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SYSTEMS AND METHODS FOR EFFICIENT
TOP-K APPROXIMATE SUBTREE
MATCHING

TECHNICAL FIELD

[0001] The present invention relates to computer-based
searching of databases. More specifically, the present inven-
tion relates to a tree-based searching method for finding a set
of closest approximations in a database to a query.

BACKGROUND OF THE INVENTION

[0002] Repositories of XML documents have become
popular and widespread. Along with this development has
come the need for efficient techniques to approximately
match XML trees based on their similarity according to a
given distance metric. Approximate matching is used for
integrating heterogeneous repositories, cleaning such inte-
grated data, as well as for answering similarity queries. For
these applications, the issue is the so-called Top-k Approxi-
mate Subtree Matching problem (TASM), i.e., the problem of
ranking the k best approximate matches of a small query tree
in a large document tree. More precisely, given two ordered
labeled trees, a query Q of size m and a document T of'size n,
what is sought is aranking (T,1, T,2, ..., T;k) of k subtrees of
T (consisting of nodes of T with their descendants) that are
closest to Q with respect to a given metric.

[0003] The naive solution to TASM computes the distance
between the query Q and every subtree in the document T,
thus requiring n distance computations. Using the well-estab-
lished tree edit distance as a metric, the naive solution to
TASM requires O(m*n?) time and O(mn) space. An O(n)
improvement in time leverages the dynamic programming
formulation of tree edit distance algorithms: compute the
distance between Q and T, and rank all subtrees of by visiting
the resulting memorization table. Still, for large documents
with millions of nodes, the O(mn) space complexity is pro-
hibitive.

[0004] Answering top K queries is an active research field.
Specific to XML, many authors have studied the ranking of
answers to twig queries, which are XPath expressions with
branches specifying predicates on nodes (e.g., restrictions on
their tag names or content) and structural relationships
between nodes (e.g., ancestor-descendant). Answers (respec-
tively, approximate answers) to a twig query are subtrees of
the document that satisty (respectively, partially satisfy) the
conditions in the query. Answers are ranked according to the
restrictions in the query that they violate. Approximate
answers are found by explicitly relaxing the restrictions in the
query through a set of predefined rules. Relevant subtrees that
are similar to the query but do not fit any rule will not be
returned by these methods. The main differences among the
methods above are in the relaxation rules and the scoring
functions they use.

[0005] The goal of XML keyword search is to find the top
K subtrees of a document given a set of keywords. Answers
are subtrees that contain at least one such keyword. Because
two keywords may appear in different branches of the XML
tree (and thus be far from each other in terms of structure),
candidate answers are ranked based on a content score (indi-
cating how well a subtree covers the keywords) and a struc-
tural score (indicating how concise a subtree is). These are
combined into a single ranking. Kaushik et al. study TA-style
algorithms to combine content and structural scores. TASM

Oct. 4,2012

differs from keyword search: instead of keywords, queries are
entire trees; instead of using text similarity, subtrees are
ranked based on the well-understood tree edit distance.
[0006] XFinder ranks the top-k approximate matches of a
small query tree in a large document tree. Both the query and
the document are transformed to strings using Priifer
sequences, and the tree edit distance is approximated by the
longest subsequence distance between the resulting strings.
The edit model used to compute distances in XFinder does not
handle renaming operations. Also, no runtime analysis is
given and the experiments reported use documents of up to 5
MB.

[0007] For ordered trees like XML the problem of comput-
ing the similarity between the query and the subtrees of the
document can be solved with elegant dynamic programming
formulations. Zhang and Shasha present an O(n” log?n) time
and O(n?) space algorithm for trees with n nodes and height
O(logn). Their worst case complexity is O(n*). Demaine et al.
use a different tree decomposition strategy to improved the
time complexity to O(n®) in the worst case. This is not a
concern in practice since XML documents tend to be shallow
and wide.

[0008] Guha et al. match pairs of XML trees from hetero-
geneous repositories whose tree edit distance falls within a
threshold. They give upper and lower bounds for the tree edit
distance that can be computed in O(n®) time as a pruning
strategy to avoid comparing all pairs of trees from the reposi-
tories. Yang et al. and Augsten et al. provide lower bounds for
the tree edit distance that can be computed in O(nlogn) time.
[0009] Approximate substructure matching has also been
studied in the context of graphs. TALE is a tool that supports
approximate graph queries against large graph databases.
TALE is based on an indexing method that scales linearly to
the number of nodes of the graph database. TALE uses heu-
ristic techniques and does not guarantee that the final answer
will include the best matches or that all possible matches will
be considered.

[0010] Based on the above, there is therefore a need for
systems and methods that can provide a solution to the TASM
issue or which can, at the very least, mitigate the problems
with the prior art as noted above.

SUMMARY OF INVENTION

[0011] The present invention provides systems and method
for searching for approximate matches in a database of docu-
ments represented by a tree structure. A fast solution to the
Top-k Approximate Subtree Matching Problem involves
determining candidate subtrees which will be considered as
possible matches to a query also represented by a tree struc-
ture. Once these candidate subtrees are found, a tree edit
distance between each candidate subtree and the query tree is
calculated. The results are then sorted to find those with the
lowest tree edit distance.

[0012] In a first aspect, the present invention provides a
method for sorting nodes in a document tree to determine a
number of closest approximations to a query represented by a
query tree, the method comprising:

[0013] a) determining a limit size of subtrees of said
document tree to be considered;

[0014] D) determining candidate subtrees of said docu-
ment tree, each candidate subtree of said document tree
having a size equal to or less than said limit size and each
candidate subtree is not a subtree of another subtree
having a size less than or equal to said limit size;
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[0015] c) for each candidate subtree, determining a tree
edit distance between said candidate subtree and said
query tree,

[0016] d) sorting candidate subtrees in accordance with
their respective tree edit distances with said query tree,
in order to determine which candidate subtrees have
least tree edit distances with said query tree;

wherein said tree edit distance is a cost to convert contents of
one subtree into contents of a second subtree.

[0017] In a second aspect, the present invention provides
computer-readable media having encoded thereon computer
readable and computer executable instructions which, when
executed, executes a method for sorting nodes in a document
tree to determine a number of closest approximations to a
query represented by a query tree, the method comprising:

[0018] a) determining a limit size of subtrees of said
document tree to be considered;

[0019] b) determining candidate subtrees of said docu-
ment tree, each candidate subtree of said document tree
having a size equal to or less than said limit size and each
candidate subtree is not a subtree of another subtree
having a size less than or equal to said limit size;

[0020] c) for each candidate subtree, determining a tree
edit distance between said candidate subtree and said
query tree,

[0021] d) sorting candidate subtrees in accordance with
their respective tree edit distances with said query tree,
in order to determine which candidate subtrees have
least tree edit distances with said query tree;

wherein said tree edit distance is a cost to convert contents of
one subtree into contents of a second subtree.

[0022] Inyetanother aspect, the present invention provides
a method for determining which subtrees in a document tree
most closely approximate a given query tree, the method
comprising:

[0023] a) determining a limit size of subtrees of said
document tree to be considered;

[0024] b) determining candidate subtrees of said docu-
ment tree, each candidate subtree of said document tree
being, at most, equal in size to said limit size,

[0025] c) for each candidate subtree, determining a cost
to convert contents of said candidate subtree into con-
tents of said query tree;

[0026] d) sorting candidate subtrees in accordance with
costs for converting said candidate subtrees into said
query tree,

[0027] e) determining which candidate subtrees have
lowest costs for converting said candidate subtrees into
said query tree, candidate subtrees having lowest costs
for being converted into said query tree being subtrees
which most closely approximate said query tree.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] The embodiments of the present invention will now
be described by reference to the following figures, in which
identical reference numerals in different figures indicate
identical elements and in which:

[0029] FIG. 1 illustrates an example query tree G and a
document tree H;

[0030] FIG. 2 lists decomposition rules for calculating tree
edit distance;
[0031] FIGS. 2A-2E show the different algorithms used in

the invention;
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[0032] FIG. 3 illustrates an example of decomposing the
document tree H in FIG. 1 into prefixes;

[0033] FIG. 4 illustrates a calculation of tree edit distances
using the rules in FIG. 2 and the query tree G and document
tree H;

[0034] FIGS. 54 and 55 illustrates an example document
tree D and its corresponding postorder queue;

[0035] FIG. 6 shows how incoming nodes are appended to
the memory buffer;

[0036] FIG. 7 illustrates a ring buffer as it is pruned of
subtrees;
[0037] FIG. 8 shows the prefix arrays of three prefixes

derived from the document tree D in FIG. 5a;

[0038] FIG. 9 illustrates an implementation of the prefix
ring buffer;
[0039] FIGS. 10a, 105, and 10c¢ illustrate execution times

for varying sizes of documents, queries, and k;

[0040] FIG. 11 illustrates a graph comparing the execution
times for TASM-dynamic* and TASM-dynamic for k=5;
[0041] FIG. 12 is a graph illustrating memory usage as a
function of document size for k=5;

[0042] FIG. 13 is a graph showing relative performance of
TASM-postorder as a function of document size for 10=8 and
k=5

[0043] FIGS. 14a, 145, and 14c¢ are plots showing a com-
parison of the number of subtrees that various methods have
to calculate to find the top-1 ranking of subtrees for a specifi-
cally sized query;

[0044] FIG. 15 illustrates cumulative subtree size differ-
ence for computing top-1 queries; and

[0045] FIG. 16 is a diagram illustrating an example edit
mapping between two trees A and B.

DETAILED DESCRIPTION OF THE INVENTION

[0046] As will be seen below, there is developed an efficient
method for TASM based on a prefix ring buffer that performs
a single scan ofthe large document. The size of the prefix ring
buffer is independent of the document size. Also provided for
below are:

[0047] A proof of an upper bound T on the size of the
subtrees that must be considered for solving TASM. This
threshold is independent of document size and structure.

[0048] An introduction of a prefix ring buffer to prune
subtrees larger than T in O(t) space, during a single
postorder scan of the document.

[0049] Also provided is TASM-postorder, an efficient
and scalable method for solving TASM. The space com-
plexity is independent of the document size and the time
complexity is linear in the document size.

[0050] To begin, the problem to be solved must first be
defined.

[0051] Definition 1 (Top-k Approximate Subtree Matching
Problem).

[0052] LetQ (query)and T (document) be ordered labeled
trees, n be the number of nodes of T, T, be the subtree of T that
is rooted at node t; and includes all its descendants, d(.,.) be a
distance function between ordered labeled trees, and k=n be
an integer. A sequence of subtrees, R=(T,, T, ..., T,),isa
top-k ranking of the subtrees of the document T with respect
to the query Q iff

[0053] 1. the ranking contains the k subtrees that are
closest to the query:

VILER:A(Q.T,)=d(Q.T), and



US 2012/0254251 Al

[0054] 2. the subtrees in the ranking are sorted by their
distance to the query:

V1=kd(Q.T)=dQT,, ).

il
[0055] Top-k approximate subtree matching (TASM) is the
problem of computing a top K ranking of the subtrees of a
document T with respect to a query Q.

[0056] TASM relates to determining how similar one tree is
to another. The tree edit distance has emerged as the standard
measure to capture the similarity between ordered labeled
trees. Given a cost model, it sums up the cost of the least
costly sequence of edit operations that transforms one tree
into the other.

[0057] A treeT is adirected, acyclic, connected graph with
nodes V(T) and edges E(T), where each node has at most one
incoming edge. A node, t,£V(T), is an (identifier, label) pair.
The identifier is unique within the tree. The label, A(t,)EX, is
a symbol of a finite alphabet 2. The empty node € does not
appearina tree. V (T)=V(T)U{e} denotes the set of all nodes
of T extended with the empty node €. By ITI=IV(T)l we
denote the size of T. An edge is an ordered pair (t,,, t,.), where
t,, t. EV(T) are nodes, and t , is the parent of t_. Nodes with the
same parent are siblings.

[0058] The nodes of a tree are strictly and totally ordered.
Node t, is the i-th child of t, iff t, is the parent of t. and
=I{LEV(D):(t,, t)EE(T), t,.=t })I. Any child node t, pre-
cedes its parent node t, in the node order, written t <t . The
tree traversal that visits all nodes in ascending order is the
postorder traversal.

[0059] Thenumber oft,’s children s its fanout ftp. The node
with no parent is the root node, treeroot(T), and a node with-
out children is a leaf. An ancestor of't; is a node t, in the path
from the root node to t,, t=t,. With anc(t,) we denote the set
of all ancestors of a node t,. Node t, is a descendant of t, iff
t,Sanc(t,). Anodet, is to the leftof anode t; iff t,<t;and t, is not
a descendant of t,.

[0060] T, is the subtree rooted in node t, of T iff V(T,)
={t It =t;ort isadescendantoft,in T} and E(T,) = E(T)is the
projection of E(T) w.r.t. V(T,), thus retaining the original node
ordering. By Iml(t,) we denote the leftmost leafof T,, i.e., the
smallest descendant of node t,. A subforest of a tree T is a
graph with nodes

Ve i

and edges E'={(t,, t)I(t,, t )EE(T), tEV', tEV'}

[0061] A postorder queueis a sequence of (label, size) pairs
of the tree nodes in postorder, where label is the node label
and size is the size of the subtree rooted in the respective node.
A postorder queue uniquely defines an ordered labeled tree.
The only operation allowed on a postorder queue is dequeue,
which removes and returns the first element of the sequence.
[0062] Definition 2 (Postorder Queue)

[0063] Given a tree T with n=IT| nodes, the postorder
queue, post(T), of T is a sequence of pairs ((1;, s,), (15, s,), - -
., (1,,s,)), where1,=A(t), s,=IT,l, with t, being the i-th node of
T in postorder. The dequeue operation on a postorder queue
=, P2 - - - » P,,) 1s defined as

dequeve (p)=((P2: D3> - - - > Pu)s P1)

[0064] An edit operation transforms a tree Q into a tree T.
We use the standard edit operations on trees: delete a node and
connect its children to its parent maintaining the sibling
order; insert a new node between an existing node, t,, and a
subsequence of consecutive children of t,; and rename the
label of a node. We define the edit operations in terms of edit
mappings.
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[0065] Definition 3 (Edit Mapping and Node Alignment).
[0066] Let Q and T be ordered labeled trees. M=V (Q)
timesV (T) is an edit mapping between Q and T iff
[0067] 1. every node is mapped:

[0068] (a) Vq,(q,EV(Q)< Tt ((q,; )EM))

[0069] (b) Vi, (tEV(D)+ Jq,(q, L)EM))

[0070] (c) (e, e)EM

[0071] 2. all pairs of non-empty nodes (q;,, t), (qz, t,)EM

satisfy the following conditions:

[0072] (a) q,=q, < t=t, (one-to-one condition)

[0073] (b) q, is an ancestor of q; <> t, is an ancestor of

t, (ancestor condition)
[0074] (c) q, is to the left of q, <> 1, is to the left of ¢,
(order condition)

A pair (q;, 1,)€M is a node alignment.
[0075] Non-empty nodes that are mapped to other non-
empty nodes are either renamed or not modified when Q is
transformed into T. Nodes of Q that are mapped to the empty
node are deleted from Q, and nodes of T that are mapped to
the empty node are inserted into T.
[0076] In order to determine the distance between trees a
cost model must be defined. We assign a cost to each node
alignment of an edit mapping. This cost is proportional to the
costs of the nodes.
[0077] Definition 4 (Cost of Node Alignment)
[0078] LetQandT beordered labeled trees, let cst(x)Z1 be
a cost assigned to a node x, q,&V (Q), tEV (T). The cost of
anode alignment y(q;, t,), is defined as:

g, 1) =
cst(g;) ifgi#eAt=¢€ (delete)
csi(t;) ifgi=€eAij#€ (insert)
(est(gi) + cst(i;))2 (rename)
if gg£eA ;£ A AMg) A1)
0 (no change)

if giFe A1 £€ A Ag) =A())

[0079] Definition 5 (Cost of Edit Mapping)

[0080] Let Q and T be two ordered labeled trees, M=V,
(QtimesV (T) be an edit mapping between Q and T, and y(q,
t) be the cost of a node alignment. The cost of the edit
mapping M is defined as the sum of the costs of all node
alignments in the mapping:

Y= Y a1

(aitj)eM

[0081] The tree edit distance between two trees Q and T is
the cost of the least costly edit mapping.

[0082] Definition 6 (Tree Edit Distance)

[0083] LetQ and T be two ordered labeled trees. The tree
edit distance, 8(Q, T), between Q and T is the cost of the least
costly edit mapping, M =V _(Q)timesV (T), between the two
trees:

8(Q, Ty=min{y*(M)IM < V(Q)xV<(T) is an edit map-
ping}

[0084] In the unit cost model all nodes have cost 1, and the
unit cost tree edit distance is the minimum number of edit
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operations that transforms one tree into the other. Other cost
models can be used to tune the tree edit distance to specific
application needs, for example, the fanout weighted tree edit
distance makes edit operations that change the structure (in-
sertions and deletions of non-leaf nodes) more expensive; in
XML, the node cost can depend on the element type.

Example 1

[0085] FIG.16 illustrates an edit mapping M=((a,, b,), (a,,
b,), (83, Q), (a4, bs), (Q. ba). (as, bs). (a5, bs)) between trees A
and B. If the cost of all nodes of A and B is 1, y(ag, bg)=y(as,
Q)=y(Q, b,)=1; the cost of all other node alignments is zero.
M is the least costly edit mapping between A and B, thus the
tree edit distance is 8(A, B)=y*(M)=3 (node a, is renamed, a,
is deleted, b, is inserted).

[0086] The fastest algorithms for the tree edit distance use
dynamic programming. This section discusses the classic
algorithm by Zhang and Shasha which recursively decom-
poses the input trees into smaller units and computes the tree
distance bottom-up. The decompositions do not always result
in trees, but may also produce forests; in fact, the decompo-
sition rules of Zhang and Shasha assume forests. A forest is
recursively decomposed by deleting the root node of the
rightmost tree in the forest, deleting the rightmost tree of the
forest, or keeping only the rightmost tree of the forest. FIG. 3
illustrates the decomposition of the example document H in
FIG. 1.

[0087] The decomposition of a tree results in the set of all
its subtrees and all the prefixes of these subtrees. A prefixis a
subforest that consists of the firsti nodes of a tree in postorder.
[0088] Definition 7 (Prefix)

[0089] Let T be an ordered labeled tree, and t, be the i-th
node of T in postorder. The prefix pfx(T, t,) of T, 1=1=IT1, is
aforest withnodes V'={t,. t,, ..., t,;} and edges E'={(t,, t))I(t,
t)EE(T), t,EV', t=V'}

[0090] A tree with n nodes has n prefixes. The first line in
FIG. 3 shows all prefixes of example document H.

[0091] The tree edit distance algorithm computes the dis-
tance between all pairs of subtree prefixes of two trees. Some
subtrees can be expressed as a prefix of a larger subtree, for
example Hy;=ptx(H,, h;) in FIG. 3. All prefixes of the smaller
subtree (e.g., H;) are also prefixes of the larger subtree (e.g.,
H,) and should not be considered twice in the tree edit dis-
tance computation. The relevant subtrees are those subtrees
that cannot be expressed as prefixes of other subtrees. All
prefixes of relevant subtrees must be computed.

[0092] Definition 8 (Relevant Subtree)

[0093] Let T be an ordered labeled tree and let t,EV(T).
Subtree T, is relevant iff it is not a prefix of any other subtree:
T, is relevant < t,EV(T)A VL, t(L,EV(T), t=t, tEV(T,)
= Tpix(T) 1).

Example 1

[0094] Consider the example trees in FIG. 1. The relevant
subtrees of G are G, and G, the relevant subtrees of H are H.,,
Hs, He, and H,.

[0095] The decomposition rules for the tree edit distance
are given in FIG. 2; they decompose the prefixes of two
(sub)trees Q,, and T, (q,=q,,, t;=t,). Rule (e) decomposes
two general prefixes, (d) decomposes two prefixes that are
proper trees (rather than forests), (b) and (c) decompose one
prefix when the other prefix is empty, and (a) terminates the
recursion.
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[0096] The dynamic programming method for the tree edit
distance fills the tree distance matrix td, and the last row of td
stores the distances between the query and all subtrees of the
document. This yields a simple solution to TASM: compute
the tree edit distance between the query and the document,
sort the last row of matrix td, and add the k closest subtrees to
the ranking. We refer to this method as TASM-dynamic. (See
FIG. 2A)

[0097] TASM-dynamic is a dynamic programming imple-
mentation of the decomposition rules in FIG. 2. A matrix td
stores the distances between all pairs of subtrees of Q and T.
For each pair of relevant subtrees, Q,, and T,, a temporary
matrix pd is filled with the distances between all prefixes of
Q,, and T,. The distances between all prefixes that are proper
subtrees (rather than forests) are saved in td. Note that the
prefix pfx(Q,,, q,) is a proper subtree iff pfx(Q,,, q4,)-Q;-
[0098] The ranking, Heap, is implemented as a max-heap
that stores (key, value) pairs: max(Heap) returns the maxi-
mum key of the heap in constant time; push-heap(Heap, (k,
v)) inserts a new element (k, v) in logarithmic time; and
pop-heap(Heap) deletes the element with the maximum key
in logarithmic time. Merging two heaps Heap and Heap'
yields a new heap of size x=max(IHeapl, |Heap'l), which
contains the x elements of Heap and Heap' with the smallest
keys. Instead of sorting the distances at the end, The method
illustrated above updates the ranking whenever a new dis-
tance between the query and a subtree of the document is
available. The input ranking will be used later and is here
assumed to be empty.

Example 2

[0099] TASM-dynamic is computed for (k=2) for query G
and document H in FIG. 1 (the cost for all nodes is 1, the input
ranking is empty). FIG. 4 shows the prefix and the tree dis-
tance matrixes that are filled by TASM-dynamic. Consider,
for example, the prefix distance matrix between G; and H,.
The matrix is filled column by column, from left to right. The
element pd[g,]|[hs] stores the distance between the prefixes
pix(Gj;, g,) and pfx(Hy, g5) The upper left element is 0 (Rule
(a) in FIG. 2); the first column stores the distances between
the prefixes of G, and the empty prefix and is computed with
Rule (b); similarly, the elements in the first row are computed
with Rule (¢); the shaded cells are distances between proper
subtrees and are computed with formula (d); the remaining
cells use formula (e). The shaded values of pd are copied to
the tree distance matrix td. The two smallest distances in the
last row are 0 (column 6) and (column 3), thus the top-2
ranking is R=(H,, H,).

[0100] The TASM-dynamic method is one method for solv-
ing TASM. It is a fairly efficient approach since it adds a
minimal overhead to the already very efficient tree edit dis-
tance method. The dynamic programming tree edit distance
method uses the result for subtrees to compute larger trees,
thus no subtree distance is computed twice. Also, TASM-
dynamic improves on the naive solution to TASM by a factor
of O(n) in terms of time. However, for each pair of relevant
subtrees, Q,, and T,,, a matrix of size O(1Q,,,| Times|T,,|) must
be computed. As a result, TASM-dynamic requires both the
query and the document to be memory resident, leading to a
space overhead that is prohibitive even for moderately large
documents.

[0101] As will be discussed in below, there is an effective
bound on the size of the largest subtrees of a document that
can be in the top K best matches w.r.t. to a query. The key
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challenge in achieving an efficient solution to TASM is being
ableto prune large subtrees efficiently and perform the expen-
sive tree edit distance computation on small subtrees only (for
which computing the distance to the query is unavoidable).
One piece of a solution to TASM is the prefix ring buffer
together with a memory-efficient method for pruning large
subtrees.

[0102] Definition 9 (Candidate Set):

[0103] Given a tree T and an integer threshold t>0. The
candidate set of T for threshold T is defined as cand(T,
={TIteEV(D), IT,|=r, Yt ,Sanc(t,): IT,I>t}. Bach element
of the candidate set is a candidate subtree.

Example 3
[0104] The candidate set of the example document D in
FIG. 5a for threshold =6 is cand (D, 6)={Ds, D,, D,,, D,
D21}'
[0105] Itshould be noted that the candidate set is not the set

of all subtrees smaller than threshold T, but a subset. If a
subtree is contained in a different subtree that is also smaller
than =, then it is not in the candidate set. In the dynamic
programming approach the distances for all subtrees of a
candidate subtree T, are computed as a side-effect of comput-
ing the distance for the candidate subtree T,. Thus, subtrees of
a candidate subtree need no separate computation.

[0106] Explained below is how to compute the candidate
set given a size threshold T for a document represented as a
postorder queue. Nodes that are dequeued from the postorder
queue are appended to a memory buffer (see FIG. 6) where
the candidate subtrees are materialized. Once a candidate
subtree is found, it is removed from the buffer, and its tree edit
distance to the query is computed.

[0107] The nodes in the memory buffer form a prefix of the
document (see Definition 7) consisting of one or more sub-
trees. All nodes of a subtree are stored at consecutive posi-
tions in the buffer: the leftmost leaf of the subtree is stored in
the leftmost position, the root in the rightmost position. Each
node that is appended to the buffer increases the prefix. New
non-leaf nodes are ancestors of nodes that are already in the
buffer. They either grow a subtree in the buffer or connect
multiple subtrees already in the buffer into a new, larger,
subtree.

Example 4

[0108] The buffer in FIG. 6 stores the prefix pfx (D, d,)
which consists of the subtrees D, and D,. When node ds is
appended, the buffer stores pfx(D, ds) which consists of a
single subtree, Ds. The subtree Dj is stored at positions 1 to 5
in the buffer: position 1 stores the leftmost leaf (d, ), position
5 the root (ds).

[0109] The challenge is to keep the memory buffer as small
as possible, i.e., to remove nodes from the buffer when they
are no longer required. The nodes in the postorder queue are
distinguished as candidate and non-candidate nodes: candi-
date nodes belong to candidate subtrees and must be buffered;
non-candidate nodes are root nodes of subtrees that are too
large for the candidate set. Non-candidate nodes are easily
detected since the subtree size is stored with each node in the
postorder queue. Candidate nodes must be buffered until all
nodes of the candidate subtree are in the buffer. It is not
obvious whether a subtree in the buffer is a candidate subtree,
even if it is smaller than the threshold, because other nodes
appended later may increase the subtree without exceeding T.
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[0110] A simple pruning approach is to append all incom-
ing nodes to the buffer until a non-candidate node t_, is found.
At this point, all subtrees rooted among t_’s children that are
smaller than T are candidate subtrees. They are returned and
removed from the buffer. This approach must wait for the
parent of a subtree root before the subtree can be returned. In
the worst case, this requires to look O(n) nodes ahead and thus
a buffer of' size O(n) is required. Unfortunately, the worst case
is a frequent scenario in data-centric XML with shallow and
wide trees. For example, T=50 is a reasonable threshold when
matching articles in DBLP. However, over 99% of the 1.2M
subtrees of the root node of DBLP are smaller than t; with the
simple pruning approach, all of them will be buffered until the
root node is processed.

Example 5

[0111] Consider the example document in FIG. 5. We use
the simple approach to prune subtrees with threshold ©=6.
The incoming nodes are appended to the buffer until a non-
candidate arrives. The first non-candidate is d, 5 (represented
by (proceedings, 13)), and all nodes appended up to this point
(d, to d,) are still in the buffer. The subtrees rooted in d, §’s
children (d,, d,,, and d,,) are in the candidate set. They are
returned and removed from the buffer. The subtrees rooted in
ds5 and d,, are returned and removed from the buffer when the
root node arrives.

[0112] The simple pruning is not feasible for large docu-
ments. Discussed below is ring buffer pruning which buffers
candidate trees only as long as necessary and uses a look-
ahead of only O(t) nodes. This is significant since the space
complexity no longer depends on the document size.

[0113] Thesize ofthering bufferis b=t+1. Two pointers are
used: the start pointer s points to the first position in the ring
buffer, the end pointer e to the position after the last element.
The ring buffer is empty iff s=e, and the ring buffer is full iff
s=(e+1)%b (% is the modulo operator). The number of ele-
ments in the ring buffer is (e—s+b)%b=b-1. Two operations
are defined on the ring buffer: (a) remove the leftmost node or
subtree, (b) append node t;. Removing the leftmost subtree T,
means incrementing s by IT,|. Appending node t, means stor-
ing node t; at position e and incrementing e.

Example 6

[0114] The ring buffer (e, d,, d,, ds, d,, ds, dg), s=1, =0, is
full. Removing the leftmost subtree, D5, with 5 nodes, gives
s=6 and e=0. Appending node d, results in (d,, d,, d,, d5, d,,
ds, dy), s=6, e=1.

[0115] As the buffer is updated, it is possible that at a given
point in time consecutive nodes in the buffer form a subtree
that does not exist in the document. For example, nodes (d 5,
d,s,...,d;s) form a subtree withrootnode d, ¢ that is different
from D, 4. A subtree in the buffer is valid if it exists in the
document. Further below is introduced the prefix array to find
the leftmost valid subtree in constant time.

[0116] Theringbuffer pruning process of a postorder queue
of'a document T and an empty ring buffer of size T+1 is as
follows:
[0117] 1. Dequeue nodes from the postorder queue and
append them to a ring buffer until the ring buffer is full or
the postorder queue is empty.
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[0118] 2. If the leftmost node of the ring buffer is a
non-leaf, then remove it from the buffer, otherwise add
the lefimost valid subtree to the candidate set and
remove it from the buffer.

[0119] 3. Goto 1)if'the postorder queue is not empty; go
to) if the postorder queue is empty but the ring buffer is
not; otherwise terminate.

[0120] A non-leaf't, appears at the leftmost buffer position
if all its descendents are removed but t; is not, for example,
after removing the subtrees D, D, ,, and D, ,, the non-leafd, 4
of document D is the leftmost node in the buffer.

Example 7

[0121] Ring buffer pruning is illustrated on the example
tree in FIG. 5. The ring buffer is initialized with s=e=1. In Step
1 nodes d, to dg are appended to the ring buffer (s=1, e=0, see
FIG. 7). The ring bufter is full and we move to Step 2. The
leftmost valid subtree, Dy, is returned and removed from the
buffer (s=6, e=0). The postorder queue is not empty and the
process returns to Step 1 where the ring buffer is filled for the
next execution of Step 2. FIG. 7 shows the ring buffer each
time before Step 2 is executed. The shaded cells represent the
subtree that is returned in Step 2. Note that in the fourth
iteration D, is returned, not the subtree rooted in d, 4, since
the subtree rooted in d, g is not valid. Nodes d, and d,, are
non-candidates and they are not returned. After removing d,,
the buffer is empty and the process terminates.

[0122] The following relates to a proof for the correctness
of ring buffer pruning. The ring buffer pruning classifies
subtree T, as candidate or non-candidate based on the nodes
already buffered. Lemma 1 proves that this can be done by
checking only the T—IT,| nodes that are appended after t, and
are ancestors of t,: if all of these nodes are non-candidates,
then T, is a candidate tree. The intuition is that a parent of t,
that is appended later is an ancestor of both the nodes of t, and
the t—IT,| nodes that follow t,; thus the new subtree must be
larger than .

Example 8

[0123] Consider Example document D of FIG. 5, t=6. F, is
the set of T—ID,| nodes that are appended after d,. The subtree
D, is notin the candidate set since F,={d,, d,, ds, d¢} contains
ds, which is an ancestor of d, and a candidate node. D,, is a
candidate subtree: |D,,|=r, F,,={d,,}, d,, is an ancestor of
d,, and ID,,I>t. (IF,,I<t-ID,, | since F,, contains the root
node d,, which is the last node that is appended.)

[0124] Lemma 1 LetTbeatree, cand(T, T) the candidate set
of T for threshold 7, t, the i-th node of T in postorder, and
F={tItEV(T), ij=i-IT,l+t} the set of at most T—IT,| nodes
following t, in postorder. For all 1=i=IT]

T€cand(Tx) < T StAVL (1, EF Nanc(t)= 1T,1>1) (1)
[0125] Proofl
[0126] IfIT,I>tau,then the left side of (1)1is false since T, is

nota candidate tree, and the right side is false due to condition
IT,|=, thus (1) holds. If IT,|=7 it can be shown that
(t,EFNanc(t;) = 1T1>1) < (1, Eanc(t)= |T,I>1). )

[0127] which makes (1) equivalent to the definition of the
candidate set (cf. Definition 9). Case i+t—IT,|ZITI: F, con-
tains all nodes aftert; in postorder, thus F,Nanc(t,)=anc(t;) and
(2) holds. Case i+t—IT,I<ITl: (2) holds for all t £F,Nanc(t,). If
t Eanc(t,\F,, thent &F Nanc(t,) and the left side of (2) is true.
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Since any t,Eanc(t,)\F, is an ancestor of all nodes of both T,
and F,, [T I>IT,|+IF,I=t, and (2) holds.
[0128] As illustrated in FIG. 7 the ring buffer pruning
removes either candidate subtrees or non-candidate nodes
from the buffer. After each remove operation the leftmost
node in the buffer is checked. If the leftmost node is a leaf,
then it starts a candidate subtree, otherwise it is non-candidate
node.
[0129] Lemma 2
[0130] Let T be an ordered labeled tree, cand(T, ©) be the
candidate set of T for threshold T, t, be the next node of T in
postorder after a non-candidate node or after the root node of
a candidate subtree, or t.=t,, and Iml(t) be the lefimost leaf
descendant of the root t; of subtree T,.

t,is a leaf = AT :T\Ecand(Tx),t,=Imi(t;)

1, is a non-leaf = #,€{z, 1t EV(T),IT >t} 3)
[0131] Proof2
[0132] Let NC be the non-candidate nodes of T.

[0133] (a) t=t;: t, is a leaf, thus t#NC and there is a
t,Ecand(T, T) such that t=V(T),). There is no node t,<t,,
thus t=Iml(t,).

[0134] (b)t, follows the root node of a candidate subtree
T t, is either the parent t; of the root node of T, or a leaf
descendant t, of t,. t,ENC by Definition 9. Since t, is a
leaf, t £NC and there must be a T,Ecand(T, t) such that
t,=V(T,). The equation t=Iml(t,) is proven by contradic-
tion: Assume T, has a leaf't, to the left of t,. As V(T)NV
(T)=9, t, is to the left of t, and #,EV(T),), the least
common ancestor of t, and t, is an ancestor of t. This is
not possible since |T,>t= IT I>t= IT,I>T.

[0135] (c)t, follows a non-candidate node, t,ENC: t; is
either the parent t, of t_or a leaf node t,. t,ENC by
Definition 9, and there is a T,Ecand(T, T) such that
t~=lml(t,) (same rationale as above).

[0136] Theorem 1 (Correctness of Ring Buffer Pruning)
[0137] Given a document T and a threshold <, the ring
buffer pruning adds a subtree T, of T to the candidate set iff
T,Ecand(T, ©).

[0138] Proof3

[0139] Itcan be shownthat (1) each node of T is processed,
i.e., either skipped or output as part of a subtree, and (2) the
pruning in Step 2 is correct, i.e., non-candidate nodes are
skipped and candidate subtrees are returned.

[0140] (1)All nodes of T are appended to the ring buffer:
Steps 1 and 2 are repeated until the postorder queue is
empty. In each cycle nodes are dequeued from the pos-
torder queue and appended to the ring buffer. All nodes
of the ring buffer are processed: The nodes are system-
atically removed from the ring buffer from left to right in
Step 2, and Step 2 is repeated until both the postorder
queue and the ring buffer are empty.

[0141] (2)Lett, bethe smallest node of the ring buffer. If
t, is the leftmost leaf of a candidate subtree, then the
leftmost valid subtree, T,, is a candidate subtree: Since
the buffer is either full or contains the root node of T
when Step 2 is executed, all nodes F~={ttEV(T),
i<j=i-IT,l+t} are in the buffer. If a node t,€F, is an
ancestor of t,, then I'T,I>t: If t, is the smallest leaf of T,
then T, is the leftmost valid subtree which contradicts
the assumption; if the smallest leaf of T, is smaller than
t,, then T, is not a candidate subtree since it contains t;
which is the leftmost leaf of a candidate subtree; since t,,
is an ancestor of t,, the smallest leaf of T, can not be
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larger than t,. With Lemma 1 it follows that T, is a
candidate subtree. As T, is a candidate subtree, with
Lemma 2 the pruning in Step 2 is correct.
[0142] With the correctness of the ring buffer pruning
proven, a prefix array may now be explained.
[0143] Ring buffer pruning removes the leftmost valid sub-
tree from the ring buffer. A subtree is stored as a sequence of
nodes that starts with the leftmost leaf and ends with the root
node. A node is a (label, size) pair, and in the worst case we
need to scan the entire buffer to find the root node of the
leftmost valid subtree. To avoid the repeated scanning of the
buffer we enhance the ring buffer with a prefix array which
encodes tree prefixes (see Definition 7). This allows us to find
the leftmost valid subtree in constant time.
[0144] Definition 10 (Prefix Array)
[0145] Letpfx(T,t,) be aprefix of T, and tEV(T), 1=i=p,
be the i-th node of T in postorder. The prefix array for pfx(T,
t,) is an integer array (a,, a,, . . . , a,) where a, is the smallest
descendant of't, if t, is a non-leaf node, otherwise the largest
ancestor of t, in pfx(T, t,) for which t, is the smallest descen-
dant:

{max{xlx € pfx(T, 1), Iml(x) =1;} if 7; is a leaf

Iml(t;) otherwise

[0146] A new nodet,,, is appended to the prefix array (a,,
a,, . . ., a) by appending the integer a,,,=lml(t,, ;) and
updating the ancestor pointer of its smallest descendant, A,
v=a,,,. Anodet, is a leafiff a,Zi. The largest valid subtree in
the prefix with a given leftmost leaf t; is (a; a,,, - . . , a,,) and
can be found in constant time.

Example 9

[0147] FIG. 8 shows the prefix arrays of different prefixes
of'the example tree D and illustrates the structure of the prefix
arrays with arrows. The prefix array for pfx(D, d,) is (2, 1, 4,
3). We append ds and get (5, 1, 4, 3, 1) (the smallest descen-
dant of ds is d,, thus a;=1 is appended and a, is updated to 5).
Appending d, gives (5,1, 4,3, 1, 6). The largest valid subtree
in the prefix pfx(D, d,;) with the leftmost leaf d, is (5, 1, 4, 3,
1) (=1, a=5).

[0148] The pruning removes nodes from the left of the
prefix ring buffer such that the prefix ring buffer stores only
part of the prefix. The pointer from a leaf to the largest valid
subtree in the prefix always points to the right and is not
affected. This pointer changes only when new nodes are

appended.
[0149] Theorem 2
[0150] The prefix ring buffer pruning for a document with

n nodes and with threshold t runs in O(n) time and O(t) space.
[0151] Proof 4 Runtime:

[0152] Eachofthennodesisprocessed exactly once in Step
1 and in Step 2, then the algorithm terminates. Dequeuing a
node from the postorder queue and appending it to the prefix
ring buffer in Step 1 is done in constant time. Removing a
node (either as non-candidate or as part of a subtree) in Step
2 is done in constant time. Space: The size of the prefix ring
buffer is O(t). No other data structure is used.

[0153] Algorithm 2 (prb-pruning) implements the ring
buffer pruning and computes the candidate set cand(T, T)
given the size threshold t and the postorder queue, pq, of
document T. The prefix ring buffer is realized with two ring
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buffers of size b=t+1: rbl stores the node labels and rbs
encodes the structure as a prefix array. The ring buffers are
used synchronously and share the same start and end pointers
(s, ). Counter ¢ counts the nodes that have been appended to
the prefix ring buffer. (See FIG. 2B)

[0154] After each call of prb-next (Algorithm 3) a candi-
date subtree is ready at the start position of the prefix ring
buffer. It is added to the candidate set and removed from the
buffer (Lines 6 and 7). prb-subtree(rbs, rbl, a, b) returns the
subtree formed by nodes a to b in the prefix ring buffer.
Algorithm 3 is called until the ring buffers are empty.
[0155] Algorithm 3 loops until both the postorder queue
and the prefix ring buffer are empty. If there are still nodes in
the postorder queue (Line 3), they are dequeued and
appended to the prefix ring buffer, and the ancestor pointer in
the prefix array is updated (Line 9). If the prefix ring buffer is
full or the postorder queue is empty (Line 13), then nodes are
removed from the prefix ring buffer. If the leftmost node is a
leaf (Line 14, c+1-(e-s+b)%b is the postorder identifier of
the leftmost node), a candidate subtree is returned, otherwise
a non-candidate is skipped. (See FIG. 2C)

Example 10

[0156] FIG. 9 illustrates the prefix ring buffer for the
example document D in FIG. 5. The relative positions in the
ring buffer are shown at the top. The small numbers are the
postorder identifiers of the nodes. The ring buffers are filled
from left to right; overwritten values are shown in the next
row.

[0157] Now presented is a solution for TASM whose space
complexity is independent of the document size and, thus,
scales well to XML documents that do not fit into memory.
Unlike TASM-dynamic explained above, which requires the
whole document in memory, this solution uses the prefix ring
buffer and keeps only candidate subtrees in memory at any
point in time. The explanation for this solution starts by
showing an effective threshold < for the size of the largest
candidate subtree in the document.

[0158] Recall that solving TASM consists of finding a rank-
ing of the subtrees of the document according to their tree edit
distance to a query. We distinguish intermediate and final
rankings. An intermediate ranking, R':(Tl.,l, Ty oo, Ti,), is
the top-k ranking of a subset of at least k subtrees of a docu-
ment T with respect to aquery Q, the final ranking, R=(T, , T,,,
...+ T;), s the top-k ranking of all subtrees of document T
with respect to the query.

[0159] It can be shown that any intermediate ranking pro-
vides an upper bound for the maximum subtree size that must
be considered (Lemma 4). The tightness of such a bound
improves with the quality of the ranking, i.e., with the dis-
tance between the query and the lowest ranked subtree. We
initialize the intermediate ranking with the first k subtrees of
the document in postorder. Lemma 5 provides bounds for the
size of these subtrees and their distance to the query. The
ranking of the firstk subtrees provides the upper bound ==IQI
(cgt+1)+ke, for the maximum subtree size that must be con-
sidered (Theorem 3), where ¢, and ¢, denote the maximum
costs of any node in Q and the first k nodes in T, respectively.
Note that this upper bound T is independent of size and struc-
ture of the document.

[0160] Lemma 3
[0161] LetQand T be ordered labeled trees, then ITI=6(Q,
T)+1QI.
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[0162] Proof5

[0163] It can be shown that ITI-IQI=8(Q, T). True for
ITIZIQI since d(Q, T)Z0. Case ITI>IQI: At least ITI-IQI
nodes must be inserted to transform Q into T. The cost of
inserting a new node, t, into T is y(e, t,)=cst(t,)=1

[0164] Lemma 4 (Upper Bound)

[0165] Let R=(T,, T, . . ., T,) be any intermediate
ranking of at least k subtrees of a document T with respect to
a query Q, and let R be the final top-k ranking of all subtrees
of T, then VT, J(TER=IT,I=8(Q, T, )+1QI).

[0166] Proof 6
[0167] IT,I=8(Q, T, )+IQI follows from Lemma 3. We
show VT, (Ill" IER= B(Q T,)=8(Q, t,)) by contradiction:

Assume a subtree T,ER, B(Q T, )>6(Q T;)- Then by Defi-
nition 1 also [,,ER; 1f T, ER, then also all other T,ER' are in
R, ie, R'CR T %R‘ (smce 3(Q, T, )>6(Q T, )) but T, ER
thus R'ﬁ{T = K. This contradicts [RI=k.

[0168] Lemma 5 (First Ranking)

[0169] LetQandT be ordered labeled trees, k=ITl, ¢, and
¢, be the maximum costs of a node in Q and the first k nodes
in T, respectively, t, be the i-th node of T in postorder, then for

all T, 1=i=k, the following holds: [T,/=kAd(Q,
T)=1Qleytkes.
[0170] Proof7
[0171] Let g, be the i-th node of Q in postorder, and Iml(t,)

the leftmost leaf of T,. The nodes of a subtree have consecu-
tive postorder numbers. The smallest node is the leftmost leaf,
the largest node is the root. Since the leftmost leaf of T,,
1=i=k, is larger or equal 1 and the root is at most k, the
subtree size is bound by k. The distance between the query
and the document is maximum if the edit mapping is empty,
i.e., all nodes of Q are deleted and all nodes of T, are inserted:

SQ.TNS ), van o+ Y, Ve 1) =|Qleg +ker

qieVIQ) HeV(Ty)

since y(q;, €)=c, 1(€, t)=cy, and IT,I=k.

[0172] The three lemmas above are the elements for the
main result in this section:

[0173] Theorem 3 (Maximum Subtree Size)

[0174] Let query Q and document T be ordered labeled
trees, ¢, and ¢, be the maximum costs of a node in Q and the
first knodes in T, respectively, R=(T, , T, . . ., T;,) be the final
top-k ranking of all subtrees of T with respect to Q, then the
size of all subtrees in R is bound by ©=1QI(c+1)+kc

VZ}].(TZ-jER=> T3 =10(cg+)+her) )
[0175] Proof8
[0176] ITI<k: (4) holds since IT, I<ITI<k<IQI(cQ+l)+ch

ITIzk: Accordlng to Lemma 5 there is an intermediate rank-
ing R'=(T;, ooy Tp) with 8(Q, T, )=IQlc ke, thus
3(Q, T, )—IQICQ+ch (Lemma 4) and IT, I—IQICQ+ch+IQI
(Lemma 3) for all subtrees T, ER

[0177] TASM-postorder (Algorlthm 4) uses the upper
bound T (see Theorem 3) to limit the size of the subtrees that
must be considered, and the set of candidate subtrees, cand(T,
1), is computed using the prefix ring buffer proposed above.
When a candidate subtree T,Ecand(T, T) is available in the
prefix ring buffer (Lines 5 and 19), it is processed and
removed (Line 18). If an intermediate ranking is available
(i.e., IHeapl=k) the upper bound t' provided by the interme-
diate ranking (see Lemma 4) may be tighter than t. Only
subtrees of T, that are smaller than T must be considered. The
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subtrees of T, (including T, itself) are traversed in reverse
postorder, i.e., in descending order of the postorder numbers
of'their rootnodes. If a subtree of T, is below the size threshold
7', then TASM-dynamic is called for this subtree and the
ranking Heap is updated. All subtrees of the processed subtree
are skipped (Line 13), and the remaining subtrees of T, are
traversed in reverse postorder. (See FIG. 2D)

[0178] Theorem 4 (Correctness)

[0179] Givenaquery Q, adocument T, and k=IT|, TASM-
postorder (Algorithm 4) computes the top-k ranking R of all
subtrees of T with respect to Q.

[0180] Proof9

[0181] If no intermediate ranking is available, all subtrees
within size t=IQI(c,+1)+kcare considered. The correctness
of T follows from Theorem 3. Subtrees of size t'=min(t,
max(Heap)+|Ql) and larger are pruned only if an intermediate
ranking with k subtrees is available. Then the correctness of T'
follows from Lemma 4.

[0182] Theorem 5 (Complexity)

[0183] LetQandT be ordered labelled trees, m=IQI, n=ITI,
k=ITl, ¢, and c,-be the maximum costs of a node in Q and the
firstk nodes in T, respectively. Algorithm 4 uses O(m*n) time
and O(m? c+mkc ) space.

[0184] Proof 10

[0185] The space complexity of Algorithm 4 is dominated
by the call of TASM-dynamic (Q, T,, k, Heap) in Line 12,
which requires O(mlT,l) space. Slnce IT =T m(cQ+1)+kcn
the overall space complexity is O(m> cg+mch) The runtime
of tasmDynamic(Q, T,, k, Heap) is O(m?|T,!). T is the size of
the maximum subtree that must be computed. There can be at
most n/t subtrees of size T in the document and the runtime
complexity is

0(§m21’) = O(mzn).

[0186] The space complexity is independent of the docu-
ment size. ¢, and C; are typically small constants, for
example, c,=c,~1 for the unit cost tree edit distance, and the
document is often much larger than the query. For example, a
typical query for an article in DBLP has 15 nodes, while the
document has 26M nodes. If we look for the top 20 articles
that match the query using the unit cost edit distance, TASM-
postorder only needs to consider subtrees up to a size of
1=21QI+k=50 nodes, compared to 26M in TASM-dynamic.
Note that for TASM-postorder a subtree with 50 nodes is the
worst case, whereas TASM-dynamic always computes the
distance between the query and the whole document with
26M nodes.

[0187] TASM-postorder calls TASM-dynamic for docu-
ment subtrees that cannot be pruned. TASM-dynamic com-
putes the distances between the query and all subtrees. In this
section we apply our pruning rules inside TASM-dynamic
and stop the execution early, i.e., before all matrixes are filled.
We leverage the fact that the ranking improves during the
execution of TASM-dynamic, giving rise to a tighter upper
bound for the maximum subtree size.

[0188] We referto TASM-dynamic with pruning as TASM-
dynamic* (Algorithm 5). The pruning is inserted between
Lines 7 and 8 of TASM-dynamic, all other parts remain
unchanged. Whenever the pruning condition holds, the
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unprocessed columns of the current prefix distance matrix
(pd) are skipped. (See FIG. 2E)

Example 11

[0189] Wecompute TASM-dynamic* (k=2) for the query G
and the document H in FIG. 1 (the cost for all nodes is 1, the
input ranking is empty). The gray values in the prefix and tree
distance matrixes in FIG. 4 are the values that TASM-dy-
namic* does not need to compute due to the pruning. Before
column h; in the prefix distance matrix between G; and H, is
computed, Heap=((Hg, 0), (Hs, 1)) and the pruning condition
holds (IHeap|=2, Ipfx(H,, h5)I=5, max(Heap)=1, IGI=3). The
columns hg, hg, and h, can be skipped and the distances d(G,
H,) and 8(G;, H,) need not be computed.

[0190] Theorem 6 (Correctness of TASM-Dynamic™*)
[0191] Given a query Q, a document T, k=ITI, and a rank-
ing R of at most k subtrees with respect to the query Q,
TASM-dynamic™ (Algorithm 5) computes the top-k ranking
of the subtrees in the ranking R and all subtrees of document
T with respect to the query Q.

[0192] Proof1l

[0193] Without pruning, the algorithm computes all dis-
tances between the query Q and the subtrees of document T.
Whenever a new distance is available, the ranking is updated
and the final ranking R is correct. If the pruning condition
holds for a prefix pfx(T,, t,) of the relevant subtree T,, then
column t; of the prefix distance matrix pd, all following col-
umns of pd, and some values of the tree distance matrix td will
not be computed. It needs to be shown that (1) a subtree that
should be in the final ranking R is not missed, and (2) the
values of td that are not computed are not needed later.

[0194] (1) Letp,~pfx(T,,t,) beaprefix of T,. Weneed to
show Vp,(t,=t,= p,&R): If p, is not a subtree then p, R
(Definition 1). If p, is a subtree, p,&R follows from
Lemma 4: Since the pruning condition requires
IHeapl=k, an intermediate ranking (Ti,l, Tpooos Ti,) is
available and 3(Q, T, )=max(Heap); thus a subtree T,
can not be in the final ranking if I'T,[>max(Heap)+IQlI.
Ipfx(T,, t)I>max(Heap)+|QI (pruning condition) and
p.ZIpfx(T,, t)! for t, =t thus p,&R.

[0195] (2) Let pd be the prefix distance matrix between
two relevant subtrees Q,, and T,,. A column t; of pd can be
computed if (a) all columns of pd to the left of t; are filled,
and (b) all prefix distance matrixes between T, and the
relevant subtrees Q, of Q,, (Q,#Q,,) are filled up to col-
umn t; (follows from the decomposition rules in FIG. 2).
(a) holds since the columns are computed from left to
right, and columns to the right of a pruned column are
pruned as well; (b) holds since the prefix distance
matrixes for the subtrees Q, are computed before pd, and
if the pruning condition holds for column t, in the matrix
of a subtree Q,, then it also holds for column t, in the
matrix of Q,, (in the pruning condition, Ipfx(T,, t)I and
IQI do not change and max(Heap) cannot increase).

[0196] Weadapt TASM-postorder (Algorithm 4) by replac-
ing TASM-dynamic with TASM-dynamic™ in Line 12 and use
this version of the algorithm in the experimental evaluation
below.

[0197] Provided below is an experimental evaluation of the
solution. The scalability of TASM-postorder is studied using
realistic synthetic XML datasets of varying sizes and the
effectiveness of the prefix ring buffer pruning on large real
world datasets. All algorithms were implemented as single-
thread applications in Java 1.6 and run on a dual-core AMD64
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server. A standard XML parser was used to implement the
postorder queues (i.e., parse and load documents and que-
ries). In all algorithms a dictionary was used to assign unique
integer identifiers to node labels (element/attribute tags as
well as text content). The integer identifiers provide compres-
sion and faster node-to-node comparisons, resulting in over-
all better scalability.

[0198] The scalability of TASM-postorder is studied using
synthetic data from the standard XMark benchmark, whose
documents combine complex structures and realistic text.
There is a linear relation between the size of the XMark
documents (in MB) and the number of nodes in the respective
XML trees; the height does not vary with the size and is 13 for
all documents. We used documents ranging from 112 MB and
3.4M nodes to 1792 MB and 55M nodes. The queries are
randomly chosen subtrees from one of the XMark documents
with sizes varying from 4 to 64 nodes. For each query size
four trees were used. A comparison is made of TASM-pos-
torder against the state-of-the-art solution, TASM-dynamic,
implemented using the tree edit distance algorithm by Zhang
and Shasha.

[0199] Execution Time:

[0200] FIG. 10a shows the execution time as a function of
the document size for different query sizes 1QI and fixed k=5.
Similarly, FIG. 105 shows the execution time versus query
size (from 4 to 64 nodes) for different document sizes |TI and
fixed k=5. The graphs show averages over 20 runs. The data
points missing in the graphs correspond to settings in which
TASM-dynamic runs out of main memory (4 GB). As pre-
dicted above, the runtime of TASM-postorder is linear in the
document size. TASM-postorder scales very well with both
the document and the query size, and can handle very large
documents or queries. In contrast, TASM-dynamic runs out
of'memory fortrees larger than 500 MB, except for very small
queries. Besides scaling to much larger problems, TASM-
postorder is also around four times faster than TASM-dy-
namic.

[0201] FIG. 10¢ shows the impact of parameter k on the
execution time of TASM-postorder (1QI=16). As expected,
TASM-dynamic is insensitive to k since it always must com-
pute all subtrees. TASM-postorder, on the other hand, prunes
large subtrees, and the size of the pruned subtrees depends on
k. As the graph shows (observe the log-scale on the x-axis),
TASM-postorder scales extremely well with k: an increase of
4 orders of magnitude in k results only in doubling the low
runtime.

[0202] FIG. 11 compares the execution times of TASM-
dynamic* and TASM-dynamic. TASM-dynamic* is, on aver-
age, 45% faster than TASM-dynamic since distance compu-
tations to large subtrees are pruned.

[0203] Main Memory Usage:

[0204] FIG. 12 compares the main memory usage of
TASM-postorder and TASM-dynamic for different document
sizes. The graph shows the average memory used by the Java
virtual machine over 20 runs for each query and document
size. (The memory used by the virtual machine depends on
several factors and is not constant across runs.) It should be
noted that plots for other query sizes were omitted since they
follow the same trend as the ones shown in FIG. 12: the
memory requirements are independent of the document size
for TASM-postorder and linearly dependent on the document
size for TASM-dynamic. In both cases the experiment agrees
with our analysis. The missing points in the plot correspond to
settings for which TASM-dynamic runs out of memory (4
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GB). The difference in memory usage is remarkable: while
for TASM-postorder only small subtrees need to be loaded to
main memory, TASM-dynamic requires data structures in
main memory that are much larger than the document itself.
[0205] In order to give a feel for the overall performance of
TASM-postorder we compare its execution time against
XQuery-based twig queries that find exact matches of the
query tree. This can be seen as a very restricted solution to
TASM and is the special case when k=1 and an identical copy
of the query exists in the document. For example, query G in
FIG. 2 can be expressed as follows:

for $v1 in //a[count(node( )) eq 2]
let $v2:=$v1/b[1][not (node( ))],
$v3:=$v1/c[1][not (node( ))]
where $v2 << §v3

return node-name($v1)

[0206] Saxon, a state-of-the-art main-memory, Java-based
XQuery processor was used in the tests. FIG. 13 shows the
results. As another reference point, the graph shows the cost
of parsing each document using SAX. Compared to the
XQuery program (xq-twig), TASM-postorder is on average
only 26% slower. With respect to SAX, TASM-postorder is
within one order of magnitude. xq-twig runs out of memory
(4 GB) for larger documents and queries, whereas TASM-
postorder does not. In summary, the performance of TASM-
postorder compared to the special case of exact pattern
matching is very encouraging.

[0207] Observe that TASM and twig matching are very
different query paradigms and the runtime comparison pre-
sented above only serves as a reference. The twig query is an
explicit definition of the set of all possible query answers; if
there is no exact match, the result set is empty. In TASM, the
query is a single tree pattern; all subtrees of the document are
ranked, and even if there is no exact match, TASM will return
the k closest matches. TASM does not substitute twig queries,
but complements them and allows users to ask queries when
they do not have enough knowledge about possible answers to
define a twig query.

[0208] Provided below is an evaluation of the effectiveness
of the prefix ring buffer pruning leveraged by TASM-pos-
torder. Recall that the tree edit distance algorithm decom-
poses the input trees into relevant subtrees, and for each pair
of relevant subtrees, Q, and T , a matrix of size 1Q,|times|T)|
must be filled. The size and number of the relevant subtrees
are the main factors for the computational complexity of the
tree edit distance. TASM-dynamic incurs the maximum cost
as it computes the distance between the query and every
subtree in the document. In contrast, TASM-postorder prunes
subtrees that are larger than a threshold.

[0209] FIG. 14a shows the number of relevant subtrees
(y-axis) of a specific size (x-axis) that TASM-dynamic must
compute to find the top-5 ranking of the subtrees of the
PSD7003 dataset for a query with |QI=9 nodes. FIG. 145
shows the equivalent plot for TASM-postorder. The differ-
ences are significant: while TASM-dynamic computes the
distance to all relevant subtrees, including the entire PSD
document tree with 37M nodes, the largest subtree that is
considered by TASM-postorder has only 18 nodes (while the
theoretical maximum is 23). FIG. 14¢ shows a similar com-
parison for DBLP using a histogram. In the histogram, lel
shows the number of subtrees of sizes 0-9, Sel shows the sizes
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10-49, 1e2 the sizes 50-99, etc. TASM-postorder computes
much fewer and smaller trees: the bins for the subtree sizes 50
and larger are empty. It should be noted that the FIGS. 14a,
14b, and 14¢, for TASM-dynamic do not depend on k, but
they do for TASM-postorder. With k=1 for TASM-dynamic,
the amount of virtual memory space required would be as
large and would take as long to compute as any other value of
k, for example, k=10. Such a discrepancy in the parameters
used in the determination of the figures is not significant as
one would imagine since TASM-dynamic always looks at
subtrees the same way.

[0210] The subtrees computed by TASM-postorder are not
always a subset of the subtrees computed by TASM-dynamic.
If TASM-postorder prunes a large subtree, it may need to
compute small subtrees of the pruned subtree that TASM-
dynamic does not need to consider. Note, however, that every
subtree that is computed by TASM-postorder is either com-
puted by TASM-dynamic or contained in one that is. Thus
TASM-dynamic is always more expensive. Define is the
cumulative subtree size which adds the sizes of the relevant
subtrees up to a specific size X that are computed by a TASM
algorithm:

«
CSStr, Ty =) if, 1 Sx=|T|
i=1

where {, is the number of subtrees of'size i that are computed
for document T. The difference of the cumulative subtree
sizes of TASM-dynamic and TASM-postorder measures the
extra computational effort for TASM-dynamic. In FIG. 15 we
show the cumulative subtree size difference, css (X, T)-css-
pos(%> 1), over the subtree size x for answering a top-1 query
on the documents DBLP and PSD. For small subtrees the
curves are negative, which means that TASM-postorder com-
putes more small trees than TASM-dynamic. Nevertheless,
TASM-dynamic ends up performing a considerably larger
computation task than TASM-postorder. TASM-dynamic
processes around 27M (129M) nodes more than TASM-pos-
torder for the DBLP (PSD) document (660K resp. 89M
excluding the processing of the entire document by TASM-
dynamic in its final step).

[0211] Discussed above is TASM: the problem of finding
the top K matches for a query Q in a document T w.r.t. the
established tree edit distance metric. This problem has appli-
cations in the integration and cleaning of heterogeneous
XML repositories, as well as in answering similarity queries.
Also discussed is the state-of-the-art solution that leverages
the best dynamic programming algorithms for the tree edit
distance and characterized its limitation in terms of memory
requirements: namely, the need to compute and memorize the
distance between the query and every subtree in the docu-
ment. Proved above is an upper bound on the size of the
largest subtree of the document that needs to be evaluated.
This size depends on the query and the parameter k alone.
Also provided is an effective pruning strategy that uses a
prefix ring buffer and keeps only the necessary subtrees from
the document in memory. As a result, provided is an algorithm
that solves TASM in a single pass over the document and
whose memory requirements are independent of the docu-
ment itself. The analysis is verified experimentally and
showed that the solution scales extremely well w.r.t. docu-
ment size, query size, and the parameter k.
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[0212] The above solution to TASM is portable. It relies on
the postorder queue data structure which can be implemented
by any XML processing or storage system that allows an
efficient postorder traversal of trees. This is certainly the case
for XML parsed from text files, for XML streams, and for
XML stores based on variants of the interval encoding, which
is prevalent among persistent XML stores. The present inven-
tion opens up the possibility of applying the established and
well-understood tree edit distance in practical XML systems.

[0213] As noted above, the present invention can be used in
searching databases, documents, anything that can be repre-
sented by a tree structure. As well, queries are, preferably,
representable in a tree structure as well.

[0214] The method or algorithmic steps of the invention

may be embodied in sets of executable machine code stored in

a variety of formats such as object code or source code. Such

code is described generically herein as programming code, or

a computer program for simplification. Clearly, the execut-

able machine code may be integrated with the code of other

programs, implemented as subroutines, by external program
calls or by other techniques as known in the art.

[0215] The following references are useful for a better

understanding of the present invention.
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[0242] The embodiments of the invention may be executed

by a computer processor or similar device programmed in the

manner of method steps, or may be executed by an electronic
system which is provided with means for executing these
steps. Similarly, an electronic memory means such as com-
puter diskettes, CD-ROMs, Random Access Memory

(RAM), Read Only Memory (ROM) or similar computer

software storage media known in the art, may be programmed

to execute such method steps. As well, electronic signals

representing these method steps may also be transmitted via a

communication network.

[0243] Embodiments of the invention may be implemented

in any conventional computer programming language. For

example, preferred embodiments may be implemented in a

procedural programming language (e.g.“C”) or an object-

oriented language (e.g.“C++”, “java”, or “C#”). Alternative
embodiments of the invention may be implemented as pre-
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programmed hardware elements, other related components,
or as a combination of hardware and software components.
[0244] Embodiments can be implemented as a computer
program product for use with a computer system. Such imple-
mentations may include a series of computer instructions
fixed either on a tangible medium, such as a computer read-
able medium (e.g., a diskette, CD-ROM, ROM, or fixed disk)
or transmittable to a computer system, via a modem or other
interface device, such as a communications adapter con-
nected to a network over a medium. The medium may be
either a tangible medium (e.g., optical or electrical commu-
nications lines) or a medium implemented with wireless tech-
niques (e.g., microwave, infrared or other transmission tech-
niques). The series of computer instructions embodies all or
part of the functionality previously described herein. Those
skilled in the art should appreciate that such computer
instructions can be written in a number of programming lan-
guages for use with many computer architectures or operating
systems. Furthermore, such instructions may be stored in any
memory device, such as semiconductor, magnetic, optical or
other memory devices, and may be transmitted using any
communications technology, such as optical, infrared, micro-
wave, or other transmission technologies. It is expected that
such a computer program product may be distributed as a
removable medium with accompanying printed or electronic
documentation (e.g., shrink-wrapped software), preloaded
with a computer system (e.g., on system ROM or fixed disk),
or distributed from a server over a network (e.g., the Internet
or World Wide Web). Of course, some embodiments of the
invention may be implemented as a combination of both
software (e.g., a computer program product) and hardware.
Still other embodiments of the invention may be implemented
as entirely hardware, or entirely software (e.g., a computer
program product).

[0245] A person understanding this invention may now
conceive of alternative structures and embodiments or varia-
tions of the above, all of which are intended to fall within the
scope of the invention as defined in the claims that follow.

Having thus described the invention, what is claimed as
new and secured by Letters Patent is:

1. A method for sorting nodes in a document tree to deter-
mine a number of closest approximations to a query repre-
sented by a query tree, the method comprising:

a) determining a limit size of subtrees of said document tree

to be considered;

b) determining candidate subtrees of said document tree,
each candidate subtree of said document tree having a
size equal to or less than said limit size and each candi-
date subtree is not a subtree of another subtree having a
size less than or equal to said limit size;

¢) for each candidate subtree, determining a tree edit dis-
tance between said candidate subtree and said query
tree;

d) sorting candidate subtrees in accordance with their
respective tree edit distances with said query tree, in
order to determine which candidate subtrees have least
tree edit distances with said query tree;

wherein said tree edit distance is a cost to convert contents of
one subtree into contents of a second subtree.

2. A method according to claim 1 wherein said candidate
subtrees are stored in a memory buffer.

3. A method according to claim 1 wherein subtrees of
candidate subtrees are removed from consideration as candi-
date subtrees.
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4. A method according to claim 2 wherein said memory
buffer is a ring buffer.

5. A method according to claim 2 wherein a number of
nodes which can be stored in said memory buffer is equal to
or less than said limit size.

6. A method according to claim 1 wherein said nodes are
processed in an order such that the root node of said document
tree is processed last.

7. A method according to claim 1 wherein only candidate
subtrees which exist in the document tree are processed for
step ¢).

8. Computer-readable media having encoded thereon com-
puter readable and computer executable instructions which,
when executed, executes a method for sorting nodes in a
document tree to determine a number of closest approxima-
tions to a query represented by a query tree, the method
comprising:

a) determining a limit size of subtrees of said document tree

to be considered;

b) determining candidate subtrees of said document tree,
each candidate subtree of said document tree having a
size equal to or less than said limit size and each candi-
date subtree is not a subtree of another subtree having a
size less than or equal to said limit size;

¢) for each candidate subtree, determining a tree edit dis-
tance between said candidate subtree and said query
tree;

d) sorting candidate subtrees in accordance with their
respective tree edit distances with said query tree, in
order to determine which candidate subtrees have least
tree edit distances with said query tree;

wherein said tree edit distance is a cost to convert contents of
one subtree into contents of a second subtree.

9. Computer-readable media according to claim 8 wherein
said candidate subtrees are stored in a memory buffer.

10. Computer-readable media according to claim 8
wherein subtrees of candidate subtrees are removed from
consideration as candidate subtrees.

11. Computer-readable media according to claim 9
wherein said memory bufter is a ring buffer.

12. Computer-readable media according to claim 9
wherein a number of nodes which can be stored in said
memory buffer is equal to or less than said limit size.

13. Computer-readable media according to claim 8
wherein said nodes are processed in an order such that the root
node of said document tree is processed last.

14. Computer-readable media according to claim 8
wherein only candidate subtrees which exist in the document
tree are processed for step c).

15. A method for determining which subtrees in a docu-
ment tree most closely approximate a given query tree, the
method comprising:

a) determining a limit size of subtrees of said document tree

to be considered;

b) determining candidate subtrees of said document tree,
each candidate subtree of said document tree being, at
most, equal in size to said limit size;

¢) for each candidate subtree, determining a cost to convert
contents of said candidate subtree into contents of said
query tree,

d) sorting candidate subtrees in accordance with costs for
converting said candidate subtrees into said query tree,

e) determining which candidate subtrees have lowest costs
for converting said candidate subtrees into said query



US 2012/0254251 Al

tree, candidate subtrees having lowest costs for being
converted into said query tree being subtrees which most
closely approximate said query tree.

16. A method according to claim 15 wherein subtrees
which are a subtree of another subtree having a size which is,
at most, equal to said limit size are excluded from being a
candidate subtree.

17. A method according to claim 15 further comprising the
step of determining which candidate subtrees exist in said
document tree.
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18. A method according to claim 17 wherein candidate
subtrees which do not exist in said document tree are not
processed according to step c).

19. A method according to claim 15 wherein candidate
subtrees are stored in a ring buffer.

20. A method according to claim 19 wherein unsuitable
candidate subtrees are pruned from said buffer.

sk sk sk sk sk



