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Abstract—Foundation models, while highly effective, are of-
ten resource-intensive, requiring substantial inference time and
memory. This paper addresses the challenge of making these
models more accessible with limited computational resources
through meta-channel learning approaches. Our goal is to enable
users to run large pre-trained foundation models on standard
GPUs without sacrificing performance. We propose a latent space
compression strategy that restructures the feature space while
preserving essential temporal information. Surprisingly, we show
that reducing the latent space to only 2.10% of its original size
retains 96.15% of the classification accuracy of the full-sized
model. To achieve this, we investigate both classical methods and
neural network-based adapters for optimizing multivariate time
series representations. Our experiments demonstrate up to a 10×
speedup compared to the baseline model without performance
degradation, while allowing up to 4.5× more datasets to fit on
a single GPU. This enhancement makes foundation models more
practical and scalable for real-world applications.

Index Terms—Foundation Models, Dimensionality Reduction,
Multivariate Time Series, Neural Adapters, PCA.

I. INTRODUCTION

In recent years, the field of time series analysis has seen
notable progress, particularly through the development of deep
learning models [1]–[6]. These models have shown promising
capabilities in learning expressive representations tailored to
temporal data. However, in contrast to fields like natural
language processing (NLP) and computer vision, time series
research lacks large-scale unified benchmarks. As a result,
models are generally designed to be compact and efficient,
often relying on regularization strategies or data augmentation
techniques to improve generalization and robustness [7]–[11].

Nevertheless, with the steady enrichment of classification-
oriented benchmarks such as UCR and the UEA
archive—which regularly incorporate new datasets—the
landscape is evolving. This growing diversity of public
benchmarks has paved the way for the emergence of Time
Series Foundation Models (TSFM), which aim to learn
general-purpose representations transferable across a wide
range of tasks. These pre-trained models have revolutionized
NLP [12], [13] and computer vision [14]. Inspired by
these successes, TSFMs are now striving to generalize
effectively across a wide range of tasks by leveraging large
heterogeneous datasets. The main appeal of these models
lies in their ability to generate universal representations that
can be easily adapted to various applications through simple
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fine-tuning, thus significantly reducing the requirement for
extensive task-specific annotated data.

Despite their remarkable performance, foundation models
present significant practical challenges. Specifically, their uti-
lization is often hindered by substantial computational re-
source requirements, including GPU memory and inference
time. This problem is exacerbated in the case of multivariate
time series, which frequently consist of hundreds or even
thousands of channels. Consequently, directly applying exist-
ing foundation models to this type of data quickly becomes
impractical, especially with limited hardware resources. This
limitation restricts the broad adoption of foundation models in
many real-world scenarios.

In response to these computational constraints, this paper
aims to make foundation models accessible for multivariate
time series classification, even when standard GPU resources
are limited. We propose an innovative approach based on
latent space compression techniques, significantly reducing the
dimensionality of the problem while preserving the crucial
information contained within the data. Specifically, we ex-
plore classical methods such as Principal Component Analysis
(PCA), Singular Value Decomposition (SVD), and neural
network-based adapters designed specifically to optimize rep-
resentations of multivariate time series.

Our experiments conducted on a diverse set of datasets from
the UEA archive clearly illustrate the effectiveness of our strat-
egy. Our results indicate that despite significant compression
(reducing dimensionality to just 2.10% of its original size),
we manage to retain 96.15% of the full model’s classification
accuracy. Furthermore, we demonstrate substantial speed-ups,
achieving up to 10× faster inference, and enabling the simulta-
neous handling of up to 4.5× more datasets on a single GPU.
These remarkable results significantly enhance the practical
usability and scalability of foundation models for real-world
applications involving multivariate time series.

II. RELATED WORK

Classical models for time series classification, including
those based on Dynamic Time Warping [15], [16], kernel
methods, shapelet-based algorithms [17], tree-based models
[18], and dictionary-based approaches [19], [20], are effective
for univariate time series but face challenges when extended
to multivariate time series (MTS). Deep learning methods
and random convolution techniques like ROCKET [21] and
Multi-ROCKET show promise but typically treat each channel
independently, leading to scalability and computational issues.
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TABLE I: Average accuracy over 3 runs under full fine-tuning without an adapter (i.e., using all initial channels).

Model Duck Face Finger Hand Heart Insect Vowels Motor NATOPS PEMS Phoneme SpokeA
Mantis COM COM COM 0.401 ± 0.021 COM COM 0.981 ± 0.005 COM 0.937 ± 0.012 COM 0.342 ± 0.002 0.987 ± 0.001
MOMENT COM COM COM 0.356 ± 0.016 COM COM 0.925 ± 0.002 COM TO COM TO TO

TSFMs [22]–[26], inspired by advances in NLP and computer
vision, offer potential for MTS classification but still struggle
with complexity and inter-channel dependencies.

In recent years, TSFMs have gained traction for learning
transferable representations from large-scale heterogeneous
time series. Among them, we highlight MOMENT [22] that
is based on T5 architecture that captures both global and
local temporal patterns. Containing 341 million parameters,
it is pre-trained via masked reconstruction loss to generalize
across different tasks including classification. On the other
hand, Mantis [27] is a foundation model with 8 million
parameters that was pre-trained specifically for classification.
Extracting convolution features and enriching them with sta-
tistical features, Mantis generates tokens to further feed
them into a transformer and pre-train the whole network
using a contrastive approach [28], [29] to promote robust
representation learning.

III. PROBLEM FORMULATION

Let N denote the number of samples, T the number of
time steps, D the number of channels in each multivariate
time series, and D′ the reduced number of dimensions after
applying dimensionality reduction (D′ ≤ D).

Objective. Our goal is to enable efficient multivariate time
series classification using pre-trained models while preserving
high classification accuracy. We focus on achieving rapid fine-
tuning within a 2-hour window on a single GPU without
significant performance degradation. To this end, we explore
various dimensionality reduction techniques, which preprocess
the input data before being processed by foundation models.
We then evaluate different fine-tuning strategies to optimize
performance under computational constraints.

Challenges. Table I presents the accuracy results of two
TSFMs, Mantis and MOMENT, on a range of multivariate
time series datasets under full fine-tuning without the use
of any adapter, i.e., without dimensionality reduction. No-
tably, the results indicate that most of the foundation models
encounter severe computational limitations when applied to
multivariate data on standard hardware (NVIDIA Tesla V100-
32GB GPU), as indicated by COM (CUDA Out of Memory
error) and TO (2 hours Time Out) entries. These computa-
tional constraints underscore the difficulty of directly applying
existing foundation models to multivariate time series with
numerous channels, often leading to excessive resource con-
sumption and failures to complete the fine-tuning process. This
evidence motivates our exploration of dimensionality reduction
techniques, which aim to alleviate these computational bottle-
necks and enable foundation models to handle multivariate
data more effectively without compromising accuracy.

Problem Definition. Let X ∈ RT×D denote a multivariate
time series with T time steps and D channels, and let y ∈ Y =

{1, . . . ,K} be the corresponding class label for a K-class
classification task. We assume that a pre-trained foundation
model f encodes each time series channel independently to an
embedding vector of size p. Assuming D large, we introduce
an adapter that performs latent space compression by mapping
the original D channels onto D′ ≤ D channels to enable
efficient processing of high-dimensional data:

g : RT×D → RT×D′
.

We consider a set G of candidate dimensionality reduction
techniques (e.g., PCA, truncated SVD, random projection, or
neural-network–based linear combiners). The overall classifi-
cation pipeline is then given by

H(X) = h
(
f
(
g(X)

))
,

where h : RD′×p → Y is a classification head. Our goal is
to maximize the classification accuracy under different fine-
tuning strategies while respecting a strict resource budget (i.e.,
fine-tuning must be finished within 2 hours on a single GPU).

Case 1: Adapter + Head Fine-Tuning
In this setting, the pre-trained foundation model f is kept

frozen. The adapter g is parameterized by θ (denoted as gθ)
and the classification head h is parameterized by ϕ. The
pipeline is defined as

H(X) = hϕ

(
f
(
gθ(X)

))
.

The optimization problem is then:

max
θ, ϕ

1

N

N∑
i=1

I
(
hϕ

(
f
(
gθ(Xi)

))
= yi

)
,

subject to:

gθ : RT×D → RT×D′
, D′ ≤ D,

and the constraint that the overall fine-tuning (of θ and ϕ) is
completed within two hours on a single GPU.

Case 2: Full Fine-Tuning
In this scenario, the foundation model f is parameterized by

ψ and denoted as fψ , so that the entire pipeline is fine-tuned.
Keeping both parameterized adapter and head the pipeline
becomes:

H(X) = hϕ

(
fψ

(
gθ(X)

))
.

The corresponding optimization problem is:

max
θ,ψ, ϕ

1

N

N∑
i=1

I
(
hϕ

(
fψ

(
gθ(Xi)

))
= yi

)
,

subject to the same mapping constraint:

gθ : RT×D → RT×D′
, D′ ≤ D,

and the same resource constraint (two hours on a single GPU).



Case 3: Head Fine-Tuning

This baseline configuration employs the identity mapping
gid : RT×D → RT×D, thus passing all D channels directly
to the foundation model f . Only the classification head h is
fine-tuned, providing a reference scenario without dimension
reduction where :

H(X) = h
(
f
(
gid(X)

))
= h

(
f(X)

)
.

Thus, the optimization objective is:

max
ϕ

1

N

N∑
i=1

1
(
h
(
f(Xi)

)
= yi

)
,

under the same resource constraints.

In summary, three distinct approaches are investigated:
(1) freezing f while fine-tuning the adapter and head, (2)
fully fine-tuning {gθ, fψ, hϕ}, and (3) relying on the identity
mapping and training only the head. Our primary objective
is to reduce channels from D to D′ without compromising
classification accuracy, while adhering to strict computational
limits.

IV. PROPOSED APPROACH

To address the computational challenges described in our
problem formulation, we propose the use of an adapter to
reduce the number of channels from D to D′ (D′ ≤ D). This
adapter is selected from a candidate set G of dimensionality
reduction techniques to maximize classification accuracy under
strict resource constraints, as highlighted in Figure 1. In what
follows, we briefly describe each candidate method in G:

a) Principal Component Analysis (PCA) [30], [31]:
seeks to find an orthogonal basis of principal components
where a few components capture most of the data’s variance.
Applying PCA to 3D matrices (N,T,D) poses challenges.
A common approach reshapes the data into (N,T ×D) and
projects it to (N,T × D′), but this disrupts the temporal
structure. Additionally, when N ≪ T × D, PCA becomes
computationally unstable. To address this, we reshape the
data to (N × T,D), allowing PCA to focus on correlations
between channels over all time steps, effectively capturing
spatial correlations while preserving temporal information.
The learned rotation matrix W ∈ RD′×D linearly combines
the original channels into a lower-dimensional space, applied
consistently across all time steps.

b) Truncated Singular Value Decomposition (SVD) [32]:
Unlike PCA, SVD operates directly on the data matrix without
centering it, decomposing it into its top k singular values
and vectors. This method effectively captures the principal
directions of variance.

c) Random Projection (Rand Proj) [33]: is a computa-
tionally efficient technique that projects the data onto a lower-
dimensional subspace using randomly generated directions.
Unlike PCA, it does not aim to capture the most variance but
instead focuses on providing a quick dimensionality reduction
solution with minimal computational cost.

d) Variance-Based Feature Selection (VAR) [34]: is a
simple but effective method that selects features with the
highest variance. Features with low variance are considered
less informative and can be discarded without significantly
affecting the overall representation of the data.

e) Linear Combiner (lcomb): introduces a new learnable
adapter that performs a linear combination of channels before
passing the data to the encoder and classification head. In
contrast to unsupervised methods like PCA, this approach
learns the rotation matrix W ∈ RD′×D in a supervised
manner, either by fine-tuning the adapter and head or the
entire network. Given the large search space for possible
linear combinations, we apply a top-k rule to each row of
W , retaining only the top k entries to ensure more efficient
optimization.

Input X Adapter gθ
Frozen

Model f Head hϕ ŷ

(a) Frozen f , fine-tune gθ & hϕ.

Input X Adapter gθ
Trainable
Model fψ

Head hϕ ŷ

(b) Fine-tune gθ, fψ & hϕ.

Input X Identity
gid

Foundation
Model f Head hϕ ŷ

(c) No adapter, fine-tune only hϕ.

Fig. 1: Three fine-tuning scenarios in which
each adapter g is selected from G =
{PCA,Truncated SVD,Rand Proj,VAR, lcomb}.

V. EXPERIMENTAL EVALUATION

Experimental Setup. All experiments were conducted us-
ing an NVIDIA Tesla V100 GPU (32GB) with a strict runtime
constraint of two hours per fine-tuning task. Models exceed-
ing these limits are reported as either COM (CUDA Out-of-
Memory) or TO (Time-Out).

Foundation Models. We evaluate two representative
TSFMs:

• MOMENT [22]: A large-scale transformer-based model
pre-trained via masked reconstruction (341M parame-
ters).

• Mantis [27]: A smaller Vision Transformer (ViT)-based
model pre-trained via contrastive learning (8M parame-
ters).

Datasets. This study draws on 12 UEA datasets [35], each
containing at least 10 channels, to ensure that dimensionality
reduction (from D to D′) confers a tangible advantage. The
UEA archive comprises 30 multivariate datasets, but those with
fewer than 10 channels generally derive limited benefit from
such reduction. While our method is applicable to any D, it
provides the greatest impact when D is sufficiently large. The
experimental results presented in this work are based on a
diverse set of datasets, whose main characteristics are sum-
marized in Table III. These datasets span a variety of domains



TABLE II: Performance comparison between different adapter configurations for MOMENT and Mantis foundation models;
new number of channels=5. Best performance in bold; 2nd best in italic. Results for fine-tuning head only given for reference.

Dataset Model head adapter+head

no adapter PCA SVD Rand Proj VAR lcomb lcomb top k

DuckDuckGeese MOMENT 0.460±0.016 0.627±0.023 0.667±0.012 0.500±0.040 0.407±0.012 0.427±0.046 0.393±0.114

Mantis 0.420±0.020 0.558±0.023 0.600±0.032 0.487±0.023 0.400±0.060 0.360±0.020 0.393±0.031

FaceDetection MOMENT 0.623±0.006 0.567±0.002 0.566±0.001 0.552±0.014 0.555±0.001 TO TO
Mantis 0.595±0.004 0.554±0.001 0.551±0.007 0.533±0.004 0.539±0.007 0.548±0.008 0.550±0.008

FingerMovement MOMENT 0.573±0.012 0.593±0.032 0.573±0.012 0.573±0.025 0.613±0.021 0.573±0.032 0.540±0.017

Mantis 0.627±0.015 0.593±0.044 0.530±0.030 0.570±0.075 0.582±0.040 0.580±0.020 0.567±0.046

HandMovementDirection MOMENT 0.401±0.008 0.410±0.043 0.365±0.036 0.405±0.041 0.369±0.039 0.378±0.047 0.414±0.008

Mantis 0.342±0.021 0.396±0.021 0.351±0.089 0.329±0.083 0.329±0.031 0.320±0.034 0.320±0.028

Heartbeat MOMENT 0.740±0.003 0.732±0.000 0.732±0.005 0.756±0.005 0.725±0.006 0.737±0.005 0.737±0.013

Mantis 0.811±0.010 0.766±0.005 0.737±0.012 0.776±0.013 0.780±0.010 0.748±0.006 0.779±0.014

InsectWingbeat MOMENT 0.284±0.003 0.239±0.003 0.224±0.003 0.193±0.027 0.195±0.004 0.167±0.014 0.213±0.010

Mantis 0.614±0.005 0.344±0.013 0.352±0.010 0.333±0.035 0.238±0.012 0.171±0.013 0.354±0.041

JapaneseVowels MOMENT 0.885±0.002 0.801±0.009 0.803±0.003 0.796±0.011 0.734±0.008 0.797±0.035 0.819±0.027

Mantis 0.979±0.006 0.922±0.009 0.897±0.012 0.902±0.008 0.885±0.010 0.798±0.070 0.816±0.027

MotorImagery MOMENT 0.643±0.015 0.590±0.010 0.607±0.012 0.567±0.032 0.550±0.010 0.583±0.015 0.593±0.025

Mantis 0.600±0.036 0.593±0.025 0.590±0.017 0.577±0.029 0.607±0.025 0.557±0.045 0.607±0.055

NATOPS MOMENT 0.872±0.011 0.776±0.008 0.739±0.017 0.774±0.032 0.813±0.020 0.596±0.017 0.769±0.031

Mantis 0.944±0.011 0.874±0.014 0.820±0.012 0.852±0.038 0.850±0.035 0.787±0.003 0.826±0.036

PEMS-SF MOMENT 0.834±0.026 0.678±0.007 0.511±0.022 0.644±0.027 0.611±0.015 0.740±0.010 0.697±0.013

Mantis 0.923±0.023 0.674±0.032 0.640±0.045 0.615±0.023 0.615±0.055 0.584±0.025 0.594±0.065

PhonemeSpectra MOMENT 0.234±0.001 0.234±0.002 0.212±0.002 0.245±0.003 0.228±0.004 TO TO
Mantis 0.296±0.003 0.270±0.003 0.259±0.001 0.293±0.002 0.294±0.004 0.279±0.002 0.286±0.001

SpokenArabicDigits MOMENT 0.977±0.001 0.972±0.000 0.978±0.000 0.961±0.008 0.935±0.002 TO TO
Mantis 0.940±0.003 0.962±0.003 0.933±0.001 0.879±0.004 0.946±0.003 0.834±0.019 0.873±0.019

Avg Ratio to head only MOMENT 1.000 0.973 0.939 0.930 0.893 0.870 0.904
Mantis 1.000 0.950 0.920 0.900 0.882 0.823 0.875

and tasks, offering a comprehensive evaluation of the fine-
tuning methods under consideration. For instance, the datasets
include time-series data from physiological measurements
(e.g., Heartbeat, MotorImagery), sensor readings (e.g., PEMS-
SF), and acoustic signals (e.g., PhonemeSpectra, SpokenAra-
bicDigits). The number of channels, sequence lengths, and
class distributions vary significantly across datasets, ensuring
that the results generalize across different data modalities and
problem settings. In the case of the InsectWingbeat dataset,
we specifically subsampled 1000 examples from the original
training set (which contains 30,000 examples) and 1000 from
the original test set (of 20,000 examples) to reduce compu-
tational overhead while maintaining sufficient variety in the
data for robust model evaluation. Each dataset was carefully
chosen to challenge the models across different feature spaces,
class imbalances, and temporal dependencies. For example, the
JapaneseVowels dataset focuses on speaker classification based
on vowel sounds, while the DuckDuckGeese dataset involves
distinguishing animal sounds with varying levels of complexity
in terms of sequence length and channel dimensionality. By
including these datasets, we ensure that the evaluation frame-
work captures the performance of fine-tuning methods across
a wide spectrum of classification tasks.

Definitions. To provide clarity for subsequent discussions

and experiments, we begin by defining two central terms
used throughout this work: head and adapter. A head refers
specifically to the linear classification layer appended at the
end of a foundation model’s output, responsible for mapping
learned representations into classification predictions. In con-
trast, an adapter is an intermediate processing module inserted
upstream of the foundation model. Its primary function is
to modify or compress the input representations, potentially
enhancing efficiency and adaptability for fine-tuning on down-
stream tasks.

Full Fine-Tuning Regime. We initially explored the impli-
cations of fully fine-tuning foundation models without employ-
ing any adapters. Our experimental constraints, notably limited
GPU memory and a maximum runtime of two hours per task,
revealed significant limitations associated with this approach.
Specifically, attempts at full fine-tuning often resulted in errors
such as Time-Out (TO) or CUDA Out of Memory (COM), indi-
cating that such comprehensive fine-tuning is computationally
prohibitive for practical use.

For a more in-depth understanding, we analyzed the
few datasets capable of completing full fine-tuning with-
out adapters. We compared these outcomes with a simpler
configuration—fine-tuning only the head after reducing di-
mensionality through adapters. On the Hand dataset, full fine-



TABLE III: Main characteristics of the considered datasets.

Dataset Train Size Test Size # of channels Sequence Len # of classes

DuckDuckGeese (Duck) 60 40 1345 270 5
FaceDetection (Face) 5890 3524 144 62 2
FingerMovements (Finger) 316 100 28 50 2
HandMovementDirection (Hand) 320 147 10 400 4
Heartbeat (Heart) 204 205 61 405 2
InsectWingbeat (Insect) 1000 1000 200 78 10
JapaneseVowels (Vowels) 270 370 12 29 9
MotorImagery (Motor) 278 100 64 3000 2
NATOPS 180 180 24 51 6
PEMS-SF (PEMS) 267 173 963 144 7
PhonemeSpectra (Phoneme) 3315 3353 11 217 39
SpokenArabicDigits (SpokeA) 6599 2199 13 93 10

(a) MOMENT models (b) Mantis models

Fig. 2: Comparison of running times for MOMENT and Mantis models, averaged over all datasets and
three seeds.

tuning yielded an average accuracy of 0.401 for Mantis and
0.356 for MOMENT, while head-only fine-tuning resulted in
similar accuracies (0.401 for Mantis and 0.342 for MOMENT),
with a notably high variance for MOMENT. These results
indicate that the extensive computational demands of full fine-
tuning do not necessarily provide meaningful improvements in
performance, at least for this dataset.

Furthermore, the Vowels dataset, the second dataset that
satisfied our computational constraints, showed slightly supe-
rior performance when fully fine-tuned compared to head-only
fine-tuning (0.981 vs. 0.979 for Mantis and 0.925 vs. 0.885
for MOMENT). However, given that MOMENT comprises
341 million parameters, the marginal gains obtained from full
fine-tuning are overshadowed by the significant computational
overhead. Indeed, among the 12 datasets initially selected for
evaluation, only two successfully completed full fine-tuning
with MOMENT without encountering memory or runtime
constraints, further emphasizing the practical infeasibility of
extensive full-model fine-tuning.

Head Only vs Adapter+Head. Given the prohibitive com-
putational cost of full fine-tuning, our subsequent experi-
ments focused on comparing the simpler head-only fine-tuning

scenario with a more computationally manageable strategy:
fine-tuning the head together with an upstream adapter. One
might question the necessity of adapter+head fine-tuning,
especially considering the favorable computational profile of
head-only fine-tuning. However, our empirical findings indi-
cate compelling advantages of integrating adapters despite the
seemingly minimal difference in performance.

Indeed, adapter+head fine-tuning maintains an average of
97.15% of the accuracy obtained from head-only fine-tuning
across both foundation models considered (MOMENT and
Mantis). Moreover, the adoption of adapters dramatically ac-
celerates fine-tuning—achieving approximately 10 times faster
training for MOMENT and about two times faster for Mantis
compared to head-only fine-tuning. Thus, the integration of
adapters represents a significant computational advantage, en-
abling efficient fine-tuning of large foundation models without
compromising their classification capabilities.

Statistical tests conducted (Figure 6) reinforce this finding,
demonstrating no statistically significant difference between
head-only fine-tuning and adapter+head fine-tuning across the
datasets tested. Yet, as clearly depicted in Figure 2, adapters
significantly reduce computational time. This efficiency is



critical, particularly when computational resources or runtime
are constrained, further justifying the adapter-based approach.

Results. Our detailed experimental analysis includes mul-
tiple adapter configurations applied during the fine-tuning
process of the head and adapter modules in two foundation
models: MOMENT and Mantis. We conducted evaluations
across 12 diverse datasets from the UEA archive, each initially
possessing over ten channels, and subsequently reduced the
dimensionality from an average of 240 channels to merely
5 using adapters. Rather than merely eliminating channels,
adapters leverage linear or nonlinear transformations to create
metachannels, effectively compressing the data while preserv-
ing significant informational content.

Remarkably, the PCA-based adapter preserved approxi-
mately 97.30% of the original accuracy for MOMENT and
95.00% for Mantis compared to the no-adapter baseline,
despite reducing dimensionality to just 2.08% of the origi-
nal dimension. Statistical analyses (Figure 6) confirmed that
performance differences across various adapter methods, in-
cluding the baseline (no adapter), were statistically negligible.

Nonetheless, adapters exhibited substantial computational
advantages. For MOMENT, adapters achieved an average
speed-up exceeding 10 times relative to head-only fine-tuning
without adapters, while for Mantis, adapters achieved around
double the speed. An exception arose with the Linear Com-
biner (lcomb) adapter—a deep-learning approach requiring re-
peated invocations of the foundation model at each fine-tuning
step, thereby incurring higher computational costs compared
to simpler adapter methods such as PCA or SVD.

Moreover, certain datasets exhibited superior performance
without any adapters, indicating that optimal dimensionality
reduction may depend on dataset characteristics. Future in-
vestigations could explore more sophisticated adaptive dimen-
sionality reduction strategies to enhance performance further.

Finally, our results highlight an important practical benefit:
adapters significantly enhance the scalability of foundation
models under constrained computational resources. Specifi-
cally, the lcomb adapter enabled fine-tuning on all 12 datasets
for Mantis and 9 out of 12 datasets for MOMENT within
a single GPU environment, compared to only 5 datasets for
Mantis and 2 datasets for MOMENT in the full fine-tuning
regime without adapters. This represents an increase in scala-
bility of 2.4× for Mantis and 4.5× for MOMENT, emphasizing
the substantial practical gains achievable by employing our
adapter-based methodology.

VI. QUALITATIVE STUDY

Hyperparameter Sensitivity of PCA. In this experiment,
we implemented a variant of PCA called Patch PCA. Unlike
the traditional approach where the input time series of shape
(N,T,D) is reshaped into (N × T,D) before applying PCA,
our method reshapes the input into (N×np, pws×D), where
np represents the number of patches in the sequence and pws
refers to the patch window size. The case where pws = 1
corresponds to the standard PCA approach. We compare the
results across different patch window sizes (pws = 1, 8, 16),

TABLE IV: Performance comparison between fine-tuning
methods with different adapter configurations for the MOMENT
foundation model

Dataset adapter+head

PCA Scaled PCA Patch 8 Patch 16

DuckDuckGeese 0.667±0.012 0.533±0.031 0.567±0.031 0.573±0.031

FaceDetection 0.566±0.001 COM 0.582±0.003 0.558±0.004

FingerMovement 0.573±0.012 0.563±0.032 0.633±0.012 0.563±0.015

HandMovementDirection 0.365±0.036 0.356±0.043 0.464±0.021 0.383±0.021

Heartbeat 0.732±0.005 0.728±0.003 0.738±0.007 0.741±0.013

InsectWingbeat 0.224±0.003 0.239±0.003 0.458±0.002 0.459±0.004

JapaneseVowels 0.803±0.003 0.723±0.020 0.967±0.002 0.963±0.002

MotorImagery 0.607±0.012 0.590±0.020 0.577±0.006 0.597±0.015

NATOPS 0.739±0.017 0.731±0.012 0.857±0.003 0.915±0.003

PEMS-SF 0.511±0.022 0.678±0.007 0.719±0.012 0.696±0.018

PhonemeSpectra 0.212±0.002 0.227±0.008 0.224±0.001 0.186±0.001

SpokenArabicDigits 0.978±0.000 0.963±0.001 0.967±0.001 0.956±0.001

TABLE V: Performance comparison between fine tuning
methods with different adapter configurations for Mantis
foundation model

Dataset adapter+head

PCA Scaled PCA Patch 8 Patch 16

DuckDuckGeese 0.558±0.023 0.522±0.023 0.467±0.031 0.440±0.035

FaceDetection 0.554±0.001 0.550±0.010 0.551±0.003 0.547±0.007

FingerMovement 0.593±0.044 0.583±0.023 0.530±0.036 0.570±0.053

HandMovementDirection 0.367±0.042 0.327±0.056 0.396±0.021 0.369±0.021

Heartbeat 0.736±0.010 0.734±0.014 0.766±0.005 0.763±0.018

InsectWingbeat 0.344±0.013 0.268±0.005 0.287±0.011 0.266±0.006

JapaneseVowels 0.890±0.008 0.865±0.016 0.922±0.009 0.921±0.011

MotorImagery 0.567±0.006 0.552±0.045 0.593±0.025 0.573±0.065

NATOPS 0.837±0.012 0.840±0.017 0.874±0.014 0.870±0.008

PEMS-SF 0.584±0.010 0.613±0.025 0.634±0.013 0.674±0.032

PhonemeSpectra 0.270±0.003 0.262±0.008 0.234±0.002 0.205±0.006

SpokenArabicDigits 0.962±0.003 0.952±0.003 0.921±0.006 0.899±0.002

as seen in Figure 3. These experiments show no clear pattern
in performance across the different patch sizes, suggesting that
the patch window size can be treated as a hyperparameter to
be tuned based on the specific dataset.

Furthermore, we introduced two key hyperparameters for
our PCA implementation: the patch window size (pws) and the
option to scale the data before performing PCA. The results
of PCA presented in Tables IV and V reflect the accuracy
obtained for each configuration of these two hyperparameters,
allowing us to explore the impact of different settings on
performance and to choose the best hyperparameters to present
the results in Table II. This flexibility in the PCA configuration
allows us to adapt the method to a wide range of tasks,

Fig. 3: Comparison of PCA and PatchPCA Methods for
Mantis and MOMENT Models



(a) MOMENT (b) Mantis

Fig. 4: Full fine-tuning vs tuning adapter+head for lcomb.

optimizing both performance and computational efficiency.
Hyperparameter Sensitivity of lcomb. In addition to the

standard lcomb configuration, we evaluated a variant called
lcomb top k, which introduces a form of regularization to
make the attention mechanism more stable. In lcomb top k,
only the top k largest attention weights are selected, and
each row of the attention matrix is rescaled by dividing by
the sum of these k weights. For our experiments, we set
k = 7. This mechanism is designed to reduce noise in
the attention distribution, focusing the model on the most
important relationships between elements in the input. The
results shown in Figure 5 show the performance comparison
between lcomb and lcomb top k across several datasets for
both MOMENT and Mantis foundation models.

Figure 7 shows a comparison of the average rank for
different adapter methods used in the MOMENT and Mantis
foundation models. The average ranks were computed across
all datasets and averaged over three seeds. The comparison
gives insight into the relative performance of each adapter
method when applied to these two models.

VII. TESTS AND COMPARISONS

Statistical Tests. The heatmap shown in Fig. 6 presents
the pairwise p-values between different fine-tuning methods
applied to the MOMENT and Mantis foundation models across
several datasets. The methods compared include No Adapter,
PCA, SVD, Rand Proj, VAR, and lcomb. The p-values were
calculated using a two-sample Student’s t-test with unequal
variances, based on accuracy results obtained from three
different seeds for each method.

The null hypothesis for each comparison states that there is
no significant difference in the mean performance, in terms
of accuracy, between the two methods being compared. A
p-value close to 1 supports this hypothesis, indicating that
the two methods yield statistically similar performance. In
contrast, a p-value close to 0 suggests a significant difference.
In the MOMENT heatmap, the lowest p-value observed is 0.46,
while for Mantis, the minimum p-value is 0.25. These
visualizations indicate that there is no statistically significant

difference between fine-tuning using adapter + head with
different adapters, and similarly, no difference is observed
between adapter + head and head-only fine-tuning, regardless
of the adapter used.

Rank comparisons. For the MOMENT foundation model, as
depicted in Figure 7a, the PCA adapter ranks the lowest, indi-
cating the best performance, while the lcomb adapter ranks the
highest, showing relatively lower performance. The remaining
adapters—SVD, Rand Proj, and VAR—lie in between, with
Rand Proj and SVD showing close performance.

Similarly, in the case of the Mantis foundation model (Fig-
ure 7b), PCA exhibits the lowest average rank, implying su-
perior performance. Rand Proj also performs relatively worse
in this case. The consistency of PCA’s superior performance
across both models highlights its effectiveness.

VIII. CONCLUSION

In this paper, we addressed the critical computational chal-
lenges associated with using foundation models for multivari-
ate time series classification. Through a rigorous approach
employing latent space compression adapters, we demon-
strated that significant dimensionality reduction is achievable
without substantial loss in accuracy. This method facilitates
the efficient use of these models even with limited hardware
resources, thereby making foundation models significantly
more accessible and practical for a wide range of real-world
applications.

Our experimental results demonstrated that compressing
the dimensionality to only 2.10% of the original embedding
space retains 96.15% of the original performance, significantly
reducing training times and memory requirements. Specifi-
cally, we achieved an average speed-up of about 10× and
enabled a substantial increase (up to 4.5×) in the number of
datasets processed simultaneously on a single GPU. These
advances clearly highlight the potential and value of our
approach in overcoming practical barriers to the widespread
adoption of foundation models in resource-constrained real-
world contexts.

Several future research directions could further enhance this
promising approach. In particular, future work could explore



(a) MOMENT (b) Mantis

Fig. 5: Performance Comparison Between lcomb and lcomb top k Fine-Tuning Configurations for both MOMENT and Mantis
Models

(a) Heatmap of Pairwise p-values for Adapter Methods for MOMENT
Foundation Model

(b) Heatmap of Pairwise p-values for Adapter Methods for Mantis
Foundation Model

Fig. 6: Heatmap of Pairwise p-values for Adapter Methods for
MOMENT and Mantis Foundation Models averaged across all
datasets and three different seeds

more sophisticated compression techniques, combining linear
and nonlinear adapters, and advanced machine learning meth-
ods to better capture complex temporal dependencies within
multivariate series. Extending this framework to other tempo-
ral data types and additional applications such as forecasting

(a) Adapter’s Average Rank for MOMENT Foundation Model

(b) Adapter’s Average Rank for Mantis Foundation Model

Fig. 7: Comparison of Adapter’s Average Rank for MOMENT
and Mantis Foundation Models averaged across all datasets
and three different seeds

and anomaly detection represents another promising area for
future exploration.
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