
mean, it also stores the standard deviation of the segment.
With the Symbolic Aggregate Approximation (SAX) [50], S
is first transformed using PAA into l real values, and then
a discretization technique is applied to map PAA values to
discrete set of symbols (alphabet) that can be succinctly
represented in binary form. A SAX representation consists
of l such symbols. An iSAX (indexable SAX) [74] represen-
tation can have an arbitrary alphabet size for each segment.

Similarly to SAX, the Symbolic Fourier Approximation
(SFA) [71] is also a symbolic approach. However, instead
of PAA, it first transforms S into l DFT coefficients using
FFT (or MFT for subsequence matching), then extends the
discretization principle of SAX to support both equi-depth
and equi-width binning, and to allow each dimension to have
its own breakpoints. An SFA summary consists of l symbols.

Using the VA+file method [31], S of length n is first trans-
formed using the Karhunen–Loève transform (KLT) into n
real values, which are then quantized to discrete symbols.
As we will detail later, we modified the VA+file to use DFT
instead of KLT, for efficiency reasons.

Figure 1 presents a high-level overview of the summariza-
tion techniques presented above.

3.2 Similarity Search Methods
In this study, we focus on algorithms that can produce

exact results, and evaluate the ten methods outlined below
(in chronological order). The properties of these algorithms
are also summarized in Table 1.

We also point out that there exist several techniques ded-
icated to approximate similarity search [34, 23, 77, 33, 55,

86]. A thorough evaluation of all approximate methods de-
serves a study on its own, and we defer it to future work.
R*-tree. The R*-tree [10] is a height-balanced spatial ac-
cess method that partitions the data space into a hierarchy
of nested overlapping rectangles. Each leaf can contain ei-
ther the raw data objects or pointers to those, along with
the enclosing rectangle. Each intermediate node contains
the minimum bounding rectangle that encompasses the rect-
angles of its children. Given a query SQ, the R*-tree query
answering algorithm visits all nodes whose rectangle inter-
sects SQ, starting from the root. Once a leaf is reached, all
its data entries are returned. We tried multiple implemen-
tations of the R*-tree, and opted for the fastest [37]. We
modified this code by adding support for PAA summaries.
M-tree. The M-tree [22] is a multidimensional, metric-
space access method that uses hyper-spheres to divide the
data entries according to their relative distances. The leaves
store data objects, and the internal nodes store routing ob-
jects; both store distances from each object to its parent.
During query answering, the M-tree uses these distances to
prune the search space. The triangle inequality that holds
for metric distance functions guarantees correctness. Apart
from exact queries, it also supports ε-approximate and δ-
ε-approximate queries. We experimented with four differ-
ent code bases: two implementations that support bulk-
loading [20, 25], the disk-aware mvptree [12], and a memory-
resident implementation [25]. We report the results with the
latter, because (despite our laborious efforts) it was the only
one that scaled to datasets larger than 1GB. We modified
it to use the same sampling technique as the original imple-
mentation [20], which chooses the number of initial samples
based on the leaf size, minimum utilization, and dataset size.
VA+file. The VA+file [31] is an improvement of the VA-file
method [83]. While both methods create a filter file contain-
ing quantization-based approximations of the high dimen-
sional data, and share the same exact search algorithm, the
VA+file does not assume that neighboring points (dimen-
sions) in the sequence are uncorrelated. It thus improves
the accuracy of the approximations by allocating bits per
dimension in a non-uniform fashion, and partitioning each
dimension using a k-means (instead of an equi-depth ap-
proach). We improved the efficiency of the original VA+file
significantly by implementing it in C and modifying it to use
DFT instead of KLT, since DFT is a very good approxima-
tion for KLT [31] and is much more efficient [54].
Stepwise. The Stepwise method [42] differentiates itself
from indexing methods by storing DHWT summarizations
vertically across multiple levels. This process happens in
a pre-processing step. When a query SQ arrives, the al-
gorithm converts it to DWHT, and computes the distance
between SQ and the DHWT of each candidate data series
one level at a time, using lower and upper bounding dis-
tances it filters out non-promising candidates. When leaves
are reached, the final refinement step consists of calculat-
ing the Euclidean distance between the raw representations
of SQ and the candidate series. We modified the original
implementation to load the pre-computed sums in memory
and answer one query at a time (instead of the batch query
answering of the original implementation). We also slightly
improved memory management to address swapping issues
that occurred with the out-of-memory datasets.
SFA trie. The SFA approach [71] first summarizes the se-
ries using SFA of length 1 and builds a trie with a fanout

115

Table 1: Similarity search methods

Matching Accuracy Matching Type Representation Implementation
exact ng-appr. ε-appr. δ-ε-appr. Whole Subseq. Raw Reduced Original New

In
d

ex
es

ADS+ [89] [89] X iSAX C
DSTree [81] [81] X EAPCA Java C
iSAX2+ [14] [14] X iSAX C# C
M-tree [22] [21] [21] X X C++
R*-tree [10] X PAA C++
SFA trie [71] [71] X X SFA Java C
VA+file [31] X DFT MATLAB C

O
th

er UCR Suite [66] X X C
MASS [87] X DFT C

Stepwise [42] X DHWT C

equal to the alphabet size on top of them. As leaves reach
their capacity and split, the length of the SFA word for each
series in the leaf is increased by one, and the series are redis-
tributed among the new nodes. The maximum resolution is
the number of DFT coefficients given as a parameter. SFA
implements lower-bounding to prune the search space, as
well as a bulk-loading algorithm. We re-implemented SFA
in C, optimized its memory management, and improved the
sampling and buffering schemes. This resulted in a signifi-
cantly faster implementation than the original one in Java.
UCR Suite. The UCR Suite [66] is an optimized sequential
scan algorithm for exact subsequence matching. We adapted
the original algorithm to support exact whole matching.
DSTree. The DSTree [81] approach uses the EAPCA sum-
marization technique, which allows, during node splitting,
the resolution of a summarization to increase along two di-
mensions: vertically and horizontally. (Instead, SAX-based
indexes allow horizontal splitting by adding a breakpoint to
the y-axis, and SFA allows vertical splitting by adding a new
DFT coefficient.) In addition to a lower bounding distance,
the DSTree also supports an upper bounding distance. It
uses both distances to determine the optimal splitting policy
for each node. We reimplemented the DSTree algorithm in
C and we optimized its buffering and memory management,
improving the performance of the algorithm by a factor of
4, compared to the original implementation (in Java).
iSAX2+. The iSAX family of indexes has undergone sev-
eral improvements. The iSAX 2.0 index [13] improved the
splitting policy and added bulk-loading support to the orig-
inal iSAX index [73]. iSAX2+ [14] further optimized bulk-
loading. In the literature, competing approaches have ei-
ther compared to iSAX, or iSAX 2.0. This is the first time
that iSAX2+ is compared to other exact data series indexes.
The index supports ng-approximate and exact query answer-
ing. We reimplemented the original iSAX2+ algorithm from
scratch using C, and optimized its memory management,
leading to significant performance improvements.
ADS+. ADS+ [89] is the first query adaptive data series
index. It first builds an index tree structure using only the
iSAX summarizations of the raw data, and then adaptively
constructs the leaves and incorporates the raw data during
query answering. For exact query answering, the SIMS al-
gorithm is proposed. It first performs a fast ng-approximate
search in the tree in order to acquire an initial best-so-far
(bsf) distance, then prunes the search space by using the bsf
and the lower bounds between the query and all iSAX sum-
maries. Using that, it performs a skip-sequential search on
the raw data that were not pruned. In all our experiments
involving ADS+ we use the SIMS algorithm for exact simi-

larity search. ADS-FULL is a non-adaptive version of ADS,
that builds a full index using a double pass on the data.
MASS. MASS [87] is an exact subsequence matching algo-
rithm, which computes the distance between a query, SQ,
and every subsequence in the series, using the dot product
of the DFT transforms of the series and the reverse of SQ.
We adapted it to perform exact whole matching queries.

4. EXPERIMENTAL EVALUATION
In order to provide an unbiased evaluation, we re-

implemented in C all methods whose original language was
other than C/C++. Our new implementations are more
efficient (in space and time) than the original ones on all
datasets we tested. All methods use single precision values,
and the methods based on fixed summarizations use 16 seg-
ments/coefficients. The same set of known optimizations for
data series processing are applied to all methods. All results,
source codes, datasets and plots are available in [28].

4.1 Environment
All methods were compiled with GCC 6.2.0 under Ubuntu

Linux 16.04.2 with level 2 optimization. Experiments were
run on two different machines. The first machine, called
HDD, is a server with two Intel Xeon E5-2650 v4 2.2GHz
CPUs, 75GB2 of RAM, and 10.8TB (6 x 1.8TB) 10K RPM
SAS hard drives in RAID0. The throughput of the RAID0
array is 1290 MB/sec. The second machine, called SSD, is a
server with two Intel Xeon E5-2650 v4 2.2Ghz CPUs, 75GB
of RAM, and 3.2TB (2 x 1.6TB) SATA2 SSD in RAID0.
The throughput of the RAID0 array is 330 MB/sec. All our
algorithms are single-core implementations.

4.2 Experimental Setup
Scope. This work concentrates on exact whole-matching
(WM) 1-NN queries. Extending our experimental frame-
work to cover r-range queries, subsequence matching and
approximate query answering is part of our future work.
Algorithms. This experimental study covers the ten meth-
ods described in Section 3, which all have native-support
for Euclidean distance. Our baseline is the Euclidean dis-
tance version of the UCR Suite [66]. This is a set of tech-
niques for performing very fast similarity computation scans.
These optimizations include: a) avoiding the computation
of square root on Euclidean distance, b) early abandoning

2We used GRUB to limit the amount of RAM, so that all
methods are forced to use the disk. Note that GRUB pre-
vents the operating system from using the rest of the RAM
as a file cache, which is what we wanted for our experiments.

116

of Euclidean distance calculations, and c) reordering early
abandoning on normalized data3. We used these optimiza-
tions on all the methods that we examined.
Datasets. Experiments were conducted using both syn-
thetic and real datasets. Synthetic data series were gener-
ated as random-walks (i.e., cumulative sums) of steps that
follow a Gaussian distribution (0,1). This type of data has
been extensively used in the past [30, 14, 91], and it is
claimed to model the distribution of stock market prices [30].

Our four real datasets come from the domains of seismol-
ogy, astronomy, neuroscience and image processing. The
seismic dataset, Seismic, was obtained from the IRIS Seis-
mic Data Access archive [32]. It contains seismic instru-
ment recording from thousands of stations worldwide and
consists of 100 million data series of size 256. The astron-
omy dataset, Astro, represents celestial objects and was ob-
tained from [76]. The dataset consists of 100 million data
series of size 256. The neuroscience dataset, SALD, obtained
from [78] represents MRI data, including 200 million data
series of size 128. The image processing dataset, Deep1B,
retrieved from [79], contains 267 million Deep1B vectors of
size 96 extracted from the last layers of a convolutional neu-
ral network. All of our real datasets are of size 100 GB. In
the rest of the paper, the size of each dataset is given in
GB instead of the number of data series. Overall, in our
experiments, we use datasets of sizes between 25-1000GB.
Queries. All our query workloads, unless otherwise stated,
include 100 query series. For synthetic datasets, we use
two types of workloads: Synth-Rand queries are produced
using the same random-walk generator (with a different
seed4), while Synth-Ctrl queries are created by extracting
data series from the input data set and adding progressively
larger amounts of noise, in order to control the difficulty of
each query (more difficult queries tend to be less similar to
their nearest neighbor [90]). For the real datasets, query
workloads are also generated by adding progressively larger
amounts of noise to data series extracted from the raw data,
and we name them with the suffix -Ctrl. For the Deep1B
dataset, we additionally include a real workload that came
with the original dataset; we refer to it as Deep-Orig.
Scenarios. The experimental framework consists of three
scenarios: parametrization, evaluation and comparison. In
parametrization (§4.3.1), the optimal parameters for each
method are identified. In evaluation (§4.3.2), the scalabil-
ity and search efficiency for each method is evaluated un-
der varying dataset sizes and data series lengths. Finally,
in comparison (§4.3.3), methods are compared together ac-
cording to the following criteria: a) scalability and search
efficiency on more complex query workloads and more var-
ied and larger datasets, b) memory and disk footprint, c)
pruning ratio, and d) tightness of the lower bound.
Measures The measures we use are the following.
1. For scalability and search efficiency, we use two measures:
wall clock time and the number of random disk accesses.
Wall clock time is used to measure input, output and total
elapsed times. Then CPU time is calculated as the differ-
ence between the total time and I/O time. The number of
random disk accesses is measured for indexes. One random
disk access corresponds to one leaf access for all indexes, ex-
cept for the skip-sequential access method ADS+, for which

3Early abandoning of Z-normalization is not used since all
datasets were normalized in advance.
4All seeds can be found in [28].

one random disk access corresponds to one skip. As will be
evident in the results, our measure of random disk accesses
provides a good insight into the actual performance of in-
dexes, even though we do not account for details such as
caching, the number of disk pages occupied by a leaf and
the numbers of leaves in contiguous disk blocks.
2. For footprint, the measures used are: total number of
nodes, number of leaf nodes, memory size, disk size, leaf
nodes fill factor and leaf depth.
3. We also consider the pruning ratio P , which has been
widely used in the data series literature [43, 71, 81, 27, 42]
as an implementation-independent measure to compare the
effectiveness of an index. It is defined as follows:

P = 1− # of Raw Data Series Examined

of Data Series In Dataset

Pruning ratio is a good indicator of the number of sequential
I/Os incurred. However, since relevant data series are usu-
ally spread out on disk, it should be considered along with
the number of random disk accesses (seeks) performed.
4. The tightness of the lower bound, TLB has been used in
the literature as an implementation independent measure in
various different forms [73, 71, 80]. In this work we use the
following version of the TLB measure that better captures
the performance of indexes:

TLB =
Lower Bounding Distance(Q′, N)

Average True Distance(Q,N)

Where Q is the query, Q′ is the representation of Q using the
segmentation of a given leaf node N , and the average true
distance between the query Q and node N is the average
Euclidean distance between Q and all data series in N . We
report the average over all leaf nodes for all 100 queries.
Procedure. Unless otherwise stated, experiments refer to
answering 100 exact queries. Experiments with query work-
loads of 10,000 queries report extrapolated values. The ex-
trapolation consists of discarding the best and worst five
queries (of the original 100) in terms of total execution time,
and multiplying the average of the 90 remaining queries by
10,000. Experiments involving an indexing method include
a first step of building the index (or re-organizing the data
as in the case of Stepwise). Caches are fully cleared before
each experiment. During each experiment, the caches are
warm, i.e., not cleared between indexing/preprocessing and
query answering, nor after each query.

4.3 Results

4.3.1 Parametrization
We start our experimentation by fine tuning each method.

Methods that do not support parameters are ran with their
default values. The methods that support parameters are
ADS+, DSTree, iSAX2+, M-tree, R*-tree and SFA trie. We
use a synthetic dataset of 100GB with data series of length
256. The only exceptions are M-tree and R*-tree, where we
parametrize using 50GB, since experiments with 100GB, or
above, take more than 24 hours to complete.

The most critical parameter for these methods is the leaf
threshold, i.e., the maximum number of data series that an
index leaf can hold. We thus vary the leaf size and study
the tradeoffs of index construction and query answering for
each method. Figure 2 reports indexing and querying execu-
tion times for each method, normalized by the largest total

117

0.00

0.25

0.50

0.75

1.00

5K 50
K

10
0K

15
0K

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(a) ADS+
Dataset = 100GB

0.00

0.25

0.50

0.75

1.00

10
K

50
K

10
0K

15
0K

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(b) DSTree
Dataset = 100GB

0.00

0.25

0.50

0.75

1.00

5K 50
K

10
0K

15
0K

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(c) iSAX2+
Dataset = 100GB

0.00

0.25

0.50

0.75

1.00

1 50

10
0

20
0

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(d) M-tree
Dataset = 50GB

0.00

0.25

0.50

0.75

1.00

40

50

10
0

20
0

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(e) R*-tree
Dataset = 50GB

0.00

0.25

0.50

0.75

1.00

20
0K

50
0K

10
00

K

15
00

K

Max Leaf Capacity

N
or

m
al

iz
ed

 T
im

e

(f) SFA trie
Dataset = 100GB

Figure 2: Leaf size parametrization

cost. The ratio is broken down into CPU and I/O times.
Figure 2a shows that the performance of ADS+ is the same
across leaf sizes. The leaf size affects indexing time, but not
query answering. This is not visible in the figure, because
index construction time is minimal compared to query an-
swering time. This behavior is expected, since ADS+ is an
adaptive index, which during querying splits the nodes un-
til a minimal leaf size is reached. For M-tree, larger leaves
cause both indexing and querying times to deteriorate. For
all other methods, increasing the leaf size improves index-
ing time (because trees are smaller) and querying time (be-
cause several series are read together), but once the leaf size
goes beyond the optimal leaf size, querying slows down (be-
cause some series are unnecessarily read and processed). For
DSTree, the experiments execution logs indicate that query-
ing is faster with the 100K leaf size. The optimal leaf size
for iSAX2+ is also 100K, for SFA is 1M, and for M-tree and
R*-tree are 1 and 50, respectively.

SFA takes two other parameters: the alphabet size and the
binning method. We ran experiments with both equi-depth
and equi-width binning, and alphabet sizes from 8 (default
value), to 256 (default alphabet size of iSAX2+ and ADS+).
Alphabet size 8 and equi-depth binning provided the best
performance and were thus used for subsequent experiments.

Some of the evaluated methods also use internal buffers
to manage raw data that do not fit in memory during index
building and query processing. We ran experiments varying
these buffer sizes from 5GB to 60GB. The maximum was
set to 60GB (recall that total RAM was 75GB). All meth-
ods benefit from a larger buffer size except ADS+. This
is because a smaller buffer size allows the OS to use ex-
tra memory for file caching during query processing, since
ADS+ accesses the raw data file directly.

4.3.2 Evaluation of Individual Methods

We now evaluate the indexing and search efficiency of the
methods by varying the dataset size. We used two datasets
of size 25GB and 50GB that fit in memory and two datasets
of size 100GB and 250GB that do not fit in memory (total
RAM was 75GB), with the Synth-Rand query workload.
ADS+. Figure 3a shows that ADS+ is very efficient at
index building, spending most of the cost for query answer-
ing, itself dominated by the input time. The reason is that
ADS+ performs skip sequential accesses on the raw data file,
performing a skip almost every time a data series is pruned.
DSTree. In contrast, DSTree answers queries very fast
whereas index building is costly (Figure 3b). DSTree’s cost

for index building is mostly CPU, thus, offering great op-
portunities for parallelization.
iSAX2+. Figure 3c summarizes the results for iSAX2+,
which is slower to build the index compared to ADS+, but
faster compared to DSTree. Query answering is faster than
ADS+ and slower than the DSTree.
MASS. Figure 3d reports the results for MASS, which has
been designed mainly for subsequence matching queries, but
we adapted it for whole matching. The very high CPU cost
is due to the large number of operations involved in calcu-
lating Fourier transforms and the dot product cost.
M-tree. For the M-tree, we were only able to run experi-
ments with in-memory datasets, because the only implemen-
tation we could use is a main memory index. The disk-aware
implementations did not scale beyond 1GB. Figure 3e shows
the M-tree experimental results for the 25GB and 50GB
datasets, and the (optimistic) extrapolated results for the
100GB and 250GB datasets. Note that going from 25GB to
50GB, the M-tree performance deteriorates by a factor of 3,
even though both datasets fit in memory. (The M-tree ex-
periments for the 100GB and 250GB datasets were not able
to terminate, so we report extrapolated values in the graph,
by multiplying the 50GB numbers by 3 and 9, respectively,
which is an optimistic estimation.) These results indicate
that M-tree cannot scale to large dataset sizes.
R*-tree. Figure 3f shows the results for the R*-tree. Its
performance deteriorates rapidly as dataset sizes increase.
Even using the best implementation among the ones we
tried, when the dataset reaches half the available memory,
swapping causes performance to degrade. Experiments on
the 100GB and 250GB datasets were stopped after 24 hours.
SFA Trie. Figure 3g reports the cost of index building and
query processing for SFA. We observe that query processing
dominates the total cost and that query cost is mostly I/O,
due to the optimal leaf size being rather large.
Stepwise. Figure 3h indicates the time it takes for Stepwise
to build the DWHT tree and execute the workload. The
total cost is high and is dominated by query answering. This
is because answering one query entails filtering the data level
by level and requires locating the remaining candidate data
corresponding to higher resolutions through random I/O.
UCR Suite. Figure 3i shows the time it takes for the
UCR-Suite to execute the workload. Its cost is naturally
dominated by input time, being a sequential scan algorithm.
VA+file. We observe in Figure 3j that VA+file is efficient
at index building, spending most of the cost for query an-
swering. The indexing and querying costs are dominated by

118

0

2

4

6

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(a) ADS+

0
1
2
3
4
5

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)
(b) DSTree

0

2

4

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(c) iSAX2+

0
5

10
15
20

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(d) MASS

0

5

10

25 50 100 250
Dataset Size (GB)

Ti
m

e
(h

ou
rs

)

Ex
tra

po
lat
ed

(e) M-tree

0
5

10
15
20
25

25 50 100 250
Dataset Size (GB)

Ti
m

e
(h

ou
rs

)

>2
4

ho
ur

s

>2
4

ho
ur

s

(f) R*-tree

0

1

2

3

4

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(g) SFA trie

0

10

20

30

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(h) Stepwise

0

2

4

6

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(i) UCR Suite

0

1

2

3

4

25 50 100 250
Dataset Size (GB)

T
im

e
(h

ou
rs

)

(j) VA+file

Figure 3: Scalability with increasing dataset sizes

●●●

●
●

●

●

●

●

●

●

●●

●

●●
●

●●●●

●

●

●

●●●

●

100
102
104
106
108

25 100 1000
Dataset Size (GB)

#D
is

k
A

cc
es

se
s

(a) Sequential accesses
Varying dataset sizes

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●

●

●
●

●

●●●
●●●●

●
●●

●

100

102

104

106

108

256 2048 16384
Data Series Length

(b) Sequential accesses
Varying series lengths

●

●

●

●
●

●

●●

●
●

●
●

●●

●●●

●
●

100

102

104

106

25 100 1000
Dataset Size (GB)

#D
is

k
A

cc
es

se
s

(c) Random accesses
Varying dataset sizes

●
●

●

●●

●
●

●

●

●
●

● ●

●

●
●

●

●●●

●●

●

●

100
101
102
103
104
105
106

256 2048 16384
Data Series Length

(d) Random accesses
Varying series lengths

Figure 4: Number of disk accesses

CPU and input time, respectively. The CPU cost is due to
the time spent for determining the bit allocation and deci-
sion intervals for each dimension; the input time is incurred
when accessing the non-pruned raw data series.
Summary. Overall, Figure 3 shows that it takes Stepwise,
MASS, the M-tree and the R*-tree over 12 hours to com-
plete the workload for the 250GB dataset, whereas the other
methods need less than 7 hours. Therefore, in the sub-
sequent experiments, we will only include ADS+, DSTree,
iSAX2+, SFA, the UCR suite and the VA+file.

4.3.3 Comparison of the Best Methods

In the following experiments, we use the best methods as
identified above, and compare them in more detail.
Disk Accesses vs Dataset Size/Sequence Length.
Figure 4 shows the number of sequential and random disk ac-
cesses incurred by the 100 exact queries of the Synth-Rand
workload for increasing dataset sizes and increasing lengths.
When the dataset size is varied, the length of the data series

is kept constant at 256, whereas the dataset size is kept at
100GB when the length is varied. We can observe that the
VA+file and ADS+ perform the smallest number of sequen-
tial disk accesses across dataset sizes and data series lengths,
with the VA+ performing virtually none. As expected, the
UCR-Suite performs the largest number of sequential ac-
cesses regardless of the length of the series, or the size of the
dataset. This number is also steady across queries, thus its
boxplot is represented by a flat line. There is not a signifi-
cant difference between the number of sequential operations
needed by the DSTree, SFA or iSAX2+ (DSTree does the
least, and SFA the most). SFA requires more sequential ac-
cesses, because its optimal leaf size is 1M, as opposed to
100K for DSTree and iSAX2+.

As far as random I/O for different dataset sizes is con-
cerned, ADS+ performs the largest number of random ac-
cesses, followed by the VA+file. The DSTree and SFA in-
cur almost the same number of operations. However, the
DSTree has a good balance between the number of random
and sequential I/O operations. It is interesting to point out
that as the dataset size increases, the number of random
operations for iSAX2+ becomes less skewed across queries.
This is because of the fixed split-point nature of iSAX2+
that causes it to better distribute data among leaves when
the dataset is large: in small dataset sizes, many leaves can
contain very few series.

When the dataset size is set to 100GB and the data se-
ries length is increased, we can observe a dramatic decrease
of the number of random operations incurred by ADS+
and VA+file. The reason is that both methods use a skip-
sequential algorithm, so even if the pruning ratio stays the
same, when the data series is long, the algorithm skips larger
blocks of data, thus the number of skips decreases. The ran-
dom I/Os across lengths for the other methods remain quite
steady, with SFA and DSTree performing the least.
Scalability/Search Efficiency vs Sequence Length.
Figure 5 depicts the performance of the different methods
with increasing data series lengths. In order to factor out
other parameters, we fix the dataset size to 100GB, and the
dimensionality of the methods that use summarizations to
16, for all data series lengths. We observe that the indexing
and querying costs for ADS+ and VA+file plummet as the

119

●

●
●

●
●

●
● ●10

30

100

300

12
8

25
6

51
2
10

24
20

48
40

96
81

92

16
38

4

Dataset Series Length

To
ta

l T
im

e
(m

in
s)

(a) Idx+Exact100

●

●
●

●
●

●
● ●1000

3000

10000

12
8

25
6

51
2
10

24
20

48
40

96
81

92

16
38

4

Dataset Series Length

To
ta

l T
im

e
(m

in
s)

(b) Idx+Exact10K

Figure 5: Scalability
with increasing lengths

●
●

●
●

●

0.1

1.0

10.0

25 50 10
0

25
0
10

00

Dataset Size (GB)

To
ta

l T
im

e
(h

rs
)

(a) Idx

●
●

●

●

●

0.1

1.0

10.0

25 50 10
0

25
0

10
00

Dataset Size (GB)

(b) Exact100

●
●

●

●

●

0.1

1.0

10.0

25 50 10
0

25
0

10
00

Dataset Size (GB)

(c) Idx+Exact100

●
●

●

●

●

10

100

1000

25 50 10
0

25
0
10

00

Dataset Size (GB)

(d) Idx+Exact10K

Figure 6: Scalability comparison (HDD)

●
●

●
●

●

0.1

1.0

10.0

25 50 10
0

25
0
10

00

Dataset Size (GB)

To
ta

l T
im

e
(h

rs
)

(a) Idx

●
●

●
●

●

1

100

25 50 10
0

25
0

10
00

Dataset Size (GB)

(b) Exact100

●
●

●
●

●

1

100

25 50 10
0

25
0

10
00

Dataset Size (GB)

(c) Idx+Exact100

●
●

●
●

●

100

10000

25 50 10
0

25
0
10

00

Dataset Size (GB)

(d) Idx+Exact10K

Figure 7: Scalability comparison (SSD)

data series length increases, whereas the cost of the other
methods remains relatively steady across all lengths. This
is because with increasing lengths, both algorithms perform
larger sequential reads on the raw data file and fewer, con-
tiguous skips. VA+file performs better than ADS+ since it
incurs less random and almost no sequential I/Os (Figure 4).
Scalability/Search Efficiency vs Dataset Size - HDD.
Figure 6 compares the scalability and search efficiency of
the best methods on the HDD platform for the Synth-Rand
workload on synthetic datasets ranging from 25GB to 1TB.
There are 4 scenarios: indexing (Idx), answering 100 ex-
act queries (Exact100), indexing and answering 100 exact
queries (Idx+Exact100), and indexing and answering 10,000
queries (Idx+Exact10K). Times are shown in log scale to re-
veal the performance on smaller datasets.

Figure 6a indicates only the indexing times. ADS+ out-
performs all other methods and is an order of magnitude
faster than the slowest, DSTree. Figure 6b shows the times
for running 100 exact queries. We observe two trends in
this plot. For in-memory datasets, VA+file surpasses the
other methods. For the larger datasets, the DSTree is a
clear winner, followed by VA+file, while the performance
of the other methods converge to that of sequential scan.
Figure 6c refers to indexing and answering the 100 exact
queries. For in-memory datasets, ADS+ shows the best
performance, with iSAX2+ performing equally well on the
25GB dataset. However, for larger datasets, VA+file out-
performs all other methods.

Figure 6d shows the time for indexing and answering 10K
exact queries. The trends now change. For in-memory
datasets, iSAX2+ and VA+file outperform all other meth-
ods, in particular ADS+. Both iSAX2+ and VA+file are
slower than ADS+ in index building, but this high initial
cost is amortized over the large query workload.

The DSTree is the best contender for large data sets that
do not fit in memory, followed by VA+file and iSAX2+. The
other methods perform similar to a sequential scan. The
DSTree has the highest indexing cost among these methods,
but once the index is built, query answering is very fast, thus

being amortized for large query workloads. The strength of
the DSTree is based on its sophisticated splitting policy,
the upper/lower bounds used in query answering, and its
parameter-free summarization algorithm.

Our results for in-memory datasets corroborate earlier
studies [89] (i.e., ADS+ outperforms alternative methods),
yet, we additionally bring in the picture VA+file, which
is very competitive and had not been considered in earlier
works. Moreover, for out-of-memory data, our results show
that ADS+ is not faster than sequential scan, as was previ-
ously reported. The reason for this discrepancy in results lies
with the different hardware characteristics, which can signif-
icantly affect the performance of different algorithms, both
in relative, as well as in absolute terms. More specifically,
the disks used in [89] had 60% of the sequential through-
put of the disks used in this paper. As a result, ADS+
can be outperformed by a sequential scan of the data when
the disk throughput is high and the length of the sequences
is small enough, where ADS+ is forced to perform multi-
ple disk seeks. Figures 4a and 4c clearly show that ADS+
performs the smallest number of sequential disk operations
and the largest number of random disk operations across all
datasets. In main-memory, SSDs, and with batched I/Os,
ADS+ is expected to perform significantly better.
Scalability/Search Efficiency vs Dataset Size - SSD.
In order to further study the effect of different hardware on
the performance of similarity search methods, we repeated
the experiments described in the last paragraph on the SSD
machine. We once again tuned each index on the 100GB
dataset to find the optimal leaf threshold, which this time
was an order of magnitude smaller than the optimal leaf size
for the HDD platform. However, we were not able to per-
form experiments with our larger datasets with these smaller
leaf sizes, because the maximum number of possible split
points was reached before indexing the entire dataset. Al-
though small leaf sizes can improve performance on smaller
datasets, they cannot be used in practice, since the index
itself cannot be constructed. Therefore, we iteratively in-
creased the leaf sizes, and picked the ones that worked for

120

Table 2: Controlled workloads experimental results
summary (sequential scan algorithm is highlighted)

Scenarios
Dataset Idx Idx+ Idx+

Exact Exact Exact Exact Exact
100 100 10K Easy-20 Hard-20

H
D

D

Small A D S D D D
Large A D S D D D
Astro A U U V V U

Deep1B A U U U D U
SALD A D I D D D
Seismic A D S D D U

S
S
D

Small S D I D I D
Large S D I D I D
Astro I V V V V V

Deep1B S I I V I U
SALD S I I I I V
Seismic A V V V D V

A: ADS, D: DSTree, I: iSAX2+
S: SFA, U: UCR-Suite, V: VA+file

all datasets in our experiments: these leaf sizes proved to be
the same as the ones for the HDD platform. We note that
the SFA trie was particularly sensitive to parametrization.

There are two main observations on these results (see
Figure 7). The first is that VA+file and ADS+ are now
the best performers on most scenarios. The only excep-
tions are iSAX2+ surpassing ADS+ on the 25GB workload,
and iSAX2+/SFA being faster in indexing the in-memory
datasets. As discussed earlier, the bottleneck of ADS+ and
VA+file is random I/O, so the fast performance of the SSD
machine on random I/O explains why they both win over
the other methods. ADS+ is faster than VA+file at index-
ing, while the opposite is true for query answering. The
indexing cost of VA+file is amortized in the 10K workload.
The second observation is that UCR-Suite performs poorly,
due to the low disk throughput of the SSD server.
Memory/Disk Footprint vs Dataset Size. In this set of
experiments, we compare the disk and memory footprints of
all methods. Figure 8a shows that SAX-based indexes have
the largest number of nodes. SFA has a very low number
of nodes, because the leaf size we use is 1,000,000 (refer to
Figure 2), whereas the leaf sizes for DSTree and iSAX2+
are both 100,000. The ADS+ index is indifferent to leaf
size so we set its initial value to 100,000. For all methods,
most nodes are leaves, as shown in Figure 8b. Note that
ADS+ and iSAX2+ have the same tree structure with en
equal number of nodes, since the leaf size is the same.

As shown in Figures 8c and 8d, the size of the indexes in
memory and on disk follows the same trend as the number
of nodes. Although ADS+ and iSAX2+ have the same tree
shape, some of the data types and structures they use are
not the same, thus the different sizes in memory. For the
VA+file, we only report the size of the approximation file
on disk, since it does not build an auxiliary tree structure.

We use two measures to compare the overall structure of
the indexes. The first is the leaf nodes fill factor, which
measures the percentage of the leaf that is full, and gives a
good indication of whether the index distributes evenly the
data among leaves. The second measure is the depth of the
leaves, which can help evaluate how balanced an index is.
While none of the best performing index trees is truly height-
balanced, some are better balanced in practice than others.
Figure 8e shows the leaf nodes fill factor for different dataset
sizes and methods. (Note that VA+file is missing, since it
has no tree; though, if we consider as leaves the pages, where

it stores the data, then the fill factor of these pages is 100%.)
We observe that SFA offers the least variability in the fill
factor for the small datasets (as indicated by the size of the
boxplot), but the median fill factor fluctuates as the data set
changes. DSTree provides the highest median fill factor (as
indicated by the line in the middle of the boxplot), which
also remains steady with increasing data set sizes. DSTree
also displays the least skew and virtually no outliers, which
means that this index effectively partitions the dataset and
distributes the series across all its leaves. The SAX-based
indexes have many outliers, with some leaves being full and
others being empty. The graph showing the depth of the
indexes can be found elsewhere [28].
Tightness of the Lower Bound. Figure 8f shows the
TLB (defined in Section 4.2) of each method for increasing
data series lengths. We observe that the TLBs of ADS+
and VA+file increase rapidly with increasing lengths, then
stabilize when they reach a value close to 1. This explains
why the performance of both methods improves with longer
series. We also note that VA+file has a slightly tighter lower
bound than ADS+, thanks to its non-uniform discretization
scheme, which helps explain why VA+file incurs less random
I/O than ADS+, and thus performs better. The TLB of the
SFA trie is low compared to the other methods, although
we used the tight lower bounding distance of SFA (which
uses the DFT MBRs). We believe this is due to the optimal
alphabet size of 8, which is rather small compared to the
default alphabet size of 256 for the SAX-based methods. As
for iSAX2+ and DSTree, the main difference in the TLB is
that it becomes virtually constant as the length increases.
Pruning Ratio. We measure the pruning ratio (higher
is better) for all indexes across datasets and data series
lengths. For the Synth-Rand workload on synthetic
datasets, we varied the size from 25GB to 1TB and the
length from 128 to 16384. We observed that the pruning
ratio remained stable for each method and that overall
ADS+ and VA+file have the best pruning ratio, followed
by DSTree, iSAX2+ and SFA. We also ran experiments
with a real workload (Deep-Orig), a controlled workload on
the 100GB synthetic dataset (Synth-Ctrl), and controlled
workloads on the real datasets (Astro-Ctrl, Deep-Ctrl,
SALD-Ctrl and Seismic-Ctrl). In the controlled work-
loads, we extract series from the dataset and add noise.
Figure 9 summarizes these results. For lack of space, we
only report the pruning ratio for the real datasets (all of
size 100GB) and the 100GB synthetic dataset. The pruning
ratio for Synth-Rand is the highest for all methods. We
observe that the Synth-Ctrl workload is more varied than
Synth-Rand since it contains harder queries with lower
pruning ratios. The trend remains the same with ADS+
and VA+file having the best pruning ratio overall, followed
by DSTree, iSAX2+ then SFA. For real dataset workloads,
ADS+ and VA+file achieve the best pruning, followed by
iSAX2+, DSTree, and then SFA. The relatively low pruning
ratio for the SFA is most probably due to the large leaf size
of 1,000,000. Once a leaf is retrieved, SFA accesses all series
in the leaf, which reduces the pruning ratio significantly.
VA+file has a slightly better pruning ratio than ADS+,
because it performs less random and sequential I/O, thanks
to its tighter lower bound. We note that the pruning ratio
alone does not predict the performance of an index. In
fact, this ratio provides a good estimate of the number of
sequential operations that a method will perform, but it

121

(a) Nodes (b) Leaf Nodes (c) Mem. Size (d) Disk Size

●

●
●
●

●

●

●
●

●●●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●●

●
●●●

●

●●
●

●
●

●●
●
●

●
●
●●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●
●●
●
●

●
●●

●●●
●
●
●
●●
●
●
●
●●
●
●●
●
●●
●
●

●

●
●●
●
●

●

●●
●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●●
●
●●
●
●

●
●
●
●

●

●
●●

●

●
●
●

●

●

●

●

●
●

●
●
●

●

●
●

●●

●●
●
●●
●
●
●
●
●
●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●●
●●
●
●●
●
●
●
●
●

●

●
●●

●

●●
●

●

●

●
●

●●

●
●

●

●

●●

●

●●●

●

●
●
●
●
●
●●
●
●●
●●

●
●

●●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●
●
●
●
●●
●●●

●●

●
●

●

●
●
●

●
●

●

●

●

●

●
●●

●

●●●

●

●
●
●
●

●
●
●●
●●●
●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●●

●

●●
●
●●

●

●
●
●●
●

●

●
●
●●
●
●
●
●
●●
●
●
●
●●●

●
●
●
●●

●
●
●

●
●
●●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●
●
●

●
●●
●

●
●

●●●

●

●●●
●

●●●
●

●

●

●

●●●
●

●

●

●●

●

●
●
●
●●

●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●●

●

●
●
●

●

●

●
●

●●●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●●

●
●●●

●

●●
●

●
●

●●
●
●

●
●
●●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●
●●
●
●

●
●●

●●●
●
●
●
●●
●
●
●
●●
●
●●
●
●●
●
●

●

●
●●
●
●

●

●●
●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●●
●
●●
●
●

●
●
●
●

●

●
●●

●

●
●
●

●

●

●

●

●
●

●
●
●

●

●
●

●●

●●
●
●●
●
●
●
●
●
●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●●
●●
●
●●
●
●
●
●
●

●

●
●●

●

●●
●

●

●

●
●

●●

●
●

●

●

●●

●

●●●

●

●
●
●
●
●
●●
●
●●
●●

●
●

●●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●
●
●
●
●●
●●●

●●

●
●

●

●
●
●

●
●

●

●

●

●

●
●●

●

●●●

●

●
●
●
●

●
●
●●
●●●
●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●●

●

●●
●
●●

●

●
●
●●
●

●

●
●
●●
●
●
●
●
●●
●
●
●
●●●

●
●
●
●●

●
●
●

●
●
●●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●
●
●

●
●●
●

●
●

●●●

●

●●●
●

●●●
●

●

●

●

●●●
●

●

●

●●

●

●
●
●
●●

●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●●
●

●

●

●●

●

●●●●

●

●
●
●
●●
●●

●

●●●

●●

●
●●

●●

●
●●
●

●
●
●
●
●●●

●
●

●
●

●●●●

●
●●●
●
●
●●
●●●●
●

●

●
●●●●●

●
●
●●●
●
●

●●
●

●
●

●

●
●

●
●

●

●

●●

●

●●

●
●
●●
●●
●●

●

●

●

●
●
●

●
●●
●

●

●

●●●●

●●
●●

●

●

●
●●
●
●

●
●●

●●

●●
●
●
●
●●

●

●
●

●

●
●
●●

●

●

●

●

●●

●

●

●●

●
●

●

●●●

●

●
●
●
●

●●●
●●●
●

●

●

●
●

●

●
●

●●
●
●

●●●

●

●

●

●
●
●●

●

●

●
●
●●
●●

●

●

●

●
●
●

●

●

●

●
●
●
●●
●
●
●
●

●
●●
●

●
●
●
●

●

●

●●
●●●

●

●●
●

●

●●

●

●●
●

●

●●

●●

●●

●●

●●

●
●●

●

●
●
●●
●
●
●
●
●●
●
●
●●●
●

●
●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●●

●
●
●
●

●

●

●
●

●
●
●
●
●
●
●

●●●

●

●
●●●

●
●●●

●

●●
●

●

●
●●
●

●
●
●●
●●
●

●●
●●●
●

●

●
●●●
●
●

●

●
●
●

●

●
●●

●

●●
●
●
●

●

●
●●
●
●
●●

●●●
●
●
●
●●
●
●
●
●●
●●
●●
●

●

●
●●
●

●
●●

●●
●

●●
●●

●
●

●
●
●●

●

●

●
●●
●
●
●●

●
●

●●
●●
●
●●
●
●●
●
●

●

●
●
●

●
●●

●
●

●●●●

●

●●●●
●

●

●

●
●
●

●●

●●

●●
●
●●
●
●●
●
●

●

●
●
●

●
●●

●
●

●●●
●●●●●

●

●

●
●
●
●●

●
●

●●
●●
●
●●
●
●●●

●

●
●●

●
●●

●●

●●●●

●

●●
●
●

●

●
●
●

●●●

●
●

●

●●●

●

●●●
●

●
●
●
●
●

●
●
●●●

●

●
●●
●
●●
●
●●
●●

●
●

●●
●
●

●
●

●

●●●●
●●
●

●
●
●
●
●

●
●
●
●
●

●

●
●
●●
●
●●
●●
●

●●

●●

●
●
●

●
●
●

●

●
●●

●

●
●●
●

●
●●
●
●

●
●
●●●

●

●
●
●
●
●
●●
●●●
●●

●
●

●●●●
●
●●
●

●●

●
●●

●
●

●
●●
●

●
●
●●
●
●

●
●
●
●●
●

●

●
●●
●●
●
●●
●
●
●
●●●
●
●
●
●●

●
●
●
●
●●
●

●

●
●
●
●
●
●
●●●
●
●●

●
●●

●

●●●●●●●●
●

●
●●●●
●

●
●
●●
●
●

●
●●
●

●

●●●

●

●●●
●

●●●
●

●

●

●

●

●

●●
●

●

●
●
●

●
●

●

●
●●
●
●
●

●

●

●●
●
●
●
●●
●

●
●●
●

●
●
●●
●
●

●●●●●
●●
●

●

●
●●
●

●
●

●
●

●

●●
●

●

●●

●

●●

●
●
●
●

●
●

●

●
●●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●●
●

●●

●●●●

●
●

●

●●

●
●

●
●

●
●●
●●●●

●
●
●
●●●

●

●

●●
●●
●
●
●
●
●●●
●

●

●
●
●

●
●
●

●

●
●

●

●

●

●

●●
●
●

●

●

●●●

●

●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●
●●

●
●●●

●
●●●●
●●
●

●

●

●

●●

●●

●

●

●

●●●
●
●
●
●
●
●●
●

●

●●

●
●
●

●

●

●
●

●
●●

●

●●
●
●

●

●

●
●

●

●

●●●
●
●

●

●

●
●●
●

●●

●

●●

●
●●

●
●

●●

●
●

●

●
●
●●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●
●●

●

●
●
●
●
●●
●

●●

●●
●
●

●●●

●

●

●

●●●
●
●●

●
●
●●●●●
●
●●
●●

●

●
●
●

●

●

●
●
●●●
●●●●

●
●
●

●●●
●
●●
●
●●

●

●
●

●●

●

●

●
●

●●
●
●●
●

●
●●

●
●

●●
●

●

●

●●

●

●●●●

●

●
●
●
●●
●●

●

●●●

●●

●
●●

●●

●
●●
●

●
●
●
●
●●●

●
●

●
●

●●●●

●
●●●
●
●
●●
●●●●
●

●

●
●●●●●

●
●
●●●
●
●

●●
●

●
●

●

●
●

●
●

●

●

●●

●

●●

●
●
●●
●●
●●

●

●

●

●
●
●

●
●●
●

●

●

●●●●

●●
●●

●

●

●
●●
●
●

●
●●

●●

●●
●
●
●
●●

●

●
●

●

●
●
●●

●

●

●

●

●●

●

●

●●

●
●

●

●●●

●

●
●
●
●

●●●
●●●
●

●

●

●
●

●

●
●

●●
●
●

●●●

●

●

●

●
●
●●

●

●

●
●
●●
●●

●

●

●

●
●
●

●

●

●

●
●
●
●●
●
●
●
●

●
●●
●

●
●
●
●

●

●

●●
●●●

●

●●
●

●

●●

●

●●
●

●

●●

●●

●●

●●

●●

●
●●

●

●
●
●●
●
●
●
●
●●
●
●
●●●
●

●
●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●●

●
●
●
●

●

●

●
●

●
●
●
●
●
●
●

●●●

●

●
●●●

●
●●●

●

●●
●

●

●
●●
●

●
●
●●
●●
●

●●
●●●
●

●

●
●●●
●
●

●

●
●
●

●

●
●●

●

●●
●
●
●

●

●
●●
●
●
●●

●●●
●
●
●
●●
●
●
●
●●
●●
●●
●

●

●
●●
●

●
●●

●●
●

●●
●●

●
●

●
●
●●

●

●

●
●●
●
●
●●

●
●

●●
●●
●
●●
●
●●
●
●

●

●
●
●

●
●●

●
●

●●●●

●

●●●●
●

●

●

●
●
●

●●

●●

●●
●
●●
●
●●
●
●

●

●
●
●

●
●●

●
●

●●●
●●●●●

●

●

●
●
●
●●

●
●

●●
●●
●
●●
●
●●●

●

●
●●

●
●●

●●

●●●●

●

●●
●
●

●

●
●
●

●●●

●
●

●

●●●

●

●●●
●

●
●
●
●
●

●
●
●●●

●

●
●●
●
●●
●
●●
●●

●
●

●●
●
●

●
●

●

●●●●
●●
●

●
●
●
●
●

●
●
●
●
●

●

●
●
●●
●
●●
●●
●

●●

●●

●
●
●

●
●
●

●

●
●●

●

●
●●
●

●
●●
●
●

●
●
●●●

●

●
●
●
●
●
●●
●●●
●●

●
●

●●●●
●
●●
●

●●

●
●●

●
●

●
●●
●

●
●
●●
●
●

●
●
●
●●
●

●

●
●●
●●
●
●●
●
●
●
●●●
●
●
●
●●

●
●
●
●
●●
●

●

●
●
●
●
●
●
●●●
●
●●

●
●●

●

●●●●●●●●
●

●
●●●●
●

●
●
●●
●
●

●
●●
●

●

●●●

●

●●●
●

●●●
●

●

●

●

●

●

●●
●

●

●
●
●

●
●

●

●
●●
●
●
●

●

●

●●
●
●
●
●●
●

●
●●
●

●
●
●●
●
●

●●●●●
●●
●

●

●
●●
●

●
●

●
●

●

●●
●

●

●●

●

●●

●
●
●
●

●
●

●

●
●●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●●
●

●●

●●●●

●
●

●

●●

●
●

●
●

●
●●
●●●●

●
●
●
●●●

●

●

●●
●●
●
●
●
●
●●●
●

●

●
●
●

●
●
●

●

●
●

●

●

●

●

●●
●
●

●

●

●●●

●

●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●
●●

●
●●●

●
●●●●
●●
●

●

●

●

●●

●●

●

●

●

●●●
●
●
●
●
●
●●
●

●

●●

●
●
●

●

●

●
●

●
●●

●

●●
●
●

●

●

●
●

●

●

●●●
●
●

●

●

●
●●
●

●●

●

●●

●
●●

●
●

●●

●
●

●

●
●
●●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●
●●

●

●
●
●
●
●●
●

●●

●●
●
●

●●●

●

●

●

●●●
●
●●

●
●
●●●●●
●
●●
●●

●

●
●
●

●

●

●

●●●●

●

●

●●
●
●
●
●
●

●
●●

●

●●

●

●
●

●
●

●
●

●●●
●
●

●

●

●●●●●●
●

●

●

●

●
●
●

●

●●

●

●●

●

●

●
●●●
●

●

●

●

●●

●

●●●●

●

●●●
●●
●
●

●

●

●●●●
●

●

●●●●
●
●
●
●
●
●●

●

●
●
●●
●
●
●
●●
●●●

●●
●●
●
●

●
●●

●
●●

●
●
●
●

●
●●

●●

●
●
●●●●●●●●
●●
●●
●
●●
●●

●

●
●

●●

●

●●

●●●●

●●
●
●
●
●
●

●●

●●

●
●

●

●●

●
●

●

●
●
●

●
●

●

●●
●

●
●
●●●●●●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●●

●●●
●●●

●

●

●

●●
●●
●●
●
●
●
●
●
●●

●

●

●

●●●
●
●●
●

●

●
●
●

●●

●

●

●●
●●●●
●
●●
●

●
●●

●

●●●●●●

●
●

●●●
●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●
●
●
●

●
●
●

●

●
●

●
●
●

●
●
●●

●●

●
●

●
●●
●
●

●

●●
●

●

●●
●●●
●
●

●
●

●
●
●●●
●

●

●

●
●

●

●
●●

●

●
●●

●

●

●

●

●●

●

●

●
●●
●●
●

●

●

●●●●

●

●

●

●

●

●
●
●

●

●●●
●

●
●●

●
●

●

●

●

●
●

●

●

●●
●●●●
●●●●●
●
●●●●●●
●

●

●

●●

●

●●
●●
●●●●
●●

●
●

●
●
●●●●
●

●●

●
●●●
●
●
●
●●

●

●

●

●●

●●●

●●
●
●

●

●●●●
●●
●
●

●
●●●●
●

●

●

●●

●
●
●●

●
●

●

●●
●●

●

●
●

●

●●●●●●

●

●●

●

●
●

●●●

●●

●
●
●●●●●

●●●

●
●

●
●
●

●
●

●
●●

●●●●
●

●
●●
●●●

●

●

●
●

●●
●●

●

●
●

●
●
●

●

●●

●●
●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●
●
●
●
●

●

●●

●●

●●●
●

●

●

●

●●
●
●

●

●

●
●●

●
●

●
●
●●●●●●●
●●
●
●
●
●●
●●●

●

●

●

●
●
●

●●

●●

●
●●

●
●

●

●

●
●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●

●

●●

●

●
●●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01

1.00

100.00

25 10
0

10
00

Dataset Size (GB)

F
ill

 F
ac

to
r

(%
)

(e) Leaf fill factor

●

●●

●

●

●

●●●

●

●

●

●
●
●●

●

●

●
● ●

●

●●

●
●
●●●

●
●

●

●

●
●

●
●●●
●●

●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●●
●

●

●●
●

●

●
●●

0.4

0.6

0.8

1.0

25
6

20
48

16
38

4

Data Series Length

Q
ue

ry
 T

LB

(f) TLB

Figure 8: Exact methods footprint and TLB for synthetic datasets

●●

●●●

●
●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●●
●
●●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●●●

●●●●●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●

●●

●●●

●●

●●●

●●●●

●

●●●●

●●●●●●●●●●●●

●●●●

●

●
●

●

●
●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●

●

●
●
●
●●

●

●

●

●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●●●●

●

●

●●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

0.00

0.25

0.50

0.75

1.00

ADS+ iSAX2+ DSTree SFA VA+file
Algorithm

P
ru

ni
ng

 R
at

io Workload
Synth−Rand
Synth−Ctrl
SALD−Ctrl
Seismic−Ctrl
Astro−Ctrl
Deep−Orig
Deep−Ctrl

Figure 9: Pruning ratio
(Dataset Size= 100GB, Workload = 100 Queries)

should be considered along with other measures like the
number of random disk I/Os.

Scalability/Search Efficiency with Real Datasets. In
Table 2, we report the name of the best method for each
scenario. In addition to the four scenarios discussed earlier,
we also consider two new scenarios: the average time of the
20 easiest queries (Easy-20) and the average time of the 20
hardest queries (Hard-20) of the corresponding workload. A
query is considered easy, or hard, depending on its pruning
ratio (computed as the average across all techniques) [90].

It is important to note that while queries are categorized
as easy and hard, easy queries on one dataset may be harder
than easy queries on another dataset, as the average pruning
ratio for each dataset differs. This is because some datasets
can be summarized more effectively than others. We aver-
aged the results over 20 hard queries and 20 easy queries.
In-memory datasets are labeled small and the others large.

We observe that UCR-Suite wins in exact query answering
and on hard queries for the Astro/Deep1B scenarios. This
is due to the very low pruning ratio for these workloads.
DSTree is fast on easy queries and exact query answering on
the SALD/Seimic scenarios. ADS+ always wins in indexing
on HDD, but is sometimes surpassed by iSAX2+/SFA on
SSD. Similarly to synthetic datasets, the methods behave
differently on real datasets when experiments are ran on
the SSD platform. VA+file and iSAX2+ have a superior
performance overall. DSTree also performs well, while UCR-
Suite wins only on hard queries on the Deep1B dataset.

5. DISCUSSION
In the data series literature, competing similarity search

methods have never been compared together under a unified
experimental scheme. The objective of this experimental
evaluation is to consolidate previous work on data series
whole-matching similarity search and prepare a solid ground
for further developments in the field.

We undertook a challenging and laborious task, where we
re-implemented from scratch four algorithms: iSAX2+, SFA
trie, DSTree, and VA+file, and optimized memory man-
agement problems (swapping, and out-of-memory errors) in
R*-tree, M-tree, and Stepwise. Choosing C/C++ provided
considerable performance gains, but also required low-level
memory management optimizations. We believe the effort
involved was well worth it since the results of our experimen-
tal evaluation emphatically demonstrate the importance of
the experimental setup on the relative performance of the
various methods. To further facilitate research in the field
we publicize our source code and experimental results [28].
This section summarizes the lessons learned in this study.
Unexpected Results. For some of the algorithms our ex-
perimental evaluation revealed some unexpected results.

(1) The Stepwise method performed lower than our ex-
pectations. This was both due to the fact that our baseline
sequential scan was fully optimized for early abandoning and
computation optimization, but most importantly because of
a different experimental setup. The original implementation
of Stepwise performed batched query answering. In our case
we compared all methods on single query at a time workload
scenario. This demonstrates the importance of the experi-
mental setup and workload type.

(2) The VA+file method performed extremely well. Al-
though an older method, VA+file is among the best per-
formers overall. Our optimized implementation, which is
much faster than the original version, helped unleash the
best of this method; this demonstrates the importance of
the implementation framework.

(3) For exact queries on out-of-memory data on the HDD
machine, ADS+ is underperforming. The reason is that
ADS+ performs multiple skips while pruning at a per se-
ries level and is thus significantly affected by the hard disk’s
latency. In the original study [89], ADS+ was run on a ma-
chine with 60% of the hard disk throughput of the one used
in the current work. The HDD setup with the 6 RAID0
disks gave a significant advantage on methods that perform
sequential scans on larger blocks of data and less skips. On
the SSD machine, however, the trend is reversed, and ADS+
becomes one of the best contenders overall. These observa-
tions demonstrate the importance of the hardware setup.

(4) The optimal parameters of most algorithms were dif-
ferent than the ones presented in their respective papers.
This is because some methods were not tuned before: the
iSAX2+, DSTree and SFA papers have no tuning experi-
ments. We tuned each for varying leaf and buffer sizes (for
brevity, we only report results for leaf parametrization in
Figure 2 (for buffer tuning experiments, see [28]). For SFA,
we also tuned the sample size used to identify the break-

122

points, binning method (equi-depth vs. equi-width), and
number of symbols for the SFA discretization. Another rea-
son is that we studied in more detail methods that were
partially tuned (e.g., ADS+ was tuned only for varying leaf
size; we also varied buffer size and found that assigning most
of RAM to buffering hurts performance). These findings fur-
ther demonstrate the need for careful parameter-tuning.

(5) The quality of the summarization, as measured by TLB
and pruning, is not necessarily correlated to time perfor-
mance. An early experimental study [44] claimed that the
tightness of the lower bound can be used alone to evaluate
the efficiency of indexing techniques. While summarization
quality is an important factor on its own, we demonstrate
that it cannot alone predict the time performance of an in-
dex, even in the absence of data and implementation biases.
For example, ADS+ achieves very high pruning and TLB,
yet, in terms of time, it is outperformed by other methods
in some scenarios. It is of crucial importance to consider
summarization quality alongside the properties of the index
structure and the hardware platform.
Speed-up Opportunities. Through our analysis, we iden-
tified multiple factors that affect the performance of exam-
ined methods. In turn, these factors reveal opportunities
and point to directions for performance improvements.

(1) Stepwise offers many such avenues. Its storage scheme
could be optimized to reduce the number of random I/O
during query answering, and its query answering algorithm
would benefit a lot from parallelization and modern hard-
ware optimizations (i.e., through multi-core and SIMD par-
allelism), as 50%-98% of total time is CPU.

(2) DSTree is very fast at query answering, but rather
slow at index building. Nevertheless, a large percentage
of this time (85-90%) is CPU. Therefore, also the indexing
performance of DSTree can be improved by exploiting mod-
ern hardware. Moreover, bulk loading during indexing, and
buffering during querying, would also make it even faster.

(3) A similar observation holds for VA+file MASS. Even
though MASS is not designed for whole-matching data se-
ries similarity search, its performance can be significantly
enhanced with parallelism and modern hardware exploita-
tion, since 90% of its execution time is CPU cost. Similarly,
the indexing cost of VA+file can be further improved.

(4) Finally, we obtained a better understanding of the
ADS+ algorithm. Apart from being very fast in index build-
ing, our results showed that it also has a leading performance
for whole-matching similarity search for long data series. We
also discovered that the main bottleneck for ADS+ are the
multiple skips performed during query answering. Its effects
could be masked by controlling the size of the data segments
skipped (i.e., skipping/reading large continuous blocks), and
through asynchronous I/O. Moreover, because of its very
good pruning power (that leads to an increased number of
skips), we expect ADS+ to work well whenever random ac-
cess is cheap, e.g., with SSDs and main-memory systems.
Data-adaptive Partitioning. While the SFA trie and
iSAX-based index building algorithms are much faster than
the DSTree index building algorithm, their performance dur-
ing query answering is much worse than that of DSTree.
DSTree spends more time during indexing, intelligently
adapting its leaf summarizations when split operations are
performed. This leads to better data clustering and as a re-
sult faster query execution. On the contrary, both iSAX and
SFA have fixed maximum resolutions, and iSAX indexes can

only perform splits on predefined split-points. Even though
iSAX summarizations at full resolution offer excellent prun-
ing power (see ADS+ in Figure 9), grouping them using fixed
split-points in an iSAX-based index does not allow for effec-
tive clustering (see Figure 8e). This is both an advantage
(indexing is extremely fast), but also a drawback as it does
not allow clustering to adapt to the dataset distribution.
Access-Path Selection. Finally, our results demonstrate
that the pruning ratio, along with the ability of an index to
cluster together similar data series in large contiguous blocks
of data, is crucial for its performance. Moreover, our results
confirm the intuitive result that the smaller the pruning ra-
tio, the higher the probability that a sequential scan will
perform better than an index, as can be observed for the
hard queries in Table 2. This is because it will avoid costly
random accesses patterns on a large part of the dataset.
However, the decision between a scan or an index, and more
specifically, the choice of an index, is not trivial, but is based
on a combination of factors: (a) the effectiveness of the sum-
marization used by the index (which can be estimated by
the pruning ratio); (b) the ability of the index to cluster
together similar data series (which determines the access
pattern); and (c) the hardware characteristics (which dic-
tate the data access latencies). This context gives rise to
interesting optimization problems, which have never before
been studied in the domain of data series similarity search.
Recommendations. Figure 10 presents a decision matrix
that reports the best approach to use for problems with dif-
ferent data series characteristics, given a specific hardware
setup (i.e., HDD) and query workload (i.e., Indexing + 10K
synthetic queries). In general though, choosing the best ap-
proach to answer a similarity query on massive data series is
an optimization problem, and needs to be studied in depth.

In−Memory Long SeriesIn−Memory Long SeriesIn−Memory Long SeriesIn−Memory Long SeriesIn−Memory Long SeriesIn−Memory Long Series Disk−Resident Long SeriesDisk−Resident Long SeriesDisk−Resident Long SeriesDisk−Resident Long SeriesDisk−Resident Long SeriesDisk−Resident Long Series

In−Memory Short SeriesIn−Memory Short SeriesIn−Memory Short SeriesIn−Memory Short SeriesIn−Memory Short SeriesIn−Memory Short Series Disk−Resident Short SeriesDisk−Resident Short SeriesDisk−Resident Short SeriesDisk−Resident Short SeriesDisk−Resident Short SeriesDisk−Resident Short Series

decision depends on dataset sizedecision depends on dataset sizedecision depends on dataset sizedecision depends on dataset sizedecision depends on dataset sizedecision depends on dataset size

decision depends on dataset size and lengthdecision depends on dataset size and lengthdecision depends on dataset size and lengthdecision depends on dataset size and lengthdecision depends on dataset size and lengthdecision depends on dataset size and length

iSAX2+ DSTree

VA+file

DSTree

VA+file

DSTree

DATASET SIZE

S
E

R
IE

S
 L

E
N

G
T

H

Figure 10: Recommendations
(Indexing and answering 10K queries on HDD)

6. CONCLUSIONS AND FUTURE WORK
In this work, we unified and formally defined the termi-

nology used for the different flavors of data series similar-
ity search problems, and we designed and executed a thor-
ough experimental comparison of several relevant techniques
from the literature, which had never before been compared
at equal footing to one another. Our results paint a clear
picture of the strengths and weaknesses of the various ap-
proaches, and indicate promising research directions. Part of
our future work is the experimental comparison of approxi-
mate methods, r-range queries and sub-sequence matching.
Acknowledgments. We sincerely thank all authors for
generously sharing their code, and M. Linardi for his imple-
mentation of MASS [87]. Work partially supported by EU
project NESTOR (Marie Curie 748945).

123

References
[1] Adhd-200. http://fcon_1000.projects.nitrc.org/

indi/adhd200/, 2018.

[2] Sloan digital sky survey. https://www.sdss3.org/

dr10/data_access/volume.php, 2018.

[3] R. Agrawal, C. Faloutsos, and A. Swami. Efficient sim-
ilarity search in sequence databases. pages 69–84, 1993.

[4] S. Albrecht, I. Cumming, and J. Dudas. The mo-
mentary fourier transformation derived from recursive
matrix transformations. In Proceedings of 13th Inter-
national Conference on Digital Signal Processing, vol-
ume 1, pages 337–340 vol.1, Jul 1997.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. J. ACM,
45(6):891–923, Nov. 1998.

[6] J. Aßfalg, H. Kriegel, P. Kröger, P. Kunath,
A. Pryakhin, and M. Renz. Similarity search on time
series based on threshold queries. In Advances in
Database Technology - EDBT 2006, 10th International
Conference on Extending Database Technology, Mu-
nich, Germany, March 26-31, 2006, Proceedings, pages
276–294, 2006.

[7] J. Aßfalg, H. Kriegel, P. Kröger, and M. Renz. Prob-
abilistic similarity search for uncertain time series. In
Scientific and Statistical Database Management, 21st
International Conference, SSDBM 2009, New Orleans,
LA, USA, June 2-4, 2009, Proceedings, pages 435–443,
2009.

[8] M. Bach-Andersen, B. Romer-Odgaard, and
O. Winther. Flexible non-linear predictive mod-
els for large-scale wind turbine diagnostics. Wind
Energy, 20(5):753–764, 2017.

[9] A. J. Bagnall, J. Lines, A. Bostrom, J. Large, and E. J.
Keogh. The great time series classification bake off: a
review and experimental evaluation of recent algorith-
mic advances. Data Min. Knowl. Discov., 31(3):606–
660, 2017.

[10] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The r*-tree: an efficient and robust ac-
cess method for points and rectangles. In INTERNA-
TIONAL CONFERENCE ON MANAGEMENT OF
DATA, pages 322–331. ACM, 1990.

[11] D. J. Berndt and J. Clifford. Using dynamic time warp-
ing to find patterns in time series. In AAAIWS, pages
359–370, 1994.

[12] T. Bozkaya and M. Ozsoyoglu. Distance-based index-
ing for high-dimensional metric spaces. SIGMOD Rec.,
26(2):357–368, June 1997.

[13] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh.
isax 2.0: Indexing and mining one billion time series.
In G. I. Webb, B. Liu, C. Zhang, D. Gunopulos, and
X. Wu, editors, ICDM, pages 58–67. IEEE Computer
Society, 2010.

[14] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon,
and E. J. Keogh. Beyond one billion time series: index-
ing and mining very large time series collections with
isax2+. Knowl. Inf. Syst., 39(1):123–151, 2014.

[15] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Paz-
zani. Locally adaptive dimensionality reduction for
indexing large time series databases. ACM Trans.
Database Syst., 27(2):188–228, June 2002.

[16] K.-P. Chan and A. W.-C. Fu. Efficient time se-
ries matching by wavelets. In Proceedings 15th In-
ternational Conference on Data Engineering (Cat.
No.99CB36337), pages 126–133, Mar 1999.

[17] V. Chandola, A. Banerjee, and V. Kumar. Anomaly de-
tection: A survey. ACM Computing Surveys (CSUR),
41(3):15, 2009.

[18] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and
L. Cazzanti. Similarity-based classification: Concepts
and algorithms. J. Mach. Learn. Res., 10:747–776, June
2009.

[19] Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. H.
Tung. Spade: On shape-based pattern detection in
streaming time series. In Proceedings of the 23rd Inter-
national Conference on Data Engineering, ICDE 2007,
The Marmara Hotel, Istanbul, Turkey, April 15-20,
2007, pages 786–795, 2007.

[20] P. Ciaccia and M. Patella. Bulk loading the M-tree.
pages 15–26, Feb. 1998.

[21] P. Ciaccia and M. Patella. Pac nearest neighbor queries:
Approximate and controlled search in high-dimensional
and metric spaces. In ICDE, pages 244–255, 2000.

[22] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in met-
ric spaces. In M. Jarke, M. Carey, K. R. Dittrich,
F. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld, ed-
itors, Proceedings of the 23rd International Conference
on Very Large Data Bases (VLDB’97), pages 426–435,
Athens, Greece, Aug. 1997. Morgan Kaufmann Pub-
lishers, Inc.

[23] R. Cole, D. E. Shasha, and X. Zhao. Fast window
correlations over uncooperative time series. In Pro-
ceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Chicago, Illinois, USA, August 21-24, 2005, pages 743–
749, 2005.

[24] M. Dallachiesa, B. Nushi, K. Mirylenka, and T. Pal-
panas. Uncertain time-series similarity: Return to the
basics. PVLDB, 5(11):1662–1673, 2012.

[25] M. Dallachiesa, T. Palpanas, and I. F. Ilyas. Top-
k nearest neighbor search in uncertain data series.
PVLDB, 8(1):13–24, Sept. 2014.

[26] G. Das, D. Gunopulos, and H. Mannila. Finding similar
time series. Principles of Data Mining and Knowledge
Discovery, pages 88–100, 1997.

[27] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh. Querying and mining of time series data: ex-
perimental comparison of representations and distance
measures. PVLDB, 1(2):1542–1552, 2008.

[28] K. Echihabi, K. Zoumpatianos, T. Palpanas, and
H. Benbrahim. The Lernaean Hydra of Data Series
Similarity Search: An Experimental Evaluation of the
State of the Art. http://www.mi.parisdescartes.fr/

~themisp/dsseval/, 2018.

[29] ESA. SENTINEL-2 mission, 2018.

[30] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases. In
SIGMOD, pages 419–429, New York, NY, USA, 1994.
ACM.

[31] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E.

124

Abbadi. Vector approximation based indexing for non-
uniform high dimensional data sets. In In Proceedings of
the 9th ACM Int. Conf. on Information and Knowledge
Management, pages 202–209. ACM Press, 2000.

[32] I. R. I. for Seismology with Artificial Intelligence. Seis-
mic Data Access. http://ds.iris.edu/data/access/,
2018.

[33] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product
quantization. IEEE Trans. Pattern Anal. Mach. Intell.,
36(4):744–755, Apr. 2014.

[34] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In Proceedings of
the 25th International Conference on Very Large Data
Bases, VLDB ’99, pages 518–529, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[35] X. Golay, S. Kollias, G. Stoll, D. Meier, A. Valavanis,
and P. Boesiger. A new correlation-based fuzzy logic
clustering algorithm for fmri. Magnetic Resonance in
Medicine, 40(2):249–260, 1998.

[36] A. Guttman. R-trees: A dynamic index structure
for spatial searching. In SIGMOD’84, Proceedings of
Annual Meeting, Boston, Massachusetts, June 18-21,
1984, pages 47–57, 1984.

[37] M. Hadjieleftheriou. The libspatialindex api, January
2014. http://libspatialindex.github.io/.

[38] G. Hébrail. Practical data mining in a large utility
company, pages 87–95. Physica-Verlag HD, Heidelberg,
2000.

[39] P. Huijse, P. A. Estévez, P. Protopapas, J. C. Principe,
and P. Zegers. Computational intelligence challenges
and applications on large-scale astronomical time series
databases. IEEE Comp. Int. Mag., 9(3):27–39, 2014.

[40] Y. Kakizawa, R. H. Shumway, and M. Taniguchi. Dis-
crimination and clustering for multivariate time se-
ries. Journal of the American Statistical Association,
93(441):328–340, 1998.

[41] K. Kashino, G. Smith, and H. Murase. Time-series
active search for quick retrieval of audio and video. In
ICASSP, 1999.

[42] S. Kashyap and P. Karras. Scalable knn search on ver-
tically stored time series. In C. Apt, J. Ghosh, and
P. Smyth, editors, KDD, pages 1334–1342. ACM, 2011.

[43] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehro-
tra. Dimensionality reduction for fast similarity search
in large time series databases. Knowledge and Informa-
tion Systems, 3(3):263–286, 2001.

[44] E. Keogh and S. Kasetty. On the need for time se-
ries data mining benchmarks: A survey and empirical
demonstration. Data Min. Knowl. Discov., 7(4):349–
371, Oct. 2003.

[45] E. Keogh and M. Pazzani. An enhanced representation
of time series which allows fast and accurate classifica-
tion, clustering and relevance feedback. In R. Agrawal,
P. Stolorz, and G. Piatetsky-Shapiro, editors, Fourth
International Conference on Knowledge Discovery and
Data Mining (KDD’98), pages 239–241, New York City,
NY, 1998. ACM Press.

[46] E. Keogh and C. A. Ratanamahatana. Exact indexing
of dynamic time warping. Knowl. Inf. Syst., 7(3):358–
386, Mar. 2005.

[47] S. Knieling, J. Niediek, E. Kutter, J. Bostroem, C. El-
ger, and F. Mormann. An online adaptive screening
procedure for selective neuronal responses. Journal
of Neuroscience Methods, 291(Supplement C):36 – 42,
2017.

[48] K. Košmelj and V. Batagelj. Cross-sectional approach
for clustering time varying data. Journal of Classifica-
tion, 7(1):99–109, 1990.

[49] M. Kumar, N. R. Patel, and J. Woo. Clustering season-
ality patterns in the presence of errors. In Proceedings
of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, July 23-
26, 2002, Edmonton, Alberta, Canada, pages 557–563,
2002.

[50] J. Lin, E. J. Keogh, S. Lonardi, and B. Y. Chiu. A sym-
bolic representation of time series, with implications for
streaming algorithms. In Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining
and knowledge discovery, DMKD 2003, San Diego, Cal-
ifornia, USA, June 13, 2003, pages 2–11, 2003.

[51] M. Linardi and T. Palpanas. Scalable, variable-length
similarity search in data series: The ULISSE approach.
PVLDB, 11(13):2236–2248, 2018.

[52] M. Linardi and T. Palpanas. ULISSE: ULtra compact
Index for Variable-Length Similarity SEarch in Data
Series. In ICDE, 2018.

[53] M. Linardi, Y. Zhu, T. Palpanas, and E. J. Keogh. Ma-
trix profile X: Valmod - scalable discovery of variable-
length motifs in data series. 2018.

[54] C. Maccone. Advantages of karhunenlove transform
over fast fourier transform for planetary radar and
space debris detection. Acta Astronautica, 60(8):775
– 779, 2007.

[55] Y. A. Malkov and D. A. Yashunin. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. CoRR, abs/1603.09320,
2016.

[56] K. Mirylenka, V. Christophides, T. Palpanas, I. Pe-
fkianakis, and M. May. Characterizing home device
usage from wireless traffic time series. In EDBT, pages
551–562, 2016.

[57] K. Mirylenka, M. Dallachiesa, and T. Palpanas.
Data series similarity using correlation-aware measures.
In Proceedings of the 29th International Conference
on Scientific and Statistical Database Management,
Chicago, IL, USA, June 27-29, 2017, pages 11:1–11:12,
2017.

[58] A. Mueen, Y. Zhu, M. Yeh, K. Kamgar,
K. Viswanathan, C. Gupta, and E. Keogh. The fastest
similarity search algorithm for time series subsequences
under euclidean distance, August 2017. http://www.

cs.unm.edu/~mueen/FastestSimilaritySearch.html.

[59] T. Palpanas. Data series management: The road to
big sequence analytics. SIGMOD Record, 44(2):47–52,
2015.

[60] T. Palpanas. Big sequence management: A glimpse of
the past, the present, and the future. In R. M. Freivalds,
G. Engels, and B. Catania, editors, SOFSEM, volume
9587 of Lecture Notes in Computer Science, pages 63–
80. Springer, 2016.

[61] P. Paraskevopoulos, T.-C. Dinh, Z. Dashdorj, T. Pal-
panas, and L. Serafini. Identification and characteri-

125

zation of human behavior patterns from mobile phone
data. In D4D Challenge session, NetMob, 2013.

[62] B. Peng, T. Palpanas, and P. Fatourou. ParIS: The
Next Destination for Fast Data Series Indexing and
Query Answering. IEEE BigData, 2018.

[63] D. Rafiei. On similarity-based queries for time series
data. In Proceedings of the 15th International Confer-
ence on Data Engineering, Sydney, Austrialia, March
23-26, 1999, pages 410–417, 1999.

[64] D. Rafiei and A. Mendelzon. Similarity-based queries
for time series data. SIGMOD Rec., 26(2):13–25, June
1997.

[65] D. Rafiei and A. O. Mendelzon. Efficient re-
trieval of similar time sequences using DFT. CoRR,
cs.DB/9809033, 1998.

[66] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E.
A. P. A. Batista, M. B. Westover, Q. Zhu, J. Zakaria,
and E. J. Keogh. Searching and mining trillions of time
series subsequences under dynamic time warping. In
Q. Yang, D. Agarwal, and J. Pei, editors, KDD, pages
262–270. ACM, 2012.

[67] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and
S. Evans. Time series epenthesis: Clustering time series
streams requires ignoring some data. In Data Mining
(ICDM), 2011 IEEE 11th International Conference on,
pages 547–556. IEEE, 2011.

[68] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and
G. P. Picco. Practical data prediction for real-world
wireless sensor networks. IEEE Trans. Knowl. Data
Eng., accepted for publication, 2015.

[69] P. P. Rodrigues, J. Gama, and J. P. Pedroso. Odac:
Hierarchical clustering of time series data streams. In
J. Ghosh, D. Lambert, D. B. Skillicorn, and J. Srivas-
tava, editors, SDM, pages 499–503. SIAM, 2006.

[70] S. R. Sarangi and K. Murthy. DUST: a generalized
notion of similarity between uncertain time series. In
Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010, pages 383–
392, 2010.

[71] P. Schäfer and M. Högqvist. Sfa: A symbolic fourier
approximation and index for similarity search in high
dimensional datasets. In Proceedings of the 15th Inter-
national Conference on Extending Database Technol-
ogy, EDBT ’12, pages 516–527, New York, NY, USA,
2012. ACM.

[72] D. Shasha. Tuning time series queries in finance: Case
studies and recommendations. IEEE Data Eng. Bull.,
22(2):40–46, 1999.

[73] J. Shieh and E. Keogh. isax: Indexing and mining ter-
abyte sized time series. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’08, pages 623–631, New
York, NY, USA, 2008. ACM.

[74] J. Shieh and E. Keogh. isax: Indexing and mining ter-
abyte sized time series. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’08, pages 623–631, New
York, NY, USA, 2008. ACM.

[75] S. Soldi, V. Beckmann, W. Baumgartner, G. Ponti,
C. R. Shrader, P. Lubiński, H. Krimm, F. Mattana,

and J. Tueller. Long-term variability of agn at hard
x-rays. Astronomy & Astrophysics, 563:A57, 2014.

[76] S. Soldi, V. Beckmann, W. Baumgartner, G. Ponti,
C. R. Shrader, P. Lubiński, H. Krimm, F. Mattana,
and J. Tueller. Long-term variability of agn at hard
x-rays. Astronomy & Astrophysics, 563:A57, 2014.

[77] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin.
SRS: Solving C-approximate Nearest Neighbor Queries
in High Dimensional Euclidean Space with a Tiny In-
dex. PVLDB, 8(1):1–12, Sept. 2014.

[78] S. University. Southwest University Adult Lifespan
Dataset (SALD). http://fcon_1000.projects.

nitrc.org/indi/retro/sald.html?utm_source=

newsletter&utm_medium=email&utm_content=See%

20Data&utm_campaign=indi-1, 2018.

[79] S. C. Vision. Deep billion-scale indexing. http://

sites.skoltech.ru/compvision/noimi, 2018.

[80] X. Wang, A. Mueen, H. Ding, G. Trajcevski,
P. Scheuermann, and E. Keogh. Experimental com-
parison of representation methods and distance mea-
sures for time series data. Data Min. Knowl. Discov.,
26(2):275–309, Mar. 2013.

[81] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang.
A data-adaptive and dynamic segmentation index for
whole matching on time series. PVLDB, 6(10):793–804,
2013.

[82] T. Warren Liao. Clustering of time series dataa survey.
Pattern Recognition, 38(11):1857–1874, 2005.

[83] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proceedings of
the 24rd International Conference on Very Large Data
Bases, VLDB ’98, pages 194–205, San Francisco, CA,
USA, 1998. Morgan Kaufmann Publishers Inc.

[84] B. M. Williams and L. A. Hoel. Modeling and fore-
casting vehicular traffic flow as a seasonal arima pro-
cess: Theoretical basis and empirical results. Journal
of Transportation Engineering, 129(6):664–672, 2003.

[85] D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Pal-
panas. Dpisax: Massively distributed partitioned isax.
2017.

[86] A. B. Yandex and V. Lempitsky. Efficient indexing of
billion-scale datasets of deep descriptors. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2055–2063, June 2016.

[87] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding,
H. A. Dau, Z. Zimmerman, D. F. Silva, A. Mueen,
and E. Keogh. Time series joins, motifs, discords and
shapelets: a unifying view that exploits the matrix pro-
file. Data Mining and Knowledge Discovery, pages 1–41,
2017.

[88] M. Yeh, K. Wu, P. S. Yu, and M. Chen. PROUD: a
probabilistic approach to processing similarity queries
over uncertain data streams. In EDBT 2009, 12th In-
ternational Conference on Extending Database Technol-
ogy, Saint Petersburg, Russia, March 24-26, 2009, Pro-
ceedings, pages 684–695, 2009.

[89] K. Zoumpatianos, S. Idreos, and T. Palpanas. ADS:
the adaptive data series index. VLDBJ, 25(6):843–866,
2016.

[90] K. Zoumpatianos, Y. Lou, I. Ileana, T. Palpanas, and

126

J. Gehrke. Generating data series query workloads.
VLDBJ, 2018.

[91] K. Zoumpatianos, Y. Lou, T. Palpanas, and J. Gehrke.
Query workloads for data series indexes. In Proceedings

of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW,
Australia, August 10-13, 2015, pages 1603–1612, 2015.

127

