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57 ABSTRACT

A method and apparatus for ranked join indices includes a
solution providing performance guarantees for top-k join
queries over two relations, when preprocessing to construct a
ranked join index for a specific join condition is permitted.
The concepts of ranking join indices presented herein are also
applicable in the case of a single relation. In this case, the
concepts herein provide a solution to the top-k selection prob-
lem with monotone linear functions, having guaranteed worst
case search performance for the case of two ranked attributes
and arbitrary preference vectors.
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A graphical representation for the Top-KrtreeAnswer algorithm
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PARTS SUPPLIERS
availability name  supplier id supplierid quality
5 PO5 1 1 10
2 PO5 2 2 3
9 POS 3 3 8

Table and Rank Attributes

Figure 1
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DominatingSet (C,K}

Initialize priority queue € and Dy =0.

Sort the join result in non-increasing order of the s, rank value.
For the ith tuple ¢; with rank values(sjl 321)

if (10 1< K)
include ¢; inDg
include s}/ in O

else

if s/ < min{ 0} disgard 1;
else

include ¢; inDg

include s]z in g

if | Q] > k delete the minimum element of
Qutput Dy

The Dominating Set Algorithm

Figure 2
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ConstructRJI(Px)
For all (t;, tj), ti,t; € Dy
V < Compute separating vectors e,,; and separating points a(es;;)
Sort V' in non-decreasing order of a(es; ;)
Form R consisting of top-K tuples in D i with respect to f(; )
Setf{=0; Re = R;
For each element (t;,¢;) of V
i, ¢ € Rort, ¢t & R
No change in R’s composition by e,,;; discard e.,;
ifti€ Randt; € R
Materialize a(es,; ), Re; teplace ¢: with ¢ in R;
{=¢{+ 1R =R
if &; ¢Randt_,- €ER
Materialize a(es,; ), Re; replace t; with ¢; in R;
When V is exhausted, materialize R

Algorithm ConstructRJ!

Figure 5
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Input: A number k and a preference vector e = (p1, P2}
Output: The answer-set S to the fop-k query.

| procedure TopKrtreeAnswer()

2 let § = @ be a priority queue with space for exactly k values;
3 ProcessRtreeNode(root of rtree, S);

4 return(S);

5 procedure ProcessRtreeNode(node IV, 5}
6 if (IV is a leaf)

7 for (all tuples ¢ in this node)

8 insert¢zin S;

9 else

10 let r range over all the MBRs in /V;

11 let rmax = arg max,{maximum projection of MBR r

on preference vector e};

12 let r'o% = {minimum projection of MBR rmaz
on preference vector ¢};

13 for (each subtree rooted at each MBR c of V)

14 if (maximum projection of MBR ¢ > rI9%,

15 ProcessRireeNode(e, S);

16 retorn(S);

The Top KrtreeAnswer algorithm

Figure 9
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METHOD AND APPARATUS FOR RANKED
JOIN INDICES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/775,056 filed Feb. 9, 2004, now U.S. Pat. No.
7,185,012, which claims the benefit of U.S. Provisional
Application No. 60/446,237, filed Feb. 10, 2003, which is
herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to the ranking of
data entities and, more particularly, to a method and apparatus
for ranked join indices.

BACKGROUND OF THE INVENTION

Many data sources contain data entities that may be
ordered according to a variety of attributes associated with the
entities. Such orderings result effectively in a ranking of the
entities according to the values in an attribute domain. Such
values may reflect various quantities of interest for the enti-
ties, such as physical characteristics, quality, reliability or
credibility to name a few. Such attributes are referred to as
rank attributes. The domain of rank attributes depends on
their semantics. For example, the domain could either consist
of categorical values (e.g., service can be excellent, fair or
poor) or numerical values (e.g., an interval of continuous
values). The existence of rank attributes along with data enti-
ties leads to enhanced functionality and query processing
capabilities.

Typically, users specity their preferences toward specific
attributes. Preferences are expressed in the form of numerical
weights, assigned to rank attributes. Query processors incor-
porate functions that weight attribute values by user prefer-
ence, deriving scores for individual entities. Several tech-
niques have been developed to perform query processing with
the goal of identifying results that optimize such functions. A
typical example is a query that seeks to quickly identify k data
entities that yield best scores among all entities in the data-
base. At an abstract level, such queries can be considered as
generalized forms of selection queries.

Several prior art techniques disclose a framework for pref-
erence based query processing. Such works consider realiza-
tions of a specific instance of this framework, namely top-k
selection queries, that is, quickly identifying k tuples that
optimize scores assigned by monotone linear scoring func-
tions on a variety of ranked attributes and user specified
preferences. Most of these techniques for answering top-k
selection queries, however, are not based on indexing.
Instead, they are directed towards optimizing the number of
tuples examined in order to identify the answer under various
cost models of interest. Such optimizations include minimi-
zation of tuples read sequentially from the input or minimi-
zation of random disk access.

However, the few available techniques that do disclose
indexing for answering top-k selection queries do not provide
guarantees for performance and in the worst case, an entire
data set has to be examined in order to identify the correct
answer to a top-k selection query.

SUMMARY OF THE INVENTION

The inventors disclose herein a technique, referred to by
the inventors as ranked join index, for efficiently providing
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solutions to top-k join queries for arbitrary, user specified
preferences and a large class of scoring functions. The rank
join index technique of the present invention requires small
space (i.e., as compared to an entire join result) and provides
performance guarantees. Moreover, the present invention
provides a tradeoff between space requirements and worst-
case search performance.

In one embodiment of the present invention a method of
creating a ranked join index for ordered data entries includes
determining a dominating set of the ordered data entries,
mapping the dominating set of ordered data entries according
to rank attributes, determining a separating vector for each set
of adjacent mapped data entries, and ordering and indexing
the data entries according to a separating point associated
with each of the separating vectors.

BRIEF DESCRIPTION OF THE DRAWINGS

The teaching of the present invention can be readily under-
stood by considering the following detailed description in
conjunction with the accompanying drawings, in which:

FIG. 1 depicts two tables each comprising a list of
attributes and rankings for the attributes;

FIG. 2 depicts an embodiment of an algorithm for comput-
ing the dominating set for substantially any value of K, where
K depicts an upper bound for the maximum requested result
size of any top-k join query;

FIGS. 3a and 35 graphically depict an example of a Domi-
nating Set determined by a Dominating set algorithm for
tables and rank attributes having different join results;

FIG. 4a graphically depicts an example of the ordering of
two tuples when a vector has a positive slope;

FIG. 4b graphically depicts an example of the ordering of
the two tuples for a second case when a vector has an other
than positive slope;

FIG. 5 depicts an embodiment of an RJI Construct algo-
rithm of the present invention, which preprocesses a set of
tuples and constructs an index on its elements;

FIG. 6a and FIG. 65 graphically depict an example of the
operation of the RJI Construct algorithm;

FIGS. 7a, 7b and 7¢ graphically depict an example of the
space-time tradeoffs of the RJ1 Construct algorithm of FIG. 5;

FIG. 8a and FIG. 85 graphically depict an embodiment of
an R-tree with three MBRs and a top-k join query;

FIG. 9 depicts an embodiment of a TopKrtree Answer
algorithm of the present invention; and

FIG. 10 depicts a high level block diagram of an embodi-
ment of a controller suitable for performing the methods of
the present invention.

To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical ele-
ments that are common to the figures.

DETAILED DESCRIPTION

Although various embodiments of the present invention
herein are being described with respect to techniques for
providing performance guarantees for top-k join queries over
two relations, it will be appreciated by those skilled in the art
informed by the teachings of the present invention that the
concepts of the present invention may be applied to providing
performance guarantees for join queries over substantially
any number of relations.

FIG. 1 depicts two tables each comprising a list of
attributes and rankings for the attributes. For example, FIG. 1
comprises a first table labeled Parts. The Parts table comprises
three attributes, namely; availability, name and supplier id.



US 7,664,749 B1

3

FIG. 1 further comprises a second table labeled Suppliers.
The Suppliers table comprises two attributes, namely; sup-
plier id and quality. For purposes of explanation, it is assumed
that all parts correspond to the same piece of a mechanical
device, illustratively part P05, possibly of different brands.
The rank attributes, availability and quality, determine the
availability (i.e., current quantity in stock for this part) and the
quality of the supplier (i.e., acquired by, for example, user
experience reports on a particular supplier) respectively, hav-
ing as a domain a subset of R+ (i.e., the greater the value the
larger the preference towards that attribute value). A user
interested in purchasing parts from suppliers will have to
correlate, through a join on supplier id, the two tables. Rank
attributes, could provide great flexibility in query specifica-
tionin such cases. For example, a user looking for a part might
be more interested in the availability of the part as opposed to
supplier quality. In a similar fashion, supplier quality might
be of greater importance to another user, than part availability.
It is imperative to capture user interest or preference towards
rank attributes spanning multiple tables to support such que-
ries involving user preferences and table join results. User
preference towards rank attributes is captured by allowing
users to specify numerical values (weights), for each rank
attribute (i.e., the larger the weights the greater the preference
of'the user towards these rank attributes). Assuming the exist-
ence of scoring functions that combine user preferences and
rank attribute values returning a numerical score, the target
queries of the present invention identify the k tuples in the join
result of, for example in FIG. 1, Parts and Suppliers with the
highest scores.

For example, let R, S depict two relations, with attributes
A,-A, and B,-B,,, respectively. Al, Bl are rank attributes
with domains a subset of R+ and 0, an arbitrary join condition
defined between (sub)sets of the attributes A,-A,, B,-B,,
(Rp4gS). For a tuple, teRp<S, A (t) (and similarly B,(t)) cor-
responds to the value of attribute A, (and similarly B,) of tuple,
t. Furthermore, Let f: R+xR+—=R+ be a scoring function that
takes as input the pair of rank attribute values (s, s,)=(A, (1),
B, (1)) of tuple teRp4,S, and produces a score value f(s, s,)
for the tuple t. It should be noted that a function f:
R+xR+—=R+ is monotone if the following holds true: x, =x,,
and y, =y,, then f(x, y )=f(x,, y,).

For further explanation, let e=(p,, p,) denote the user
defined preferences towards rank attributes A, B;. As such, a
linear scoring function, f,: R+xR+—=R+, is defined as a scor-
ing function that maps a pair of score values (s, s,) to the
valuef, (s, s,)=p,S;+D,S,- It is assumed that user preferences
are positive (belonging to R+). This is an intuitive assumption
as it provides monotone semantics to preference values (the
greater the value the larger the preference towards that
attribute value). In such a case, the linear function £, is mono-
tone as well. The symbol, £, is used to denote the class of
monotone linear functions. Note that the pair of user defined
preferences, e, uniquely determines a function, fe£.

Given the relations R, S, join condition 6 and scoring
function f e£, a top-k query returns a collection T, (e) = Rb<S
of k tuples ordered by f,(A,(t), B, (1)), such that for all
teRMES, T ()21, (A, (1), B, (D)=L(A,(1), B, (1), for all
t,€T,(e), 1=i=k. Thus, a top-k join query returns as a result k
tuples from the join of two relations with the highest scores,
for a user specified scoring function, f,, among all tuples in
the join result.

If the relations R, S to be joined consist of O(n) tuples, the
size of the join relation Rb4,S may be as large as O(n®). The
inventors determined and demonstrate herein that most of the
tuples of the join relation, Ri<gS, are typically not necessary
for answering top-k join queries. In particular, for a fixed
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value K<n, where K depicts an upper bound for the maximum
requested result size of any top-k join query, and for the entire
class of linear functions £, in the worst case, a number of
tuples much smaller than O(n?) is sufficient to provide the
answer to any top-k join query, k=K.

In addition, it should be noted that there is no need to
generate the complete join result R4, S. For example, let C
denote the subset of R4S necessary to generate, in the worst
case, an index, providing answers with guaranteed perfor-
mance on any top-k join query, k=K, issued using any scor-
ing function fe£. Note that although each tuple, t, of R could
join in the worst case with O(n) tuples of S, for a fixed value
of K, only tis joined with at most K tuples in S; the ones that
have the highest rank values. Therefore, among the possible
O(n) tuples in the join that are determined for each tuple, teR,
only the K tuples with the highest rank values are required.
Due to the monotonicity property of functions in £, these K
tuples will have the highest scores for any feR. As such, the
inventors disclose postulate one (1) which follows:

For relations of size O(n) and a value K, the worst

case size of C is O(nK). (€8]

Note that this worst case size is query independent (i.e.,
using the same set of tuples, C, of worst case size O(nK), any
top-k join query, k=K, for substantially any fef may be
solved. In a preprocessing step, C may be determined by
joining R and S and selecting for each tuple, teR, the K (worst
case) tuples contributed by t to the join result that have the
highest rank values in S. Such a preprocessing step may be
carried outina fully declarative way using a Structured Query
Language (SQL) interface, which is well-known in the art.

For further reduction of the size of C, the inventors disclose
letting t and t' denote two tuples of Rb<gS and (s;, s,) and (s';,
s',) denote the pairs of rank values associated with the tuples,
respectively. Thus, tuple t' dominates tuple t if s,=s', and
s,=s',. The domination property provides a basic means to
reduce C even further.

As such, two methods of reducing the size of C are dis-
closed herein. That is, the determination that for relations of
size O(n) and a value K, the worst case size of C is O(nK),
reduces a join result by restricting the number of the tuples
contributed to the join by a single tuple of a relation. In
addition the domination property described above reduces the
size of C by examining the tuples contributed to the join by
multiple tuples of a relation. As such, the inventors disclose
postulate two (2) which follows:

For a value of K, if some tuple teC is dominated by at
least K other tuples, then t cannot be in the solu-

tion set of any top-k join query, k=K. 2)

Thus, from the monotonicity properties of the scoring
functions, it is evident that a viable strategy to reduce the size
of C is to identify all tuples in C dominated by at least K
tuples. Formally, given a set C, the dominating set, D,, is the
minimal subset of C with the following property: for every
tuple t£D, with rank values (s,, s, ), there are at least K tuples
t,eD,, that dominate tuple t.

FIG. 2 depicts an embodiment of an algorithm for comput-
ing the dominating set, D, for substantially any value of K in
accordance with the present invention. In the algorithm of
FIG. 2, every tuple t; in C is associated with a pair of rank
values (s}, s',). The algorithm maintains a priority queue, Q,
(supporting insertions/deletions in logarithmic time) storing
the K largest s’| rank values encountered so far. The algorithm
first sorts the tuples in the join result in non-increasing order
with respect to the s, rank values. The tuples are then con-
sidered one at a time in that order. For every tuple t, (after the
first K), if its s’, rank value is less than the minimum rank
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value present in Q, the tuple is discarded. Otherwise the tuple
is included in the dominating set, and the priority queue, Q, is
updated. The Algorithm Dominating Set of FIG. 2 requires a
time equal to O(IClloglCl) for sorting and computes the
dominating set D, in a time equal to O(ICllog K). The number
of tuples reduced by the Dominating Set algorithm depends
on the distribution of the rank value pairs in the join result. In
practice the size of D, is expected to be much smaller than
O(nK). In the worst case, however, no tuple is dominated by
K other tuples and, as a result, the Dominating Set algorithm
does not achieve any additional reduction in the number of
tuples.

FIGS. 3a and 354 graphically depict an example of a Domi-
nating Set determined by the Dominating set algorithm for
tables and attributes such as those of FIG. 1, having two
different join results. FIG. 3 depicts the two pairs of relations
and the different rank attribute values. For both pairs of rela-
tions, the size of the join result is the same (equal to 3). For the
tuples of each join result in FIGS. 3a and 35, a geometric
analogy is drawn and the tuple is represented by the rank
attribute pair, (quality, availability), as a point in two dimen-
sional space. For the rank attribute value distributions in FIG.
3a, the set D, has a size of 3 (worst case) since no tuple is
dominated by any other tuple. Thus, in this case the Domi-
nating Set algorithm determines the set D, having a size equal
to the theoretically predicted worst case. In contrast, in FIG.
35, the Dominating Set algorithm determines a set D, with a
size of 1 and containing the tuple whose rank attribute pair
dominates the other two, for K=1.

The relationship among the sets, D,, associated with each
top-k join query possible with k=K may be characterized
according to the following postulate, number three (3), which
follows:

Considering two top-k join queries requesting k;, k»
results and k; =k, =K, for the dominating sets

Dry> Dy, D, then Dy €Dy © D 3

Thus, it is determined that it is sufficient to identify and
determine only the set D, since the solutions to any top-k join
query k=K are contained in this set. This also holds true for
any scoring function, fe£.

The inventors present above an algorithm to preprocess the
set Dy and develop an index structure, considered by the
inventors as RJI, which provides solutions to top-k join que-
ries with guaranteed worst case access time. Every function,
fe£, is completely defined by a pair of preference values (p,,
p,)- The value of the function, f, on a tuple, teD,, with rank
values (s, s,) is equal to p,s;+p,s,. The index structure, RJI,
is constructed by representing members of £ and rank value
pairs for each teD, as vectors in two-dimensional space.
Since every f e£ is completely defined by the pair e=(p;.p»),
every function, f, may be depicted by the vector e=<(0,0)(p,,
p.)> on the plane. Similarly, the rank value pairs may be
characterized as a vector s=<(0,0)(s,,s,)>. In light of the
preceding geometric relations, the value of a function, f, on a
tuple teD, with rank values (s,,s,) is the inner product of the
vectors e and s. The reasoning behind representing members
of class of monotone linear functions, £, as vectors may be
explained as follows. Assume that |lel|=1 (i.e., the vector, e, is
aunit vector), then the value of the function, 1(,,,,,)(s,,8,), is
the length of the projection of the vector s on the vector e. It
should be noted, however, that the assumption that the vector,
e, is a unit vector is solely for the purposes of simplifying the
presentation. It should not be interpreted as being required for
the correctness of the approach of the present invention. The
result of any top-k join query T,(e) is the same independent of
the magnitude of the vector, e. For example, letting u=cie be
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some vector in the direction of e with length a, T,(e) is the
same as T,(u) since the lengths of the projected vectors
change only by a scaling factor, and thus, their relative order
is not affected.

As previously depicted, the set of tuples D, may be repre-
sented as points in two dimensional-space using the rank
values of each tuple. Given a unit vector e, the angle a(e) of the
vector is defined as the angle of e with the axis representing
(without loss of generality) the s, rank values. For a set of 1
tuples {t;, t5, . . ., t;}, Ord ({t;, t,, . . ., t;}) is defined as the
ordering of the tuples {t,, t,, . .., t,} when the rank value pairs
associated with each tuple are projected on the vector e, and
are sorted by non-increasing order of their projection lengths.
Ord_({t,, t,, . . ., t,}) is used to denote the reverse of that
ordering. T,(e) contains the top k tuples in the ordering Ord,
({tls tzs ceto tl})'

Letthe vector, e, sweep the plane defined by the domains of
rank attributes (R+xR+). Specifically, let the sweep start from
the s, -axis and move towards the s,-axis (i.e., counter-clock-
wise). Thus, e ranges from e=<(0,0)(1,0)>to e=<(0,0),(0,1)>.
As such, to examine how the ordering Ord_(Dy) varies as e
sweeps the plane, two tuples and their relative order are first
considered. That is, let s,=(s,", s,) and s,=(s,, s,°) be the
rank value pairs for two tuples t,, t, €eD,. Since rank value
pairs are represented as vectors, let (s*, s°)=s°-s’ denote the
vector defined by the difference of s* and s*, and let b denote
the angle of the vector (s*, s*) with the s, -axis. Having done
so, the inventors disclose postulate four (4), which follows:

Depending on the angle, b, that vector (s, s?) forms
with the s;-axis as e sweeps the plane, one of the
following holds true:

(a) if be[0, 1/2], Ord,({t,, t,}) is the same for all e.

(b) if be[-a/2, 0] U [x/2, =], let e, be the vector per-
pendicular to (s',s?), and as such:

(D) fosl1 5 ) Hosl5 12 957,

(i) Ord,, ({z,, 1,})=Ord ({2, 2,}), for all vectors e ,e,
with a(ey), a(ex)>a(e,), or aley), a(ez)<ale;),

(iii) Ord, ,({z}, £})=Ord ({1}, 1-}), for all e ,e,, such
that a(e,)<a(e,)<a(e,). Moreover, as a vector &
sweeps the positive quadrant, tuples t;, t, are
adjacent in the ordering Ord (D) immediately
before e crosses vector e, and remain adjacent in
Ord, (Dg) immediately after e crosses vector e_.

Q)

The principles presented above indicate that as e sweeps a
plane, the ordering of tuples t; and t, changes only when e
crosses the vector e,, which is defined as the vector perpen-
dicular to (s*, s?). If the vector <s', s*> has a positive slope,
then the ordering of the tuples t;, t, remains the same for all e.
The vector e, is considered the separating vector of tuples t,
and t,, and a(e,) is considered the separating point.

FIG. 4a and FIG. 45 depict a graphical representation of the
ordering of two tuples for two different values of the angle, b,
that the vector (s*, s*) forms with the s, -axis as e sweeps the
plane. In FIG. 4a and FIG. 4b two tuples, t, and t, are graphed
along with a representation of the separating vector, e, of the
tuples, t1 and t, and a graphical representation of the angle, b.
More specifically, FIG. 4a graphically depicts an example of
the ordering of two tuples t,, t, when the vector <s', s*>has a
positive slope. As evident in FIG. 4a, the ordering of the
tuples t;, t, remains the same for all e. FIG. 45 graphically
depicts an example of the ordering of the two tuples t,, t, for
the second case above where the vector <s!, s?>has an other-
than-positive slope. Although only two tuples, t, and t, are
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depicted in FIG. 4a and FIG. 4b, it should be noted that more
than two tuples may share the same separating vector. For
example, if t|, t, and t; are three tuples such that their corre-
sponding rank value pairs are co-linear, the three tuples t,, t,
and t; all share the same separating vector. As such, the
inventors disclose postulate five (5), which follows:

Ift;, t, . . . t; are | tuples with colinear rank value pairs
sharing the same separating vector, e, then Ord,,

{t, 15 ... 1,)=0rd ({2}, & . . . 1;}) for all a(e,),
a(e,) such that a(e;)<a(e,)<a(e,). (5)
Briefly stated, each separating vector corresponds to the
reversal of two or more adjacent points.

FIG. 5 depicts an embodiment of an RJI Construct algo-
rithm in accordance with the present invention, which pre-
processes the set of tuples, Dy, and constructs an index on its
elements. In the algorithm of FIG. 5, a vector, e, sweeps the
plane and the composition of Tz(e) is monitored. Every time
vector e crosses a separating vector, Ord, (D) changes by
swapping two (or more if they are colinear) adjacent tuples as
described above. A key observation is that this swap is of
interest for indexing purposes only if it causes the composi-
tion of T(e) to change. Assuming that D, contains tuples of
the form (tid,, s,’, s,"), where tid, is a tuple identifier, and s,
s,’ are the associated rank values, the algorithm of FIG. 5
initiates by first computing the set V of all separating vectors.
This involves considering each pair of tuples in D, and com-
puting their separating vector and the associated separating
point. Let e, (a(e,,)) represent the separating vector (sepa-
rating point) for each pair of tuples, t,, t, 1=i, j=ID,l|. Bach
pair (tid;, tid;) along with the associated separating point
a(e,;), is computed and materialized as set V. Then set V is
sorted in non-decreasing order of a(e,;).

The algorithm then sweeps the (positive quadrant of the)
plane, going through the separating vectors in V in sorted
order. The algorithm maintains also a set, R, that stores (un-
sorted) the K tuples with highest score according to the func-
tion, f,, where e is the current position of the sweeping vector.
R is initialized to hold the top-k tuples with respect to the
initial position of vector, e, namely e=<(0, 0)(1, 0)> (function
f(1,0))- Initializing R is easy, since the set, D, computed at the
end of the Dominating Set algorithm is sorted by s,".

Bacha(e,,) in the set, V, (and the corresponding vector e,,;)
is associated with two tuple identifiers (t,, t;). When e crosses
the vector e; during the sweep, it causes the ordering of
tuples t,, t, to change according to Postulates 4 and 5 depicted
above. In case both tuple identifiers belong to R, or neither
belongs to R, the vector e, can be safely discarded from
consideration, since it does not affect the composition of R.
Otherwise, a(e,,) is determined together with the composi-
tion of R, and R is updated to reflect the new tuple identifiers.
The last value of R is also determined after the sweep is
completed. At the end of the RJI Construct algorithm, M
separating vectors, €;,e,, . . . , €, have been accumulated
(represented by their separating points a(e,), 1=i=M). The
accumulation of the vectors, e,1=i=M, partitions the quad-
rant into M+1 regions. Each region i, 0=1=M, is defined by
vectors e;, e,,,, where e,=<(0,0)(1,0)>, and e,,,, <(0,0)
(0,1)>. Region i is associated with a set of K points R,.£D,,
such that for any vector, e, with a(e,)=a(e)=a(e,, ), uniquely
identifying a function f e£, T (e) is equal to a permutation of
R,. This permutation is derived by evaluating f, on every
element of R; and then sorting the result in non-increasing
order. That is, R, contains (up to a permutation) the answer to
any top-k query, k=K for any function defined by a vector in
region i.
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For example, FIG. 6a and FIG. 65 graphically depict an
example of the operation of the RJI Construct algorithm. FIG.
6a and FIG. 65 comprise a set, D,, consisting of four tuples,
1, 15, 13, t,. The RJI Construct algorithm starts by computing
the separating vector for each pair of tuples. For ease of
explanation and brevity, in FIG. 6a the separating vectors are
presented only for pairs of tuples t,, t;, t,. The separating
vectors e, €,,4, and e,; are computed for each pair as shown
in FIG. 6a. Each pair is stored along with the associated
separating point and the collection is ordered based on sepa-
rating points. Setting K=2. an index is created answering the
top-1 and top-2 join queries.

Consider now a vector, e, sweeping the plane. The first two
tuples in Ord,, (D) are R={t,,t,}. The first vector crossed
by e is e;,, which corresponds to swapping tuples t; and t,.
The swap changes the composition of R. In particular, t, is
replaced with t,. At this point, a(e,,) is stored along with the
R,=R={t,,t,} and the current composition of R becomes
R={t,,t;}. Then a(e,,) is encountered in the sorted order but
the swap of't,,t, does not affect the composition of R. The next
vector in the sorted order is e,;. The composition of R is
affected such that a(e,;) is stored along with R,=R={t,,t;}
and the current composition of R changes to R={t,,t,}. When
the input is exhausted, the current ordering R,=R={t ,t,} is
stored, and the algorithm terminates. FIG. 65 depicts the final
partitioning of the plane.

Critical to the size of the index is the size of M, the number
of separating vectors identified by the RJI Construct algo-
rithm. A worst case bound is provided on M by bounding the
number of times that a tuple identifier can move from position
K+1 to position K in Ord (D). Postulates 4, 5 previously
presented guarantee that whenever a swap happens between
elements of Ord (Dy), it takes place between two adjacent
elements in Ord, (D). Thus, only the separating vectors that
cause a swap of the elements in positions K and K+1 in
Ord, (D) are indexed, since these are the ones that cause the
composition of T to change. For every t,eD, define rank,,(e) to
be the position of tuple t, in the ordering Ord, (D). As such,
the inventors disclose postulate six (6), which follows:

For every tuple t;, €Dy, rank,;(e) can change from 1+1
to | at most | times for any vector e, =K.

(6
In addition, the inventors disclose the following Theorem:

Given a set of dominating points D, an index may be
constructed for top-k join queries in time
O(IDg? log IDg) using space O(IDgIK?) provid-
ing answers to top-k join queries in time
O(loglKDg+K log K), k=K in the worst case.

Postulate 6 guarantees that each element in DK contributes
at most K changes to Tg(e). This means that each tuple intro-
duces at most K separating vectors and consequently intro-
duces K separating points that need to be stored in the worst
case. Therefore, the number M of separating points is at most
O(IDgIK). After the separating points a(e,) are identified, they
are organized along with the associated sets R, in a B-tree
indexed by a(e,). The leaf level stores pointers to the sets R,.
Thus, the total space requirement becomes O(IDIK?). There
are O(nK) elements in D in the worst case, so the number M
of separating points that require representation in the index is
atmost O(nK?). Thus, the total space used by this structure in
the worst case is O(nK?>). The worst case time complexity for
constructing the ranked join index is O(n*K?) time to com-
pute the separating vectors and separating points and O(n*K?
log(n*K?)) time to sort the separating points. Constructing a
B-tree may be performed during the single scan on the sorted
separating point collection of the RII Construct algorithm.
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Thus, the total construction time is O(n’K? log(n*K?)). It
should be noted that these are the worst case space and con-
struction time requirements for the index RJIL.

At query time, given the vector, e, that defines a function,
f e£, a(e) is computed and the B-tree is searched using a(e) as
a key. This effectively identifies the region that contains the
vector, e. Then, the associated set R1 is retrieved and f,
evaluated for all elements of R,, sorting the results to produce
T,(e). Thus, the query time is O(log(nK*)+K log K) in the
worst case, for any top-k join query, k=K.

The ranked join index design of the present invention pro-
vides a variety of space-time tradeoffs which can be utilized
to better serve the performance/space constraints in various
settings. If the space is a critical resource, the space require-
ments could be decreased significantly, at almost no expense
on query time. Note that sets R, and R, ; associated with two
neighboring regions differ, in the worst case, by only one
tuple. Therefore, the set R, U R,,, contains K+1 distinct
tuples. If m regions are merged, then the resulting region
contains at most K+m-1 distinct tuples. It should be noted
that this is a worst case bound. Depending on the distribution,
aregion may contain less than K+m-1 distinct tuples. There-
fore, if there are initially M separating vectors, merging every
m regions reduces the number of separating vectors to M/m.
The space for the index becomes O(M(K+m)/m), and the
query time O(log(M/m)+(K+m) log(K+m)). Since M=0O
(nK?) in the worst case, the requirements of the index are
O(nK*(K+m)/m) for space, and O(log(nK*/m)+(K+m) log
(K+m)) for query time.

For example, FIGS. 7a, 76 and 7¢ graphically depict an
example of the space-time tradeoffs of the RJI Construct
algorithm for K=2. Every two regions of FIG. 7a are merged
and the resultis depicted in FIG. 75. Merging m regions does
not always result in a region with K+m-1 tuples as described
above. Depending on the distribution of the rank values, it
may be the case that as the vectors that define the m regions
are crossed, some points move in and out of the top K posi-
tions multiple times. In this case, merging m regions results in
a region with far less than K+m-1 distinct tuples. As such,
instead of merging every m regions, the regions may be
merged so that every region (except possibly the last one)
contains exactly K+m-1 distinct tuples. This allows for more
aggressive reduction of space, without affecting the worst
case query time. If fast query time is the main concern, the
query time may be reduced by storing all separating vectors
that cause Tg(e) to change. According to Postulate 6
described above, a tuple may move from position 1+1 to 1 at
most | times, therefore, each tuple may contribute at most
142+ . . . +K=K(K=*1)/2 changes to T(e). Thus, storing at
most O(nK?>) separating vectors the query time may be
reduced to O(log(nK?>)). Effectively in this case an ordered
sequence of points is being stored in each region R, so there is
no need for evaluating f,, on the elements of the region. The
ordered sequence (according to f,) may be returned immedi-
ately. FIG. 7¢ depicts a materialization of the separating
points causing a change in ordering for the tuples in each
region of FIG. 7a.

The inventors further disclose herein a variant of a range
search procedure of an R-tree index that is specifically
designed to answer top-k join queries. This provides a base-
case for performance comparison against a solution provided
by the present invention. Briefly stated, an R-tree index is
implemented to prune away a large fraction of the tuples that
are bound not to be among the top k. This modified R-tree is
referred to by the inventors as the TopKrtree. Consider the
two-dimensional space defined by the 2 rank values associ-
ated with each tuple in D, returned by the Dominating Set
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algorithm. An R-tree on these points is constructed using
R-tree construction algorithms know in the art. A basic obser-
vation is that due to the monotonicity property of the func-
tions fe£, given a Minimum Bounding Rectangle (MBR), r, at
any level in that tree, the minimum and maximum score
values for all tuples inside r are bounded by the value any
scoring function in £ gets at the lower left and upper right
corners of r. Following this observation the R-tree search
procedure is modified according to the following.

At each node in the R-tree, instead of searching for over-
laps between MBRs, the procedure searches for overlaps
between the intervals defined by the values of the scoring
function in the upper right and lower left corners of the
MBRs. The algorithm recursively searches the R-tree and
maintains a priority queue collecting k results.

For example, FIG. 8a and FIG. 8b graphically depict an
embodiment of an R-tree with three MBRs, namelyr,, r,, and
13, and atop-k join query with e=(p,,p,). The largest score that
a point in an MBR can possibly achieve is the score given by
the projection of the upper right corner of the MBR on vector
e. This projection is referred to by the inventors as the maxi-
mum-projection for the MBR, and the MBR that has the
largest maximum-projection among all the MBRs of the same
R-tree node as the master MBR. Similarly, the lowest score is
given by the projection of the lower left corner (minimum-
projection) of the MBR. A simplified embodiment of the
algorithm, named TopKrtree Answer, is presented in FIG. 9.
For brevity, it is assumed that each MBR contains at least K
tuples. Therefore, the algorithm guiding the search uses only
the master MBR at each R-tree level. Accounting for the case
where multiple MBR’s are required is immediate by main-
taining a list of candidate MBRs ordered by their maximum
projections at each level. This resembles the type of search
performed while answering nearest-neighbor queries using
R-trees. In the TopKrtree Answer algorithm of FIG. 9, the
MBR with the largest maximum-projection is always the
candidate to search and expand further for obtaining the
answer to the top-k query. This is rectangle r; in FIG. 8a, since
its maximum-projection r,” is the largest among the three
MBRs. In this case, all MBRs with maximum-projection less
than the minimum-projection of the master MBR may be
safely pruned away. In this example the tuples in r; will not be
examined since all these tuples have scores less than the
minimum score of all the tuples in r, . However, the algorithm
will examine all MBRs with maximum-projection greater
than the minimum-projection of the master MBR. The range
of projections of such MBRs overlap, and the answer to the
top-k query may be a collection of tuples coming from all
those MBRs. Therefore, in order to get the correct answer, all
of'the MBRs whose projections on vector e overlap with the
projection of the master MBR must be examined. It should be
noted, however, that there are many cases in which the Top-
Krtree accesses more MBRs than really necessary. For
example, FIG. 8b, depicts a top-2 query with e=(p,, p,)-
Bvidently, the answer to this query is the set of tuples {t,, t,},
both contained in r,. Observe that even though r; has the
largest maximum-projection (e.g., r,”) none of its tuples (e.g.,
t;) are contained in the top-2 answer. Thus, all the computa-
tions involving r; are useless in this case.

FIG. 10 depicts a high level block diagram of an embodi-
ment of a controller suitable for performing the methods (i.e.,
algorithms) of the present invention. The controller 1000 of
FIG. 10 comprises a processor 1010 as well as a memory
1020 for storing the algorithms and programs of the present
invention. The processor 1010 cooperates with conventional
support circuitry 1030 such as power supplies, clock circuits,
cache memory and the like as well as circuits that assist in
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executing the software routines stored in the memory 1020.
As such, it is contemplated that some of the process steps
discussed herein as software processes may be implemented
within hardware, for example, as circuitry that cooperates
with the processor 1010 to perform various steps. The con-
troller 1000 also contains input-output circuitry 1040 that
forms an interface between the various functional elements
communicating with the controller 1000.

Although the controller 1000 of FIG. 10 is depicted as a
general purpose computer that is programmed to perform
various methods and operations in accordance with the
present invention, the invention may be implemented in hard-
ware, for example, as an application specified integrated cir-
cuit (ASIC). As such, the process steps described herein are
intended to be broadly interpreted as being equivalently per-
formed by software, hardware, or a combination thereof.

While the forgoing is directed to various embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof. As such, the appropriate scope of the invention
is to be determined according to the claims, which follow.

What is claimed is:

1. A method of creating a ranked join index for ordered data
entries, comprising:

determining, via a processor, a dominating set of said

ordered data entries;

mapping said dominating set of said ordered data entries

according to rank attributes;

determining a separating vector for each set of adjacent

mapped data entries; and

ordering said data entries according to a separating point

associated with each of said separating vectors.

2. The method of claim 1, wherein said determining the
dominating set of said ordered data entries, comprises:

maintaining a priority queue of a predetermined size of

said ordered data entries according to said rank
attributes, wherein data entries having highest combined
rank attribute values are maintained in said priority
queue;

wherein, if said priority queue has reached a maximum

capacity, only data entries having combined rank
attribute values greater than an attribute value of data
with a minimum rank value present in the priority queue
are added to the priority queue.

3. The method of claim 2, wherein said predetermined size
corresponds to a minimum number of data entries necessary
to generate, a ranked join index providing answers with a
desired guaranteed performance on any top-k join query.

4. The method of claim 1, wherein said ordering said data
entries, comprises:

sweeping a vector across a plane of said mapped data

entries, wherein each time said vector crosses a separat-
ing vector, a current composition of highest ranked data
entries changes by swapping at least one of the data
entries in the adjacent data entries set if it causes a
change in the index; and

wherein each time a data entry is swapped, the highest

ranked data entries are materialized and a new index
entry is initiated.

5. The method of claim 1, wherein said ordering is query
independent such that substantially any user preference query
is resolved using said index.

6. The method of claim 1, wherein said each set of adjacent
mapped data entries comprises more than two mapped data
points if data entries are collinear.
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7. The method of claim 1, wherein performance guarantees
are provided for an amount of time said index requires for
resolving user queries.

8. The method of claim 1, further comprising merging
ordered data entries.

9. The method of claim 8, wherein said merging results in
a storage space requirement for said index that is character-
ized according to an equation:

O(nK?(K+m)/m)

wherein n represents a total number of data entries to be
indexed, K represents an upper bound on a number of high
ranking data entries that is requested by a user, and m repre-
sents a total number of data entries to be merged.

10. The method of claim 8, wherein said merging results in
a query time for said index that is characterized according to
an equation:

O(log(nK?/m)+(K+m)log(K+m))

wherein n represents a total number of data entries to be
indexed, K represents an upper bound on a number of high
ranking data entries that is requested by a user, and m repre-
sents a total number of data entries to be merged.

11. The method of claim 8, wherein said merging said
ordered data entries provides a space and time tradeoff.

12. The method of claim 11, wherein said space and time
tradeoff comprises reducing a query time of said index by
increasing a storage space of said index.

13. The method of claim 11, wherein said space and time
tradeoff comprises reducing a storage space required by said
index by increasing a query time of said index.

14. A method of providing solutions to top-k join queries of
ranked data entries for user specified preferences, compris-
ing:

determining, via a processor, a dominating set of said

ranked data entries;

mapping said dominating set of said ranked data entries

according to rank attributes;

creating a ranked join index for said ranked data entries by

determining a separating vector for each set of adjacent
mapped data entries;

ordering said data entries according to a separating point

associated with each of said separating vectors; and
providing a solution for a user preference query using said
ranked join index.

15. A computer-readable medium storing a set of instruc-
tions, which when executed by a processor, perform a method
of creating a ranked join index for ordered data entries, com-
prising:

determining a dominating set of said ordered data entries;

mapping said dominating set of said ordered data entries

according to rank attributes;

determining a separating vector for each set of adjacent

mapped data entries; and

ordering said data entries according to a separating point

associated with each of said separating vectors.

16. A computer-readable medium storing a set of instruc-
tions, which when executed by a processor, perform a method
of providing solutions to top-k join queries of ranked data
entries for user specified preferences, comprising:

determining a dominating set of said ranked data entries;

mapping said dominating set of said ranked data entries
according to rank attributes;

creating a ranked join index for said ranked data entries by

determining a separating vector for each set of adjacent
mapped data entries;
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ordering said data entries according to a separating point
associated with each of said separating vectors; and

providing a solution for a user preference query using said
ranked join index.

17. An apparatus, comprising a memory storing informa-
tion and program instructions and a processor executing said
instructions, said apparatus adapted to perform a method of
creating a ranked join index for ordered data entries compris-
ing:

determining a dominating set of said ordered data entries;

mapping said dominating set of said ordered data entries

according to rank attributes;

determining a separating vector for each set of adjacent

mapped data entries; and

ordering said data entries according to a separating point

associated with each of said separating vectors.

18. The apparatus of claim 17, wherein said determining
the dominating set of said ordered data entries, comprises:

—

14

maintaining a priority queue of a predetermined size of
said ordered data entries according to said rank
attributes, wherein data entries having highest combined
rank attribute values are maintained in said priority

5 queue;

wherein, if said priority queue has reached a maximum
capacity, only data entries having combined rank
attribute values greater than an attribute value of data
entries with a minimum rank value present in the priority

0
queue are added to the priority queue.

19. The apparatus of claim 18, wherein the predetermined
size of said priority queue corresponds to a minimum number
of data entries necessary to generate, a ranked join index

15 providing answers with a desired guaranteed performance on

any top-k join query.



