a9 United States

Tori et al.

US 20140068055A1

a2y Patent Application Publication o) Pub. No.: US 2014/0068055 A1

(54)

(76)

@
(22)

(1)

RESOURCE SHARING IN COMPUTER
CLUSTERS ACCORDING TO OBJECTIVES

Inventors: Enrico Iori, (US); Alkiviadis Simitsis,
Santa Clara, CA (US); Themistoklis
Palpanas, Trento (IT); William K.
Wilkinson, San Mateo, CA (US);
Stavros Harizopoulos, San Francisco,

CA (US)
Appl. No.: 13/605,651
Filed: Sep. 6,2012

Publication Classification

Int. Cl1.
GO6F 15/173 (2006.01)

43) Pub. Date: Mar. 6, 2014
(52) US.CL

USPC e 709/224
(57) ABSTRACT

A method of assigning resources of a computer duster with
resource sharing according to objectives. The method
includes monitoring resources of each of a plurality of cloud
nodes, providing information descriptive of the cloud node
resources, receiving a reservation, determining whether
resources are available to satisfy the reservation and any other
pending reservations, if resources are available, using a rapid
search to determine resource assignments for the reservation
and any other pending reservations according to one or more
objectives, and allocating resources according to the resource
assignments.

120 ¢ 1%
)

|

122

D s

N —

7 106
Allocation node
f—'! 24 fri 26
Monitor Reservation
module Vel madule
o 128 /4 30
Collector Scheduler
node mwodule
Status Workloads
J 100a
) Cloud
K node i
f? (0b
Cloud
< e
node 2
§
j
i
b ~100n
Cloud |

nade #

Patent Application Publication Mar. 6,2014 Sheet 1 of 16 US 2014/0068055 A1

-102 e
; Allocation node
E } 124 128
e €> Monitor 104 Ressrvation
e module J—— module
122)
128 130
Collector Scheduler
node module
Status Workloads
~10Ca
. Cloud
K nods 1
~100kb
) Cloud
N node 2
}
i
]
b -100n
Cloud
..Q..mmm_.‘
node 7

Figure 1A

Patent Application Publication Mar. 6,2014 Sheet 2 of 16 US 2014/0068055 A1

108

Monttor cloud node
TESOUICes

110
.

Provide information
fo customer

112
-

Receive reservation
from cusiomer

) e 14
Store reservation

A 4

Determine assignments of [116
cloud node resources
according to objectives

¥

118
Alocate resources

according to assignments

Figure 1B

Patent Application Publication Mar. 6, 2014 Sheet 3 of 16 US 2014/0068055 A1

200
Ve

212
/,2(}2 //

CPU - - -3 Resource module

!

: ¥

i !

i }

[

204 | ; 208
4 § vy 7
!
Memory f—~-1 Communication port

|
i
;
!
i
i
/7 208
!
i
:

Storage -~

210
s

Machine
instructions

Figure 2

Patent Application Publication

Monitor resources of each of
plurality of ¢loud nodes

Mar. 6, 2014 Sheet4 of 16

- 300

Provide information descriptive of
cloud node resources

e 302

Receive reservalion

~ 304

el .
" Are tesources available to
satisfy reservation and other
pending reservations?

Yes

=

RNy e

308

No

US 2014/0068055 A1

Delerming resource assignments
according 1o ohjectives

- 308

<\

312

o
/“/Arc altcrnative

resources available?
"

e j3"!4
// Are ;memative\(‘\ No

T

resources acceptable?

Yes

If alternative resources are acceplable,

according to predetermined objectives

deferming resource assignments

J

Drynamically change
resource allocations

e 320

=
"f Stop ™~ 318

Allocate eloud node resourecs
according 10 1oSOUTSe assignracnis

~ 310

Figure 3

Patent Application Publication Mar. 6,2014 Sheet 5 of 16 US 2014/0068055 A1

o = s

Corapare cloud resources as - 400
requested with cloud resources
actually used

o 402

Use result of comparison to
determine assignments for similar
FeSCTVALONS

)

Use result of comparison 10
assist customers to plan
reservations for as few

resources as actually needed

i 404

Use result of comparison Lo
identify customers that
repeatedly reserve more
resources than needed

- 406

410

Figure 4

Patent Application Publication Mar. 6, 2014 Sheet 6 of 16 US 2014/0068055 A1

‘ . . - 500
Hach cloud node monitors its own resources:
& DICHIONY
& Processor
e data storage
e message tratfic (communications)
i
- 502

Each node sends report to monitor
module

1
{ ¥

=Y

Monitor mochile generates visual display: Moritor module storcs rosource | 204
e resource use for each cloud node usage information in data storage
= message waffic
& existing reservations i~ 506

\ix 508
User:
Reservation

; . . P~ 510
Monitor module sends (o reservation module:
e reservation
® FCSOUICE Use
e cxisting reservations
512
Reservation module:
e . Y
New reservation
e 514

New reservation is added to
existing reservations

Figure 5

Patent Application Publication

Percent core

usage

EN

100

80

80

40

20

Cloud node 1
300 PM, 20 July 2012

Mar. 6,2014 Sheet 7 of 16 US 2014/0068055 A1

80%

Percent memaory
usage

Percent core
usage

VN

100

80

60

40

20

¥ (Core

>

Memory usage

H » Corg

Figure 6

Patent Application Publication Mar. 6, 2014 Sheet 8 of 16 US 2014/0068055 A1

(Daily view } (Weekly view} { Previous) { Next]} 706

(Current usage Yigw of Monday 3 June 2012 12:00 AM 10 12:00 M
Machine CPU RAM] | 12 1 {21334 15§61 78191011
Node 1 o o § é s E ' :
e Ca s o 7 Ny N
A A - e
ode 3 [' : : L A - DR
Node 4 77777k BRI 7\ 7NN NZ TN

_ 700 K— 704
— 702
v

Percent core
18AZC
N Cloud node 2
100 9:00 AM, 20 July 2012

80
{
"\\

60 -

40
Memory u

20 H
w Core

Figure 7

as

A3
g
(e

Patent Application Publication Mar. 6,2014 Sheet 9 of 16 US 2014/0068055 A1

Core
reserved
A
166

90 -
80 -
73
64 ~

e T AR g
40 -

30 -
20 -
104
T ; T - ¥ - 3 Time
11 AM. 12 P.M. 1 PM. Z2EM,
1 August 2612
RAM Reservation 5
reserved
A
= Reservation 5
100 i = Reservation 4
G - [[]]] =Reservation 3
8~ = Reservation 2
70 - = Reservation |
60 -
50 -
40 -
R N
20
16
v - y - y 3 Time
1TAM 12 P.M. 1 PM. 2P M.

i August 2012

Figure 8

Patent Application Publication

Mar. 6,2014 Sheet 10 of 16

~{ Manual Booking }

US 2014/0068055 A1

Cluster node 2, Thursday __ [date] 12:01 AM

to Friday __[date] 12:00 AM

Required cores | 8 | r#2 to cores é
Required RAM

Reguired VO A 800 |

Flexibility Is flexible L /

{ Add requirement)

{ Confirm booking }

e 900

——{ Automatic Booking }

Cluster node 2, Thursday _[date] 12:01 AM
to Friday __[date] 12:00 AM

J

Machines number

Required cores

Required RAM :j
Required VO [:
Flexibility () 1s flexible 4

{ Confirm booking }

e 802

Figure 9

Patent Application Publication Mar. 6, 2014 Sheet 11 0of 16 US 2014/0068055 A1

WARNING MESSAGE

Not enough rescurces available.

In this time frame the maximum available resources are:
Number of cores = 0.0

Gigabytes of main memory = 27.18

Amount of /O = 800.0

OK

Figure 10A

WARNING MESSAGE

Not enough resources available.

With these reguirements in this time frame it would be possible 1o
assign only 3 out of 4 requested machines.

You can try to change your requirements {CPU, RAM, 1O) knowing
that the cluster is made up of 3 machines and the average amount
of available resources over the entire cluster in this lime frame are:

Available cores (avg) = 16.0

Available RAM (avg GB) = 47.1

Available /O {avg) = 1000.0

Figure 10B

Patent Application Publication Mar. 6, 2014 Sheet 12 0of 16 US 2014/0068055 A1

~ 1100
~ ~
Calculate power consumption by cach
core and sort machines in increasing
order of power consumed per core

&
&%

Select a reservation ?‘« 1102

o
X

Scloot machine with available core > 1104
accordmg to power per core

"‘/
-
" Docs niachine
No

<::’/i;ave enough cores and memory

for reservation? l
/'/(\ - g

e 1106 e
ves " Another machine ™. Yas
- : with available
Assign cores and update assignment 1~ 1108 core? s
and resource data ™ NG 1116
. . ~ 1118
o Update assignment data
//M achine Yes
\\with available L(jji:c\ ¥
- ;
- 1110 / \\
<f/ Another reservation’ \m
\/i 12

{ Stop 1114

Figure 11

Patent Application Publication

Calculate power consumption by cach
core and sort machines in increasing
order of power consumed per core

Sclect a reservation

Select machine with available core
acoording to power per core

Does machine
have cnough cores?

Does machine
have enough memory?

-

/
Yeasg

.

1208

R

Mar. 6,2014 Sheet 130f16 US 2014/0068055 Al
- 1200
b 1202
1204
121
1218

Assign available
cores and memory

i,«1230

Assign cores and update assignment
and resource data

Update assignment and
resource data

~ 1210

Machine

corc?

No

Another machine

with avatlable

~. Y&s
/

1232
1234
;

Release resources assigned 1o
reservation that 1s not satisfied

N
»

with available
core?

No

1212

//

No

<
%

{ Stop \\f" 1216
-

Figure 12A

Patent Application Publication

Mar. 6,2014 Sheet140f16 US 2014/0068055 A1

)

Calculate ratio of available cores to cores still
needed for reservation, and multiply ratio by
amount of memory still needed for reservation to
get amount of memory needed for available cores

~1220

/

-
" Does machine have ™. Y88
encugh memory?

\\\me/?ﬁzz

l {1226

Caleulate ratio of available roemory o memory
needed for available cores, and multiply ratio by
nuraber of available cores to get number of cores

supporiable by available memory

122
’ 3

1224
-

A d

Assign roemory and
supportable cores

Assign available
cores and needed
memory

Figure 12B

Mar. 6,2014 Sheet150f16 US 2014/0068055 A1

Patent Application Publication

Y
Caleulate power consumed by each | 1300
core and sort machines in mereasing
order of power consumed per core
Sort fixed-start reservations by start ™~ 1302
times
o
"
Select next reservation !w 1304
5
¥ "
. . . P e ™
Select machine with available core [~ 1306
according to power per ¢ore
Does machine
Yes

kave enough cores and nlenlegf\/,,

for reservation?
\/ 1308

No

Another machine ™
with available
_corg?

Agsign resources and update 1310
assignment and resource data

- 1318

Update assignment data

J:\ffachhm Yes .
availabW .
Another fixed-start Yes

No

reservation?

1320

Any flexible-start
reservations?

No

]

(Stop)»1314

Figure 13A

1322

Patent Application Publication Mar. 6, 2014 Sheet 16 of 16 US 2014/0068055 A1

Sort flexible-start reservations by start - 1324
fimes

Determine any intervals during which [1346
core available in cach machine

<
%

Select next flexible-start reservation !’v 1328

&
= N

Select machine with available core 330
according to power per core

BN
”4:&; maiﬁ?\\

@ﬁ@ugh cores and memory?

Yes 1332 Another machine

with available
Assign cores and memory, and update core?
e b HYs ' e 1334 1342

assignment and resource data

Update assignment and - 1348
resource data

/

/Machme with Yes .
available core?
1336 T

No
/\\imthcr flexible-start ~ 85
reservation?
> s

\\“\§§;/ 1344

1340

US 2014/0068055 Al

RESOURCE SHARING IN COMPUTER
CLUSTERS ACCORDING TO OBJECTIVES

BACKGROUND

[0001] Cloud computing may be considered as the delivery
of computer services to end customers. The cloud computing
environment is emerging as a promising environment offer-
ing flexibility, scalability, elasticity, fan-safe mechanisms,
high availability, and other valuable features. Computer ser-
vices provided in this environment, which may include for
example data storage, data processing, and transmission of
data from place to place, are provided by processors (cores),
data storage units, software, and other such elements that
typically are remotely located from the customers and some-
times from each other as well. The cloud name and symbol
have come to be convenient abstractions for what in reality
may be highly complex systems. Customers of such systems
entrust data to the “cloud” and expect the “cloud” to provide
computation services by means of software, hardware, or
both. A cloud computing system, which may also be referred
to as a computer cluster, may include one or more physical
computers (referred to as machines or as nodes) each of which
has from one to many processors and associated memory,
data storage, communication facilities, and other hardware
and software as needed. Open source tools and service pro-
viders have made such computer clusters easy to create and
use. In some cloud computing systems, one or more proces-
sors or even entire nodes may be reserved exclusively for one
customer for a defined period of time; individual processors
are not shared but overall cluster resources may be shared
among many customers so long as the cumulative demand of
all of them does not exceed the resources of the cluster. In
another approach, often used in public clouds such as Ama-
zon EC2, a plurality of virtual machines may be run across
some or all of the nodes and made available to customers as
requested.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The figures are not drawn to scale. They illustrate
the disclosure by examples.

[0003] FIG. 1A is a block diagram of an example of
resource sharing in computer clusters according to objectives.
[0004] FIG. 1B is a flow chart depicting an example of an
allocation node of the cluster shown in FIG. 1A.

[0005] FIG. 2 is a block diagram of an example of a cloud
node of the duster of FIG. 1A.

[0006] FIG. 3 isaflow chart giving an example of a method
of resource sharing in computer clusters according to objec-
tives.

[0007] FIG. 4 is a flow chart giving an example of addi-
tional features of a method of resource sharing in computer
clusters according to objectives.

[0008] FIG. 5is a partial flow chart illustrating an example
of the functioning of a monitor module in a computer cluster
with resource sharing according to objectives.

[0009] FIG. 6 is a bar and pie graph illustrating an example
of a node monitoring report that might be generated in a
computer cluster with resource sharing according to objec-
tives.

[0010] FIG. 7 is a node monitoring report giving an
example of information describing utilization of resources in
a computer cluster with resource sharing according to objec-
tives.

Mar. 6, 2014

[0011] FIG. 8 is a report showing an example of booking
information that may be provided to a customer in a computer
cluster with resource sharing according to objectives.

[0012] FIG. 9 is a visual display illustrating examples of
manual and automatic reservation entry screens for resource
sharing in computer clusters according to objectives.

[0013] FIGS. 10A and 10B give examples of messages that
may be sent to a customer in response to a reservation that
cannot be satisfied in a computer cluster with resource shar-
ing according to objectives.

[0014] FIG. 11 is a flowchart giving an example of a rapid
rigid-resource search that may be used in a computer cluster
with resource sharing according to objectives.

[0015] FIGS. 12A and 12B are a flowchart giving an
example of a rapid flexible-resource search that may be used
in a computer cluster with resource sharing according to
objectives.

[0016] FIGS. 13A and 138 are a flowchart giving an
example of a rapid flexible-time search that may be used in a
computer cluster with resource sharing according to objec-
tives.

DETAILED DESCRIPTION

[0017] Illustrative examples and details are used in the
drawings and in this description, but other configurations may
exist and may suggest themselves. Parameters such as volt-
ages, temperatures; dimensions, and component values are
approximate. Terms of orientation such as up, down, top, and
bottom are used only for convenience to indicate spatial rela-
tionships of components with respect to each other, and
except as otherwise indicated, orientation with respect to
external axes is not critical. For clarity, some known methods
and structures have not been described in detail. Methods
defined by the claims may comprise steps in addition to those
listed, and except as indicated in the claims themselves the
steps may be performed in another order than that given.
[0018] The systems and methods described herein may be
implemented in various forms of hardware, software, firm-
ware, special purpose processors, or a combination thereof.
At least a portion thereof may be implemented as an applica-
tion comprising program instructions that are tangibly
embodied on one or more program storage devices such as
hard disks, magnetic floppy disks, RAM, ROM, and
CDROM, and executable by any device or machine compris-
ing suitable architecture. Some or all of the instructions may
be remotely stored. Some of the constituent system compo-
nents and process steps may be implemented in software, and
therefore the connections between system modules or the
logic flow of method steps may differ depending on the man-
ner in which they are programmed.

[0019] Meeting the needs of many users of a computer
duster in a cloud computing environment has proved to be
challenging. Exclusive reservation of cloud computing
resources for individual customers, as is often done in envi-
ronments such as research and development, leads to
underuse of scarce resources and may result in some custom-
ers getting no resources at all. On the other hand, since there
is no limit (at least in theory) to how many virtual machines
can run, every user can be assigned a virtual machine. But
physical resources must be allocated to these virtual
machines, and sharing resources by running multiple virtual
machines across the cluster means that customers have little
guidance or influence on the number of virtual machines per
node or on a customer’s assignment to nodes. Too many

US 2014/0068055 Al

virtual machines running at once can degrade performance
system-wide with the result that no user gets the level of
service required, and consequently applications can have
unpredictable performance making service guarantees diffi-
cult. Customers who in turn make computer service available
to others may have trouble guaranteeing service levels. There
remains a need for a way to manage computer system
resources in a cloud computing environment in such a way
that as many users are accommodated as possible and
resources are used as efficiently as possible.

[0020] FIGS. 1A and 1B give an example of resource shar-
ing in a computer cluster according to objectives. The cluster
includes a plurality of cloud nodes 100a, 1005, . . . 1007 each
including one or more resources, a terminal 102, data storage
104, and an allocation node 106 to monitor (108) the cloud
node resources, provide (110) information descriptive of the
cloud node resources to a customer through the terminal 102,
receive (112) a reservation for cloud node resources from the
customer, store (114) the reservation in the data storage 104,
determine (116) assignments of the cloud node resources for
the reservation and any other pending reservations according
to one or more objectives, and allocate (118) cloud node
resources to customers according to the resource assign-
ments.

[0021] Insome examples the terminal 102 includes an out-
put device such as a visual display 120 and an input device
such as a keyboard 122. The customer may be a human user
or an application running on another computer system.
[0022] The cloud nodes 100a, 1005, . . ., 1007 may all be
the same or they may differ from each other. An example of a
cloud node 200 is shown in FIG. 2. The cloud node 200
includes a central processing unit 202, memory 204, local
data storage 206, a communication port 208, and machine
instructions 210. The machine instructions 210 may be
located, for example, in the memory 204 or the local data
storage 206, or the instructions may be remotely located.
Other cloud nodes may have multiple processors or other
devices in addition to or instead of the ones in the cloud node
200.

[0023] The cloud node 200 includes a resource module 212
to monitor resources of that cloud node and provide informa-
tion respecting use of those resources to the allocation node.
This information may include such items as processor usage,
amount of memory used, storage used, storage bandwidth
used, network bandwidth used, and the like. In some
examples the allocation node stores that information in the
data storage for accounting and analysis.

[0024] A suitable transport mechanism such as NFS (net-
work file system) infrastructure or HTTP protocol may be
used to transmit the reports. The module 212 may comprise a
physical unit or its function may be performed by the CPU
202, for example under control of the machine instructions
210. In some examples the resource module 212 reports use
of'node resources periodically, and in other examples reports
are made in response to an event such as a change in the use
of'the resources or a request from the allocation module 106.
In some examples the monitored cloud node resources com-
prise one or more of memory, processor, data storage, and
message traffic (communications). Some examples use
Hyperic’s System Information Gatherer (SIGAR), a cross-
platform API for collecting software inventory data, although
other tools for collecting node resource usage may be used.
[0025] In some examples the objectives that are used to
determine assignments of resources comprise one or more of

Mar. 6, 2014

minimum power usage, minimum memory usage, and mini-
mum response time. Other objectives may be used in addition
to or instead of any of these, and the objectives may be
adapted to changing needs over time. An objective may be
changed (added, removed, or modified) by an administrator.
[0026] In some examples the allocation node 106 com-
prises a monitor module 124 and a reservation module 126.
The functions of these modules will be described in more
detail presently. The allocation node may include a collector
128 that collects data resulting from monitoring the cloud
nodes 100a through 1007 and passes that data to the monitor
module 124. The allocation node may include a scheduler
module 130 to implement resource assignments by sending
workloads to the cloud nodes. In some examples the alloca-
tion node also serves as a cloud node, but in other examples
the allocation node does not perform this additional function.
In this example the data storage 104 is within the allocation
node, but in other examples the data storage may comprise a
separate unit or may be remotely located.

[0027] As will be described in more detail presently, in
some examples if the reservation includes a user-specified
resource, the allocation node informs the user of availability
of the resource and of an alternative if the resource is not
available.

[0028] In some examples the allocation node performs a
re-allocation of resources among remaining cloud nodes if a
cloud node goes off-line or for any reason becomes unavail-
able or if a previously-inactive node becomes available.
Cloud nodes may go off-line for many reasons including local
electrical power failure, internal malfunction, routine main-
tenance, installation of new software or hardware elements,
etc.

[0029] FIG. 3 gives an example of a method of operating a
computer cluster with resource sharing according to objec-
tives. The method includes monitoring resources of each of a
plurality of cloud nodes (300), providing information
descriptive of the cloud node resources (302), receiving a
reservation for cloud resources (304), determining whether
resources are available to satisfy the reservation and any other
pending reservations (306), if resources are available, deter-
mining resource assignments for the reservation and any
other pending reservations according to one or more objec-
tives (308), and allocating the cloud node resources according
to the resource assignments (310).

[0030] Some examples include, if resources are not avail-
able to satisfy a reservation, determining whether alternative
resources are available (312); if alternative resources are
available, determining whether the alternative resources are
acceptable (314); and if the alternative resources are accept-
able, determining resource assignments according to the
objectives (316). For example, suppose a customer submits a
reservation for ten cores in one cloud node during a certain
time frame. If these resources are not available, the customer
is advised of an available alternative, such as five cores in
each of two cloud nodes. If the customer accepts the alterna-
tive, the resource assignment proceeds.

[0031] In some examples, if alternative resources are not
available or acceptable, no further action is taken (318). In
this event, the customer may be informed that the reservation
cannot be satisfied.

[0032] In some examples the reservation includes a list of
cloud resources and a starting time. In other examples the
reservation may be a composite reservation of more than one
sub-task. For example, a composite reservation might include

US 2014/0068055 Al

a first sub-task requiring ten cores for two hours at 1:00 PM,
a second sub-task requiring ten more cores at 1:30 PM for one
hour, and a third sub-task requiring two cores at 2:30 PM for
two hours. The starting time may specify one or more of an
immediate start, a start at a specified future time, or a start not
later than a specified future time. In the latter case, the reser-
vation may be designated as a “flexible” reservation because
the customer can accept any of a number of possible start
times up to some time that may be relatively far in the future.
Flexible reservations allow the allocation node to adjust
resource allocations on-the-fly depending on cloud node sta-
tus, other reservations that may arrive later, and the like.
[0033] In some examples determining whether resources
are available comprises determining whether any requested
specific resources are available.

[0034] Insomeexamples monitoring resources of each of a
plurality of cloud nodes comprises monitoring resource use in
each cloud node and periodically reporting usage of those
resources. In some examples monitoring resources of each of
a plurality of cloud nodes comprises one or more of monitor-
ing amount of memory being used, amount of processor
capacity being used, amount of data being stored in a local
data storage, bandwidth being used in transferring data to or
from storage, volume of message traffic being generated, and
network bandwidth being used by message traffic.

[0035] Some examples include dynamically changing
resource allocations according to at least one of resource
availability, priority of reservation, and designations of any
reservations as flexible (320). Dynamically changing
resource allocations may include recalculating all or some
resource assignments; for example, a system administrator
may specify that only certain reservations such as those for
more than a certain quantity of resources or those placed by
low-priority customers will be recalculated.

[0036] FIG. 4 gives an example of additional features of a
method similar to that shown in FIG. 3 and described above.
These additional features include comparing the cloud
resources requested in a reservation with the cloud resources
actually used in executing the reservation (400) and using the
result of the comparison in determining resource assignments
for similar reservations (402). Some examples also include
using the result of the comparison for one or more of identi-
fying customers that repeatedly request more resources than
needed (404) and assisting customers in planning their reser-
vations to request as few resources as actually needed (406).
These features may follow from, and lead back to, various
points in FIG. 3 as indicated generally by a connection 408
from FIG. 3 and a connection 410 back to FIG. 3. For
example, the comparison in 400 may be carried out after the
allocation in 310, and then the result of the comparison may
be used in the determination 308 in the future.

[0037] FIG. 5 gives an example of the functioning of a
monitor module such as the monitor module 124. Each cloud
node monitors its own resources (500). In some examples this
includes one or more of processor usage, amount of memory
used, amount of data storage used, amount of message traffic
being generated or received, bandwidth consumed in storing
or retrieving data, and network bandwidth consumed by mes-
sage traffic. Each cloud node sends a resource report to the
monitor module (502). The monitor module may store
resource usage information in the data storage, for example
for possible later use in accounting and analysis. If a human
user is a customer, the monitor module generates a visual
display or some other report format usable by the customer

Mar. 6, 2014

giving such information as resources being used at each cloud
node, resources being used throughout the cluster, and any
existing reservations (506). If the user sends a reservation
(508), the monitor module sends the reservation to the reser-
vation module (510). The monitor module may also send
resource use data and existing reservations to the reservation
module. When the reservation module receives a new reser-
vation (512) from the monitor module, it adds the new reser-
vation to the list of existing reservations (514).

[0038] The visual display or other report shows the actual
utilization of all cloud nodes at any given time. A customer
may choose which nodes to see and what statistics to monitor.
FIG. 6 shows an example of part of a cluster monitoring report
in which the customer has selected processor and memory
usage as the statistics to be viewed and 3:00 PM on 20 Jul.
2012 as the relevant time. The relevant time may be a time in
the past, in which case the customer will obtain a history of
what happened at the specified time. Or the relevant time may
be the present, in which case the customer will know what is
happening now, or the relevant time may be in the future, in
which case the customer will learn the status of pending
reservations. In this example, statistics for two cloud nodes
are presented: cloud node 1 has 80% memory usage and its six
processors range from 20% usage (processor no. 2) to 90%
(processor no. 4), and cloud node 2 has 30% memory usage
and its eight processors range from 25% usage (processor no.
7) to 100% (processor no. 3).

[0039] FIG. 7 depicts an example of a node monitoring
report. A current-usage chart 700 shows the instantaneous
status of one or more nodes in the cluster. This chart may be
updated every second, or every minute, or at any desired
interval. In this example the chart shows that Node 1 has about
25% CPU usage and about 50% RAM usage, Node 2 has
about 50% CPU usage and about 75% RAM usage, Node 3
has about 75% CPU usage and 100% RAM usage, and Node
4 has about 75% CPU usage and 60% RAM usage. In other
examples other node resources may be shown. The customer
may select one node for more detailed monitoring, for
example by using a mouse to position a cursor over the name
of the node. In this example the cursor has been positioned
over Node 2, highlighting it, and causing detailed information
702 about Node 2 to be displayed in a format similar to that of
FIG. 6. A weekly or daily view 704 may be displayed at the
user’s option. In this example the user has selected an hourly
view, resulting in a display of CPU and RAM usage for each
node on an hourly basis is displayed. The user may control
what information is displayed in the view 704, for example by
control buttons 706.

[0040] As shown in FIG. 8, booking information may be
provided to a customer to assist in deciding on a reservation.
In the example of FIG. 8, five reservations of CPU and RAM
in a given node are displayed over a 4-hour time period. For
example, during the interval 11 AM. to 12 PM. on 1 Aug.
2012, reservation 1 covers about 25% of CPU and 15% of
RAM, reservation 2 about 20% of CPU and 12% of RAM,
and so on.

[0041] As shown in FIG. 9, reservations can be handled
either manually or automatically. Most reservations will usu-
ally be handled automatically, and in some examples manual
reservations are not permitted because a customer can tie up
resources without regard to any objectives that are optimized
by automatic resource allocation. In other examples, some or
all customers may be permitted to make manual reservations
which override any objectives-based allocation of resources.

US 2014/0068055 Al

[0042] For a manual reservation, the customer may instruct
the computer cluster to generate reports such as those
described aboveto display system utilization information that
the customer would need to determine what to reserve. Using
a manual booking window 900, the customer selects a time
slot, specifies required resources, indicates if the start time or
run time is flexible, and enters any other requirements. The
reservation module 126 determines whether the reservation
can be satisfied. If so, the reservation is stored; if not, the
customer is given a report explaining what requirements can-
not be satisfied and may be offered an available alternative.
An automatic booking window 902 is used if the customer
wishes to enter an automatic reservation; in this case the
customer need only specify required resources and a time
window.

[0043] FIGS.10A and 10B give examples of messages that
may be sent to a customer if a reservation cannot be satisfied.
FIG. 10A depicts a message in which the customer is told that
resources are not available. FIG. 10B depicts a message in
which the customer is given more information that may assist
the customer in making an alternative reservation.

[0044] As discussed above, actual assignments of cloud
node resources in response to new and pending reservations
are made according to one or more objectives. In some
examples this is true of all reservations (automatic reserva-
tions are the only ones allowed), in other examples it is true of
most reservations (manual ones being rarely used), and in still
other examples many of the assignments are made inresponse
to manual reservations and only those that remain can be
made according to the objectives.

[0045] In some examples the objectives are fixed, and in
other examples a system administrator may determine the
objectives and may change them by adding, deleting, or
modifying them. The reservation module in the allocation
node may include instructions to change objectives if circum-
stances warrant. For example, there may be only one objec-
tive—to minimize power usage—unless overall message
bandwidth exceeds a certain amount, in which case a second
objective—to minimize message bandwidth—may be used in
addition to or in place of the first one.

[0046] There are various methods of allocating resources
according to objectives (as noted above, in a given situation
there may be only one objective or there may be several).
Broadly these methods may be classified as optimal and
rapid. An optimal method finds that allocation which best
achieves the objectives. Examples of optimal methods
include exhaustive search (the best of all possible combina-
tions of allocations) or other techniques such as linear pro-
gramming. Optimal methods are often computationally
expensive—they use too many computer resources or take too
much time—and therefore rapid methods are sometimes used
because they can be implemented faster and with fewer com-
puter resources even though they may not achieve the objec-
tives as well as an optimal method would.

[0047] The following discussion illustrates application of
techniques of allocating resources according to objectives
where the objective is to minimize power consumption across
a cluster and there are no other objectives. Application of the
same techniques to the case where there are one or more other
objectives is straightforward.

[0048] The terms “node” and “machine” are used inter-
changeably herein to refer to one physical computer. The
terms “processor” and “core” are used interchangeably to
refer to one central processor in a machine. A machine may

Mar. 6, 2014

have one or many cores. The terms “memory” and “RAM”
are used interchangeably to refer to main memory in one
machine. The term “workload” means an application that is
actually run in response to a reservation.

[0049] In a typical computer cluster, not all the machines
are identical, and some machines will likely use less power
than others. To minimize the total power used by all the
machines, work should be assigned first to those that use the
least power. To make assignments with this objective, the
amount of power consumed per core in each machine must be
determined. Power per core may be expressed as:

wWo e w? ey

where:

[0050] P =power consumed by one core in the j-th machine
when that core is working,

[0051] ij:base (idling) power consumed by all the cores
in the j-th machine,

[0052] w/=peak power (difference between total power
and base power) consumed by all the cores in the j-th machine
when all cores are working, and

[0053] cj’ﬁotal number of cores in the j-th machine.
[0054] For example, consider a machine having twelve
cores. In this machine when all of the cores are idling the base
power consumption ij is two kilowatt-hours (KWh) and
when all of the cores are working the peak power WjP is four
KWh. The power consumed per core, when a core is working
is then:

P~(2+4)/12=0.5 KWh

[0055] To meet the objective of minimizing power con-
sumption, cores should be allocated in such a manner that
power consumption across the cluster is minimized while
ensuring that every workload has all the resources it needs.
[0056] As asimple example, consider three machines M1,
M2, and M3 and two workloads W1 and W2. M1 has two
cores, and M2 and M3 have eight cores each. Power con-
sumption per core is 0.27 KWh for M1, 0.26 for M1 and 0.32
for M3. W1 requires four cores and will start at 3:00 and finish
at 5:00. W2 coincidentally also requires four cores and will
start at 1:00 and finish at 4:00. A rapid search sorts the nodes
according to power consumed per core, which in this case is
M2-M1-M3. The workloads are arranged in order of start
times, which in this case is W2-W1. It happens that M2 has
enough resources to support W2, so M2 is assigned to W2.
Next consider W1. It starts before W2 finishes, so no
resources will have been released, but M2 has enough
resources to support W1 as well as W2, so M2 is assigned to
WI1. Now assume a third workload W3 needing two cores
arrives at 3:3. M2 has no cores available, but M1 has two cores
available so is assigned to W3.

[0057] FIG. 11 illustrates an example of a rapid rigid-re-
source search that may be used to determine allocation of
resources in a computer cluster in such a way that power
consumption is minimized. “Rigid-resource” means that the
search may not allocate cores from more than one machine to
satisfy a reservation unless the customer has specified that
assignment to multiple machines is acceptable. For instance,
if a certain reservation specifies ten cores, and if the customer
has not specified that cores from more than one machine may

US 2014/0068055 Al

be allocated, the search may only assign cores from a machine
having at least ten available cores and whatever other
resources are required.

[0058] In the example of FIG. 11, only cores and memory
are considered. The search may easily be modified to consider
only core requirements, or to consider one or more other
required resources such as data bandwidth and network band-
width in addition to or instead of memory. In this example it
is assumed that all reservations specify the same start time. An
example of a search that may be used to determine resource
assignments in case of differing start times will be discussed
presently.

[0059] The rigid-resource search begins by calculating the
power consumed by each core, for example according to
equation (1), and sorting the machines in increasing order
according to power consumed per core (1100). The reserva-
tions may be arranged in any order. A reservation is selected
(1102), for example randomly. A machine having at least one
available core is selected according to power per core (1104).
Since the machines are sorted in increasing power consump-
tion per core, this results in the machine with the lowest power
consumption per core being selected first.

[0060] If the selected machine has enough available cores
and memory to satisfy the reservation (1106), the cores are
assigned and assignment and resource data are updated
accordingly (1108) to reflect how many cores and how much
memory in that machine are still available. If the reservation
is a composite reservation, the selected machine must have
enough available cores and memory for all of the sub-tasks in
order for the assignment to be effected. Information respect-
ing assignments and available resources may be stored in data
storage 104 (FIG. 1) or in some other manner as desired. Then
if there is a machine with any cores available for assignment
(1110) and if there is another reservation (1112), the search
iterates, going back to selecting a reservation (1102), and
otherwise the search ends (1114).

[0061] If the selected machine does not have enough of
both cores and memory available to satisfy the reservation
(1106), and if there is another machine with any cores avail-
able (1116), the search iterates, going back to selecting a
machine with at least one available core according to power
per core (1104). In other words, each time the search iterates
in trying to satisfy a given reservation, it considers the
machine with next-lowest power consumption per core after
the machine that was just considered and found not to have
enough resources. If there are no more machines with cores
available (1116), assignment data are updated (1118), for
example to reflect that the reservation could not be assigned,
and if there is another reservation (1112) the search iterates,
going back to selecting a reservation (1102) and selecting a
machine with at least one core available (1104) and having the
lowest power consumption per core of any of the machines
that have cores available. Otherwise the search ends (1114).
[0062] Appendix One gives an example of pseudocode that
can be used to implement a rigid-resource search.

[0063] FIGS. 12A and 12B illustrate an example of a rapid
flexible-resource search that may be used to determine
assignments of resources in a computer cluster in such a way
that power consumption is minimized. “Flexible-resource”
means that the search may assign cores from more than one
machine to a given reservation. For instance, if a certain
reservation specifies ten cores, the search may assign cores
from a first machine having six cores available and from a
second machine having four cores available.

Mar. 6, 2014

[0064] Inthisexample both cores and memory specified by
each reservation are considered, and cores from more than
one machine are assigned, then memory is assigned propor-
tionally to cores. For example, if ten cores and 50 gigabytes of
memory are required, and if the search assigns six cores from
a first machine having at least six cores available and four
cores from a second machine having at least four cores avail-
able, then 30 gigabytes of memory (6/10 of the 50 gigabytes
of required memory) out of the total memory in the first
machine will be assigned, and 20 gigabytes of memory (4/10
of the 50 gigabytes) out of the total memory in the second
machine will be assigned.

[0065] In other examples, the reservation may specify the
resources in sufficient detail that apportionment is not
required. For example, the customer might say in a reserva-
tion that ten cores each with five gigabytes of memory are
required. Another reservation might specify a combination of
six cores with 20 gigabytes of RAM each and four cores with
eight gigabytes each. In such cases, the search does not per-
form the steps of proportionally adjusting resources. If the
customer requires more cores or more memory than a given
machine has available, then as many of the customer’s needs
as possible are satisfied from that machine and then the next
machine is considered.

[0066] If the first machine has insufficient memory avail-
able, then only as many cores in the first machine as can be
supported by the amount of memory available are assigned. In
the foregoing example, ten cores and 50 gigabytes of memory
are required. This indicates an average memory requirement
of 5 gigabytes per core. If the first machine has six cores but
only 25 gigabytes of memory available (other memory in the
first machine may already have been assigned in response to
another reservation to which other cores in that machine have
already been assigned), then only five cores—each of which
requires an average of 5 gigabytes in this workload—together
with 25 gigabytes of memory would be assigned.

[0067] If the reservation in the foregoing example had
specified 10 cores but only 20 gigabytes of memory, then the
search could have assigned all six available cores in the first
machine because only 20%(6/10)=12 gigabytes of memory
would have been required by the six cores.

[0068] Theflexible-resource search may easily be modified
to account only for core requirements, or to account for other
required resources such as data bandwidth and network band-
width in addition to or instead of memory. As in the preceding
example, it is assumed that the same start time applies to all
reservations.

[0069] The flexible-resource search begins by calculating
the power consumed by each core, for example according to
equation (1), and sorting the machines in increasing order
according to power consumed per core (1200). The reserva-
tions may be arranged in any order. A reservation is selected
(1202), for example randomly. A machine having at least one
available core is selected according to power per core (1204).
Since the machines are sorted in increasing power consump-
tion per core, this results in the machine with the lowest power
consumption per core being selected first.

[0070] If the selected machine has enough available cores
(1206) and memory (1208) to satisfy the reservation (1206),
the cores are assigned, and assignment and resource data are
updated accordingly (1210) to reflect how many cores and
how much memory in that machine are still available. Infor-
mation respecting assignments and available resources may
be stored in data storage 104 (FIG. 1) or in some other manner

US 2014/0068055 Al

as desired. Then if there is a machine with any cores available
for assignment (1212) and if there is another reservation
(1214), the search iterates, going back to selecting a reserva-
tion (1202), and otherwise the search ends (1216).

[0071] If the selected machine does not have enough of
both cores and memory available (1206 and 1208), available
cores and memory of the selected machine are assigned
(1218). Assignment and resource data are updated (1230). If
there are more machines with available cores (1232), the
search iterates, going back to selecting a machine having at
least one available core according to power per core (1204),
again taking machines in increasing order of power consump-
tion per core. Otherwise, if there is another reservation (1214)
the search iterates, going back to selecting a reservation, and
if not the search ends (1216).

[0072] As noted above, in some examples assigning avail-
able cores and memory of the selected machine (1218)
includes, if the selected machine does not have enough cores
to satisfy the reservation (1206), calculating a ratio of avail-
able cores to cores needed and multiplying the ratio by the
amount of memory needed to determine the amount of
memory needed for the available cores (1220). In other
examples the user specifies resources in sufficient detail, such
as memory per core, that this type of calculation is not needed
and therefore is not performed.

[0073] To return to the previous example of a reservation
specifying ten cores and 50 gigabytes of memory, assume the
selected machine has six cores and 20 gigabytes of memory
not yet assigned. The ratio would be 6/10, and multiplying
this ratio by the 50 gigabytes of memory specified by the
reservation results in 50%(6/10)=30 gigabytes of memory
needed for the six available cores.

[0074] If the selected machine has enough memory for the
available cores (1222), the needed memory and the available
cores are assigned (1224). Otherwise, a ratio of available
memory to the amount of memory needed by the available
cores is calculated and multiplied by the number of available
cores to determine the number of cores that can be supported
by the available memory (1226). The available memory in the
selected machine and the number of cores in the selected
machine that can be supported by that memory are assigned
(1228).

[0075] Returning again to the previous example, 30
gigabytes of memory are needed for the six available cores,
but only 20 gigabytes are available. The number of cores that
can be assigned will therefore have to be scaled according to
the amount of memory available. The ratio of available
memory to amount of memory needed by available cores
computes as 20/30. Multiplying this ratio by the number of
cores available yields 6*(20/30)=4. Hence, four is the maxi-
mum number of cores that can be supported by the available
20 gigabytes of memory, and accordingly four cores and 20
gigabytes of memory in the selected machine are assigned.

[0076] Meanwhile, if the selected machine has enough
cores (1206) but not enough memory (1208), a ratio of avail-
able memory to the amount of memory needed by the cores of
the selected machine is calculated and multiplied by the num-
ber of cores of the selected machine to determine the number
of cores that can be supported by the available memory
(1226). The available memory and the number of cores that
can be supported by that memory are assigned (1228).

Mar. 6, 2014

[0077] Assignment and resource data are updated (1230). If
there is another machine with at least one available core
(1232) the search iterates to selecting a machine with at least
one available core (1204).

[0078] If there are no more machines with available cores
(1232) it will be apparent that the reservation cannot be sat-
isfied, because if it reaches this point the search will have
checked all the machines and will not have found any with
enough cores and memory to satisty the reservation. There-
fore, any resources that were assigned to that reservation are
released (1234). There might still be other pending reserva-
tions with smaller requirements, so if there is another reser-
vation (1214) the search iterates to selecting a reservation
(1202). Otherwise the search ends (1216).

[0079] Appendix Two gives an example of pseudocode that
can be used to implement a flexible-resource search for a
system in which the user specifies resources in enough detail
that no apportionment of ratios of resources such as cores and
memory is required.

[0080] FIGS. 13A and 133 illustrate an example of a rapid
flexible-start rigid-resource search. In this example, reserva-
tions may specify various different start times. In addition, in
some examples there may be flexible start times—that is, in
the reservation the customer may specify a range of accept-
able start times rather than a fixed start time. The search is a
rigid-resource search, which means that no reservation can be
assigned to more than one machine (unless the reservation
expressly allows such assignment), but extension of this
search to a flexible-resource environment is straightforward.

[0081] The flexible-start rigid-resource search begins with
calculating power consumption by each core and sorting
machines in increasing order of power consumed per core
(1300). Fixed-start-time reservations are sorted in order of
start times (1302). A next reservation is selected (1304). A
machine with at least one available core is selected according
to power per core (1306). If the selected machine has enough
resources (both cores and memory) to satisfy the reservation
(1308), the resources are assigned and assignment and
resource data are updated (1310). If there are no more
machines with any available cores (1312), the search ends
(1314).

[0082] If the selected machine does not have enough
resources (1308) and if there is another machine with at least
one available core (1316), the search iterates to selecting a
machine with at least one available core according to power
consumption per core (1306). Each time the search iterates it
considers the machine with the next-lowest power consump-
tion per core after the machine just considered and found not
to have enough resources. If there are no more machines,
assignment data are updated (1318), for example to indicate
that it was not possible to assign the workload.

[0083] Ifthere are any more fixed-start reservations (1320)
the search iterates to selecting a next reservation (1304). If
there are no more fixed-start reservations, the search ends
(1314) unless it also allows flexible-start reservations, and in
that case if there are no flexible-start reservations (1322), the
search ends.

[0084] In some examples, flexible-start reservations are
also allowed. If there are flexible-start reservations (1322),
they are sorted by start times (1324). Any intervals during
which at least one core is available in each machine are
determined (1326). A next flexible-start reservation is
selected (1328), and a machine with at least one available core

US 2014/0068055 Al

is selected (1330), starting with the machine having the low-
est power consumption per core.

[0085] Ifthe selected machine has enough ofboth cores and
memory to satisfy the selected reservation during any interval
of time that encompasses the flexible start time and duration
of'that reservation (1332), cores and memory of that machine
are assigned, and assignment and resource data are updated
(1334), and if there is another machine with at least one
available core (1336) and if there is another flexible-start
reservation (1338), the search iterates to selecting a next
reservation, otherwise the search ends (1340).

[0086] If the selected machine does not have enough of
both cores and memory to satisfy the reservation during any
interval of time that encompasses the flexible start time and
duration of that reservation (1332), and if there is another
machine with at least one available core (1342), the search
iterates to selecting a next machine with at least one available
core, otherwise assignment data are updated (1344), and if
there is another flexible-start reservation the search iterates to
selecting a next reservation, otherwise the search ends (1340).
[0087] Appendix Three gives an example of pseudocode
that can be used to implement a flexible-start rigid-resource
search in which the customer may specify a start time but not
a range of start times. Extension of the pseudocode to include
reservations having ranges of start times is straightforward.
[0088] In another example, determining resource assign-
ments according to objectives may be formulated as an objec-
tive function to be minimized, for example by linear program-
ming. Ifthe objective is to minimize total power consumption
across the duster, the function to be minimized becomes a
description of the total power (both base power and peak
power) used by all the machines in the duster. For example, a
certain machine with 12 cores might have a base (resting)
power consumption of 0.3 kilowatt-hours (K Wh) and a work-
ing power consumption (in addition to the base power con-
sumption) by any processor of 0.2 KWh during the time that
processor is being used. If one processor is being used, the
total power consumed by that machine would be 0.5 KWh
(0.3 KWh resting power plus 0.2 KWh for the one processor
that is running), and if all 12 processors are in use, the total
power consumed would be 2.7 KWh (0.3 KWh resting plus
0.2 KWhx12 processors running).

[0089] In determining resource assignments, all the
resource requirements (number of cores, amount of memory,
etc.) of each workload are to be satisfied, and the solution is to
be feasible and semantically correct (for example, no
machine is assigned more workloads than it can accommo-
date, each workload is serviced exactly once, and the like).
[0090] The following notation will be used in this discus-
sion:

w, means the i-th workload,

m; means the j-th machine,

m," means the j-th machine allocated for the i-th workload,
W means the total number of workloads,

W, means the number of workloads assigned to the j-th
machine,

R; means total resources of the j-th machine,

R;* means available resources of the j-th machine,

R, means resources of the j-thmachine being used by the i-th
workload,

L, means the resources needed by the i-th workload,

b, is a performance constraint of the i-th workload,

¢, is the number of cores needed by the i-th workload,

1, is the amount of memory needed by the i-th workload,

Mar. 6, 2014

d, is the disk bandwidth needed by the i-th workload,

n, is the network bandwidth needed by the i-th workload,

c;* is the number of cores available in the j-th machine,

r is the amount of main memory available in the j-th
machine,

d,? is the disk bandwidth (in megabytes/second) available in
the j-th machine,

n,” is the network bandwidth (in megabytes/sec) available to
the j-th machine,

¢/ is the total number of cores in the j-th machine,

r/ is the total amount of main memory in the j-th machine,
d; is the total disk bandwidth (in megabytes/second) in the
j-th machine,

n/ is the total network bandwidth (in megabytes/second) of
the j-th machine,

w,, is the power consumed by the i-th workload w; in the j-th
machine,

ij is the base power consumed by the j-th machine,

w/ is the peak power consumed by all the cores in the j-th
machine,

u,” is the number of workloads running on all the cores in the
j-th machine,

Q is the total power consumed by the computer cluster,

e, is the end time of 1-th workload,

s, 1s the start time of the i-th workload, and

k;is the total duration of all the workloads executed in the j-th
machine.

[0091]
Li:{cixrixdixni}

The resources needed by w, may be expressed as

the resources available in m, as
Rj":{cja,rja,dja,nja},

and m, can accommodate w, only if

which can be expressed more compactly as

RA<L,
Similarly, a group of machines m, to m, can accommodate w,
if

RURU ... UR<L;

disregarding any overhead associated with running a work-
load on more than one machine.

[0092] Assuming, as in the foregoing examples, that the
objective to be satisfied is to minimize electrical power con-
sumed by all the machines in the computer cluster. The
amount of power attributable to the i-th workload being
executed on the j-th machine m, is given by

where the first term represents a division of the base power
equally among the workloads and the second term represents

US 2014/0068055 Al

the ratio of number of cores used by the i-th workload to total
number of cores multiplied by the total peak power.

[0093] The total power used in the j-th machine m; is given
by
Nk e
(52
uwf o

The total number of workloads is equal to u,” and therefore
the first term sums to the total base power ij . The second
term sums to the total peak power WjP if all cores are in use, or
a fraction of the total peak power if some of them are not in
use. This in turn may be summed over all the machines in the
computer cluster to get the total power €2 used by the cluster
as

RIEE

[0094] As discussed above, a rigid-resource assignment
means that each workload may only be run on a single
machine (unless the customer has specified otherwise). A
flexible-resource assignment means workloads may be split
among machines. A flexible-time assignment means start
times, and in some examples ranges of start times, may be
specified by customers. A dynamic assignment, which can
also be rigid-resource or flexible-resource, means workloads
can arrive randomly without advance reservations.

[0095] Inlight ofthe foregoing, the objective function com-
prises a sum over a first term related to the base power con-
sumed by each node and a second term related to the peak
power consumed by each node in running the various work-
loads:

(W oW 3

where:
g=number of machines in the computer cluster,
s=number of workloads in all reservation,

v =duration of time during which any cores in the j-th
machine are running, and

x,~1 if the i-th workload is assigned to the j-th node and 0
otherwise.

[0096] A minimum for equation (3) may be found by cal-
culating every possible solution and then choosing the best.
This is sometimes known as the “brute force” approach. The
brute force approach gives the best possible answer but at the
cost of lengthy calculations. Linear programming may be
used to find a minimum for equation (3) and, when solved,
gives an optimal solution. The rapid searches described above
give approximate solutions. However, rapid searches are
much less costly than linear programming, which in turn is
less costly than using brute force, in that rapid searches can be

Mar. 6, 2014

completed very rapidly and with minimal use of computer
resources, whereas obtaining an optimal solution may be
computationally expensive.

[0097] Solutions of the objective function by linear pro-
gramming, and corresponding rapid searches, were tested in
a variety of scenarios. Rapid searches resulted in allocations
that reduced power consumption almost as much as solving
the objective function (in some instances the difference was
less than ten percent) but at significantly less computation
cost. For a 30-node example, solving the objective function
required from one second (10 reservations) to 60 seconds (40
reservations). For 15 workloads, solving the objective func-
tion required from 10 seconds (50 nodes) to 30 seconds (100
nodes). Inall these cases, the rapid searches required less than
0.1 seconds.

[0098] A computer duster with resource sharing according
to objectives as described above provides effective sharing of
resources among many users according to one or more objec-
tives. The administrator can change objectives and assign-
ment techniques as desired by changing or replacing the
module in which the assignments are made. Initial assign-
ments of resources can be adjusted as new reservations arrive.
Resources can be assigned and reassigned to flexible reser-
vations as conditions change. A history of resource usage may
be used for accounting purposes and for predicting future
resource usage.

APPENDIX ONE

Rapid Rigid-Assignment Search

input: wList, mList
output: assignment
consumptionList <= [];
assignment < [];

for j <= 1 to len(mList) do

b P
Wi+ W
f ’
Cj

a«

consumptionList.append(a);
end
/* sort (asc) mList according to consumptionList */
sort (consumptionList, mList);
for i< 1 to len(wList) do
foundMachine? < false;
for j <= 1 to len(mList) do
ifc” = c; and d = d, then
foundMachine < true;
assignment.append ([w;, m,]);
cj" -— cj" -c;
4 —d7-d;
wList.remove (w;);
/* exit the inner cycle and pass to the following workload */
break;
end
end
if foundMachine? < false then
print ‘Not enough resources to create an assignment’;
return O
end
end
print ‘Assignment correctly created’;
return assignment;

US 2014/0068055 Al

APPENDIX TWO

Mar. 6, 2014

APPENDIX THREE

Rapid Flexible-Resource Search

input: wList, mList
output: assignment
consumptionList <= [];
assignment < [];

for j <= 1 to len(mList) do

ac Wit
Ci
consumptionList.append(a);
end
/* sort (asc) mList according to consumptionList */
sort (consumptionList, mList);
for i< 1 to len(wList) do
assigned? < false;
for j < 1 to len(mList) do
ifc;” = c;and d” = d, then
assigned < true;
assignment.append ([w;, m,]);
¢ —c-cy
df <—df-d;
wList.remove (W,);
break;
end
if¢;” = c; and d* < d, then
assignment.append ([w;, m,]);

c_zc__(c._d_‘f].
r=eilo g)

d; = d; —d?;

continue;

end
if¢;” <c;and d = d, then
assignment.append ([w;, m,]);

a .
c§ <0
<7
df «df—[di- =1,
Ci
a.
C;=C;—Cj,
a
4
EN
di=di—[di- =}
Ci
continue;
end

if¢;” <c; and d* <d, then
/* assign all min (¢;, d;) and as much as possible of max
(cid) ™/
end
end
if assigned? = false then
print ‘Not enough resources to create an assignment’;
return O
end
end
print ‘Assignment correctly created’;
return assignment;

Rapid Flexible-Time Search

input: wList, mList
output: assignment
consumptionList < [];
assignment < [;

for j < 1 to len(mList) do

b p
Wi+ W)
ae ——;

5

1
Cj

consumptionList.append(a);
end
/* sort (asc) mList according to consumptionList */
sort (consumptionList, mList);
for j < 1 to len(wList) do
/* take out the start time */
b < wList [1];
startTimeList.append (b);
end
sort .(startTimeList, wList);
fori < 1 to len(wList) do
fork< 1toi-1do
/* check the workload’s status */
if wy, [3] = ‘executed’ then
my, < node executing wy;
¥ ¢+
d, <= d, 7 +dy;
Wy [3] < ‘released’;
end
end
foundMachine? < false;
for j < 1 to len(mList) do
ifc” = c;and d = d; then
foundMachine? < true;
assignment.append ([w;, n]);
cf=—c-cy
df < df-d;
w; [3] < ‘executed’;
/* exit the inner cycle and pass to the following workload */
break;
end
end
if foundMachine? = false then
print ‘Not enough resources to create an assignment’;
return 0
end
end
print ‘Assignment correctly created’;
return assignment;

What is claimed is:

1. A method of assigning resources of a computer cluster
with resource sharing according to objectives, the method
comprising:

monitoring resources of each of a plurality of cloud nodes;

providing information descriptive of the cloud node

resources;
receiving a reservation;
determining whether resources are available to satisty the
reservation and any other pending reservations;

ifresources are available, using a rapid search to determine
resource assignments for the reservation and any other
pending reservations according to one or more objec-
tives; and

allocating resources according to the resource assign-

ments.

2. The method of claim 1 wherein the one or more objec-
tives comprise minimizing power consumption throughout
the computer cluster.

US 2014/0068055 Al

3. The method of claim 2 wherein the rapid search com-
prises a rigid-resource search that assigns cloud nodes for
reservations in increasing order of power consumed per core.

4. The method of claim 2 wherein the rapid search com-
prises a flexible-resource search that assigns cloud nodes for
reservations in increasing order of power consumed per core.

5. The method of claim 4 wherein the flexible-resource
search comprises, for a reservation to which resources from
more than one cloud node are assigned, apportioning the
resources from each cloud node in relative quantities deter-
mined by relative quantities of resources specified in the
reservation.

6. The method of claim 2 wherein the rapid search com-
prises a flexible-start search that assigns cloud nodes for
reservations in increasing order of power consumed per core.

7. The method of claim 6 wherein the flexible-start search
comprises assigning cloud nodes for reservations in order of
start times.

8. The method of claim 6 wherein the flexible-start search
comprises assigning cloud nodes for reservations having
fixed start times and then assigning cloud nodes for reserva-
tions having flexible start times according to intervals of time
during which the cloud nodes have sufficient resources to
accommodate the flexible-start reservations.

9. The method of claim 1 wherein determining whether
resources are available comprises making the determination
for all sub-tasks of a composite reservation.

10. A method of assigning resources in a computer cluster
with resource sharing according to objectives, the method
comprising:

monitoring resources of each of a plurality of cloud nodes;

providing information descriptive of the cloud node

resources;

receiving a reservation request for resources;

determining whether resources are available to satisfy the

reservation request and any other pending reservation
requests;

if resources are available, expressing one or more objec-

tives in the form of an objective function and finding a
resource assignment that satisfies all requirements of the

10

Mar. 6, 2014

reservation request and any other pending reservation
requests and that provides a minimal solution of the
objective function; and

allocating resources according to the resource assign-

ments.

11. The method of claim 10 wherein the one or more
objectives comprise minimizing power consumption
throughout the computer cluster.

12. The method of claim 10 wherein finding a resource
assignment comprises solving the objective function by lin-
ear programming.

13. A computer cluster with resource sharing according to
objectives, the cluster comprising a plurality of cloud nodes
each including one or more resources: a terminal: data stor-
age; and an allocation node to:

monitor the cloud node resources;

provide information descriptive of the cloud node

resources to a customer through the terminal;

receive a reservation for cloud node resources from the

customer;
store the reservation in the data storage;
determine assignments of the cloud node resources for the
reservation and any other pending reservations accord-
ing to one or more objectives by rapid search; and

allocate the cloud node resources to customers according
to the resource assignments.

14. The computer duster of claim 13 wherein the one or
more objectives comprise minimizing power consumption
throughout the computer duster.

15. The computer duster of claim 14 wherein the rapid
search comprises a rigid-resource search to assign cloud
nodes in increasing order of power consumed per core.

16. The computer duster of claim 14 wherein the rapid
search comprises a flexible-resource search to assign cloud
nodes in increasing order of power consumed per core.

17. The computer duster of claim 14 wherein the rapid
search comprises a flexible-start search to assign cloud nodes
in increasing order of power consumed per core.

#* #* #* #* #*

