Scalable Analytics on Large Sequence Collections

Karima Echihabi

Themis Palpanas

Mohammed VI Polytechnic University

Université Paris Cité & French University Institute (IUF)

institut universitaire de France

International Conference on Mobile Data Management (MDM), June 2022

Questions This Tutorial Answers

- how important are data series nowadays?
- what does data series analysis involve?
- how can we speed up such an analysis?
- what are the different kinds of similarity search?
- what are the state-of-the-art data series **indices** for similarity search?
- can such indices help with geolocated data series analysis?
- how can these indices parallelize/distribute their operations?
- can these indexes be used for general high-d vector similarity search?
- what are the open research problems in this area?
- what are the connections to deep learning?

Acknowledgements

• thanks for slides to

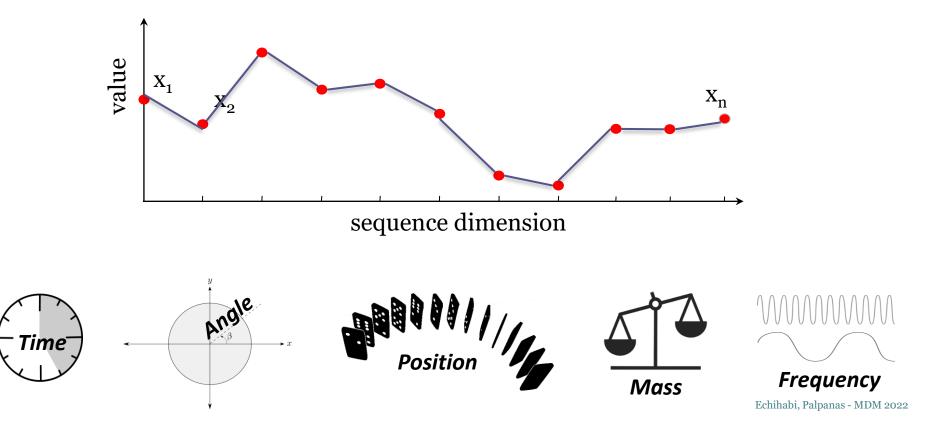
- Michail Vlachos
- Panagiotis Papapetrou
- George Kollios
- Dimitrios Gunopulos
- Christos Faloutsos
- Panos Karras
- Peng Wang
- Liang Zhang
- Reza Akbarinia
- Georgios Chatzigeorgakidis

Introduction, Motivation

Data series

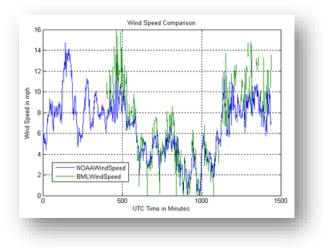
Sequence of points ordered along some dimension

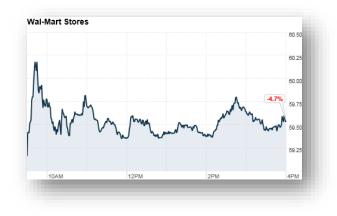
dive



Scientific Monitoring

 meteorology, oceanography, astronomy, finance, sociology, ...





Time

Historical stock quotes http://money.cnn.com/2012/04/23/markets/walmart_stock/index.htm

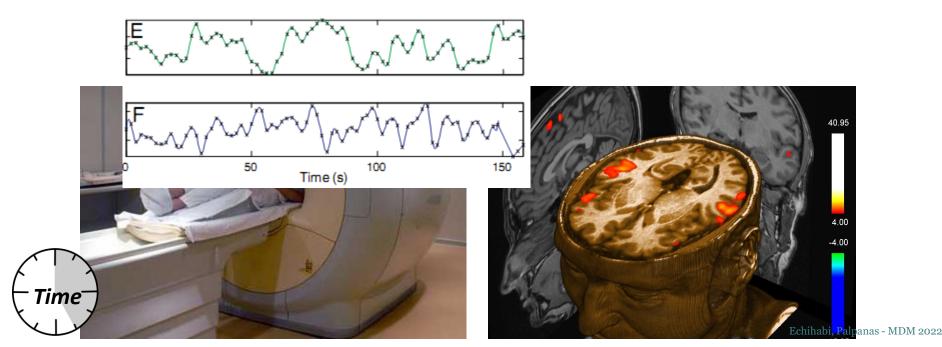
diN

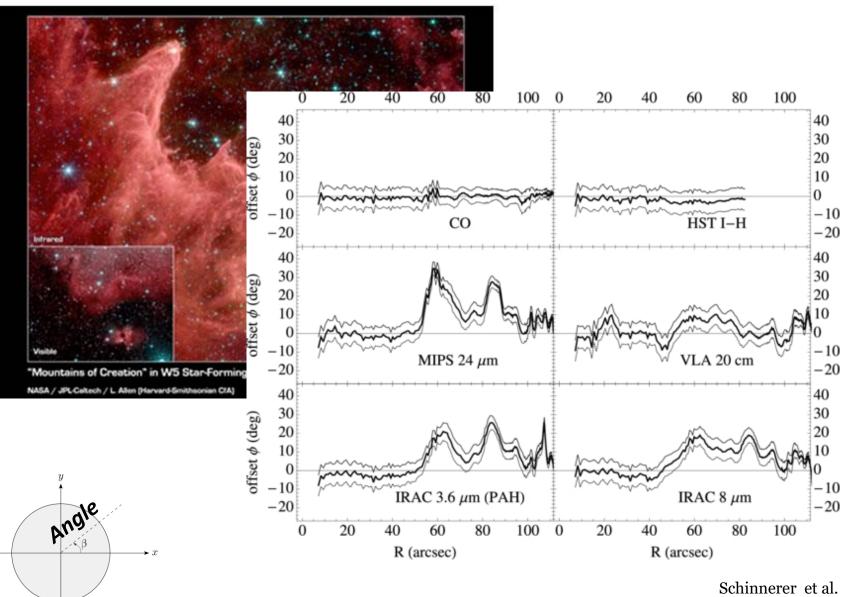
Neuroscience

• functional Magnetic Resonance Imaging (fMRI) data

diN

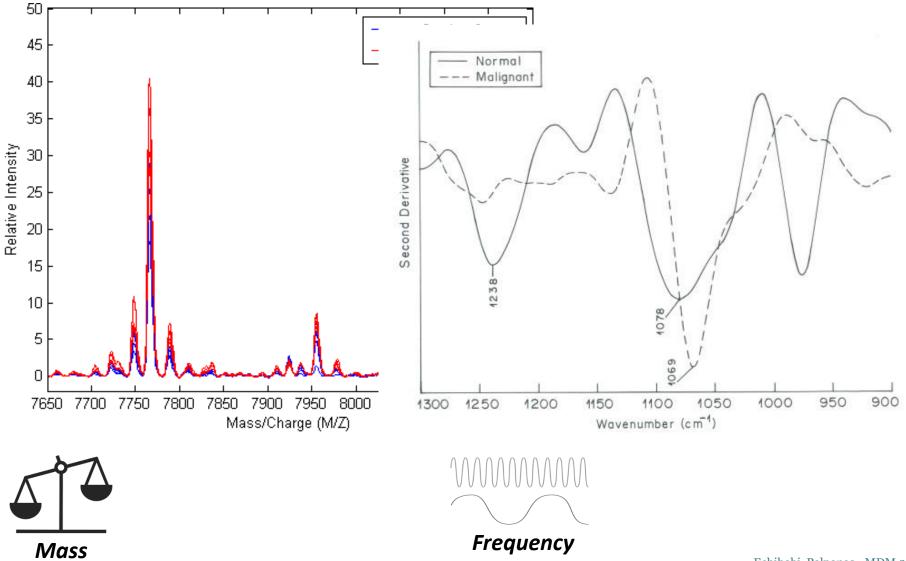
- primary experimental tool of neuroscientists
- reveal how different parts of brain respond to stimuli





Echihabi, Palpanas - MDM 2022

Medicine



Echihabi, Palpanas - MDM 2022

Analysis Tasks

- analyze evolution of values across x-dimension
- identify trends
- treat data series as a first class citizen
 - analyze each data series as a single object
 - process all n-dimensions at once

Analysis Tasks Subsequences

- often times the data series are very long
 - n >> 1
 - streaming data series
- we then chop the long sequence in subsequences
 - e.g., using sliding window, or shifting window
 - pick carefully length of subsequence
 - should contain patterns of interest
- and process each subsequence separately

Analysis Tasks: Simple Query Answering

select values in time interval

select values in some range

select some data series combinations of those

Analysis Tasks: Complex Analytics

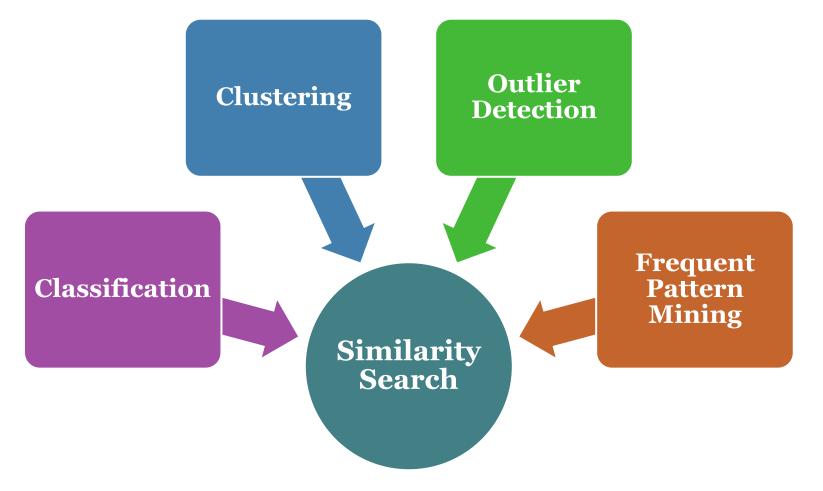
Clustering

Outlier Detection

Classification

Frequent Pattern Mining

Analysis Tasks: Complex Analytics



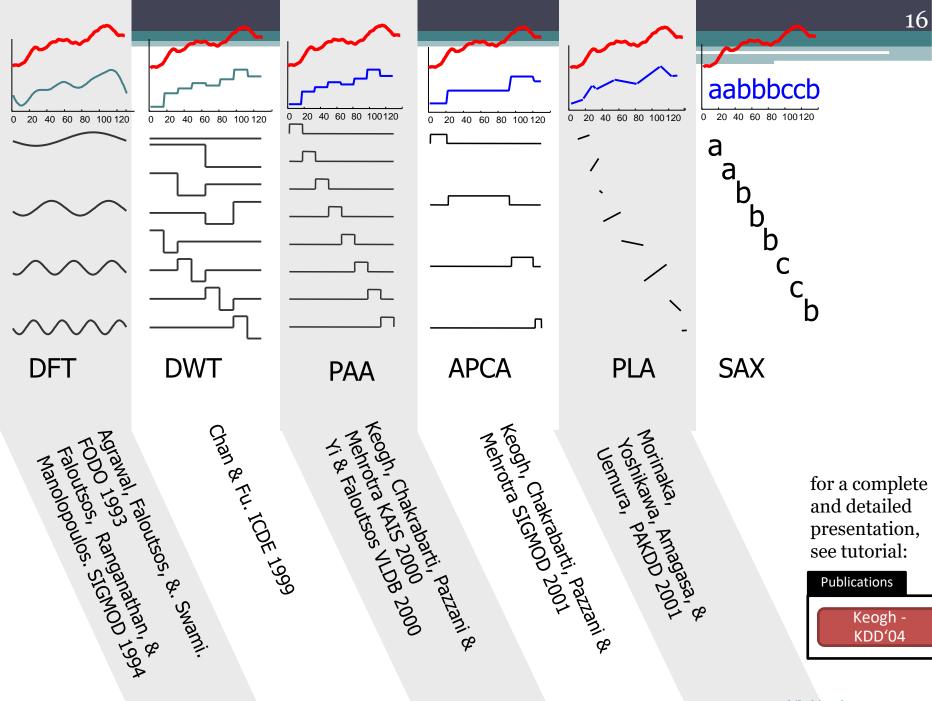
Analysis Tasks: Complex Analytics

Clustering

Outlier Detection

HARD, because of very high dimensionality: each data series has 100s-1000s of points!

even HARDER, because of very large size: millions to billions of data series (multi-TBs)!



Echihabi, Palpanas - MDM 2022

Comparison of Representations

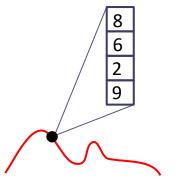
- which representation is the best?
- depends on data characteristics
 periodic, smooth, spiky, ...
- overall (averaged over many diverse datasets, using same memory budget), when measuring reconstruction error (RMSE)
 - no big differences among methods
 - DFT, PAA, DWT (Haar), iSAX slightly better
- should also take into account other factors
 - visualization, indexable, ...

Publications

Data Series Similarity Problem Variations

<u>Univariate</u>

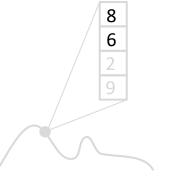
each point represents one value (e.g., temperature)



Multivariate

each point represents many values (e.g., temperature, humidity, pressure, wind, etc.)

<u>Univariate</u> each point represents one value (e.g., temperature)



Multivariate

each point represents many values (e.g., temperature, humidity, pressure, wind, etc.)

Distance Measures

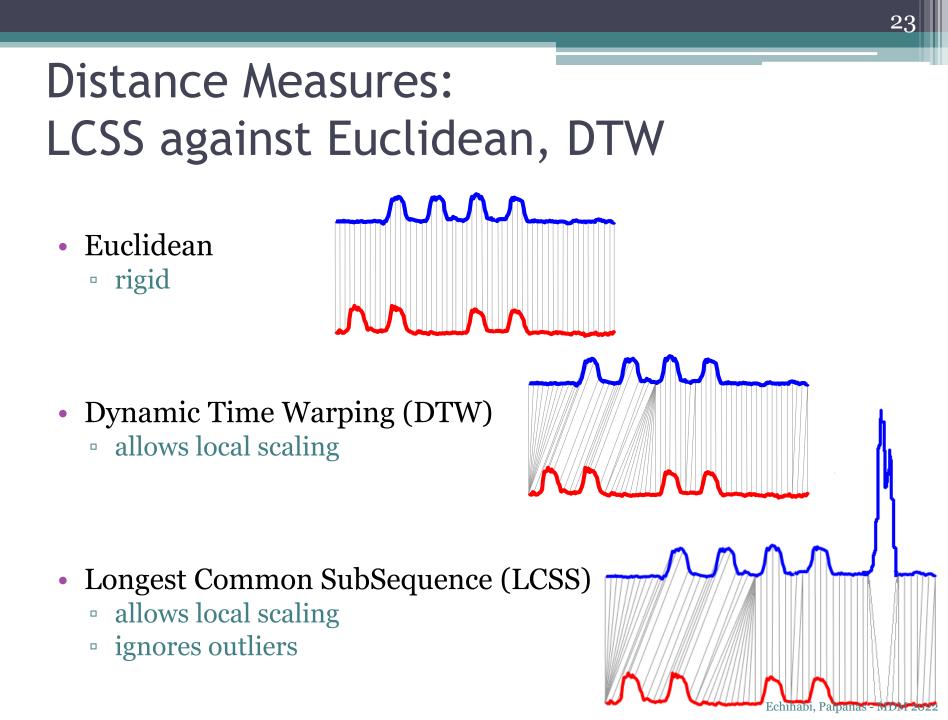
F	Publications	
	Ding- PVLDB'08	
	Paparrizos- SIGMOD'20	

- similarity search is based on measuring distance between sequences
- dozens of distance measures have been proposed
 - lock-step
 - Minkowski, Manhattan, Euclidean, Maximum, DISSIM, ...
 - sliding
 - Normalized Cross-Correlation, SBD, ...
 - elastic
 - DTW, LCSS, MSM, EDR, ERP, Swale, ...
 - kernel-based
 - KDTW, GAK, SINK, ...
 - embedding
 - GRAIL, RWS, SPIRAL, ...

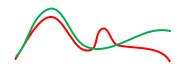
Distance Measures

Publications	
Ding- PVLDB'08	
Paparrizos- SIGMOD'20	

- similarity search is based on measuring distance between sequences
- dozens of distance measures have been proposed
 - lock-step
 - Minkowski, Manhattan, Euclidean, Maximum, DISSIM, ...
 - sliding
 - Normalized Cross-Correlation, SBD, ...
 - elastic
 - DTW, LCSS, MSM, EDR, ERP, Swale, ...
 - kernel-based
 - KDTW, GAK, SINK, ...
 - embedding
 - GRAIL, RWS, SPIRAL, ...



Queries



Whole matching

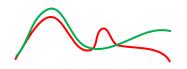
Entire query Entire candidate

Subsequence matching

Entire query

A subsequence of a candidate

Queries



Whole matching

Entire query Entire candidate

Subsequence matching

Entire query

A subsequence of a candidate

Queries

Nearest Neighbor (1NN) k-Nearest Neighbor (kNN) Farthest Neighbor epsilon-Range

and more...

Echihabi, Palpanas - MDM 2022

Similarity Matching

- given a data series collection D and a query data series q, return the data series from D that are the most similar to q
 there exist different flavors of this basic operation
- basis for most data series analysis tasks

Similarity Matching Nearest Neighbor (NN) Search

- given a data series collection D and a query data series q, return the data series from D that has the smallest distance to q
- result set contains one data series

Similarity Matching k-Nearest Neighbors (kNN) Search

- given a data series collection D and a query data series q, return the k data series from D that have the k smallest distances to q
- result set contains k data series

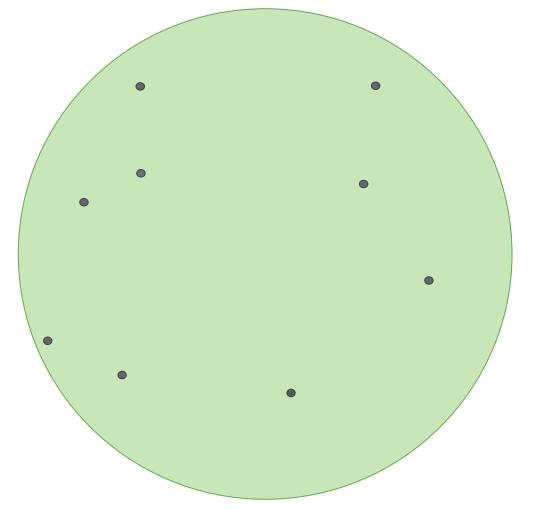
Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN) Farthest Neighbor epsilon-Range And more...

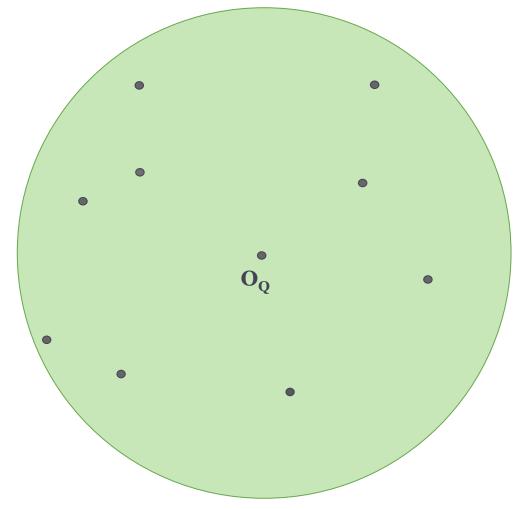
Nearest Neighbor (NN) Queries...

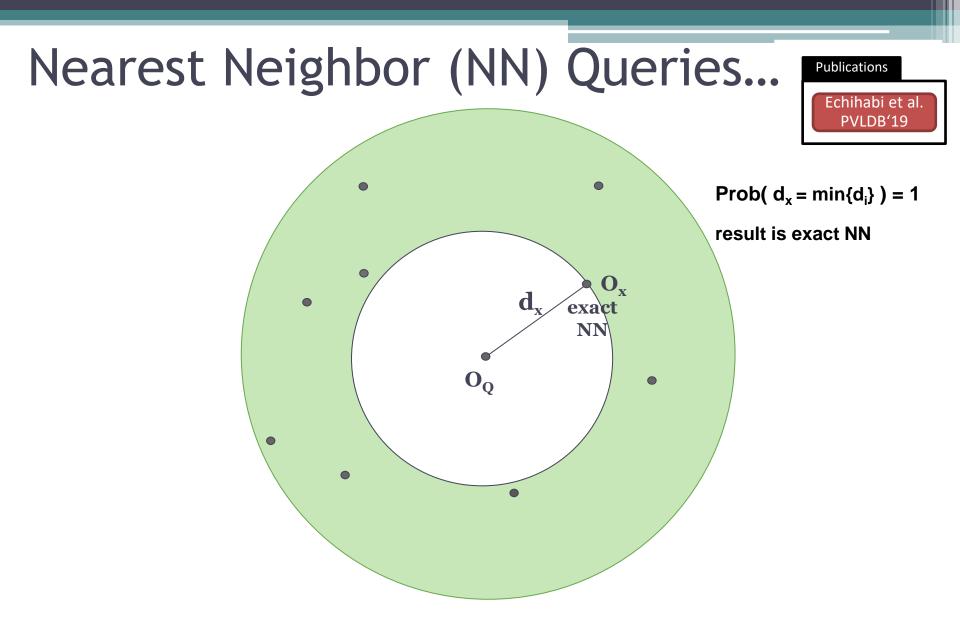
Publications

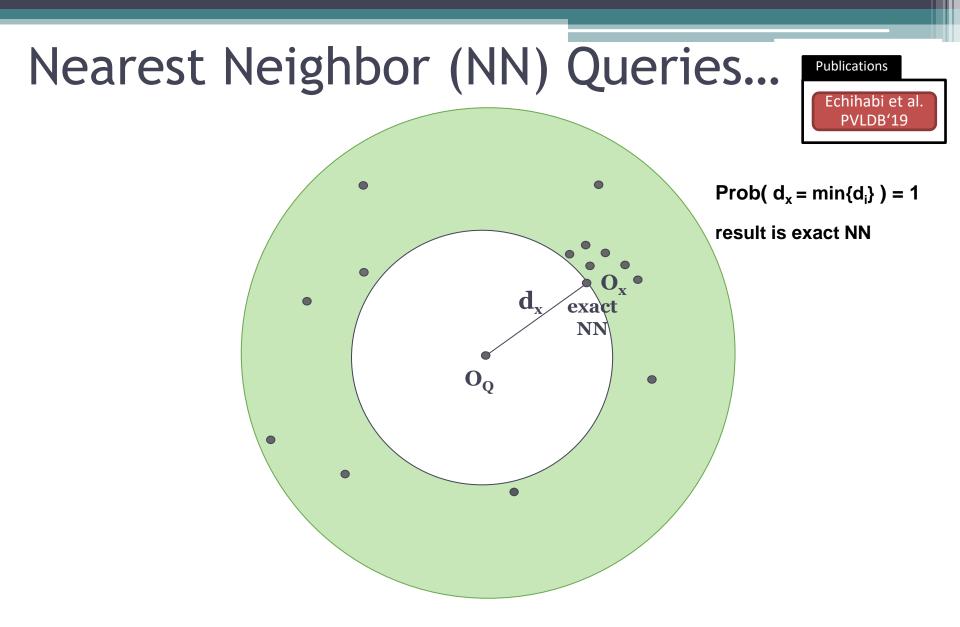


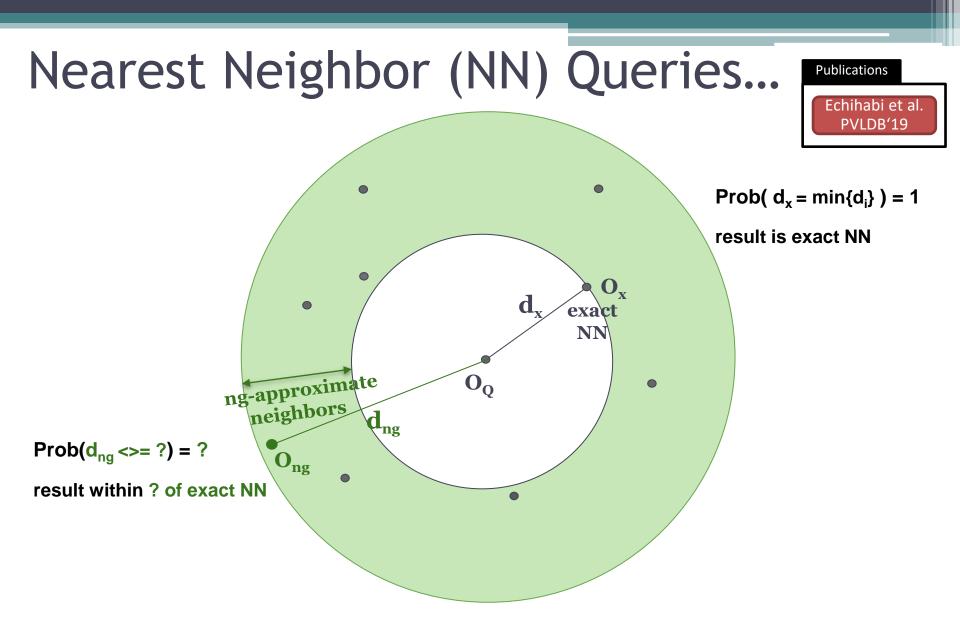
Nearest Neighbor (NN) Queries...

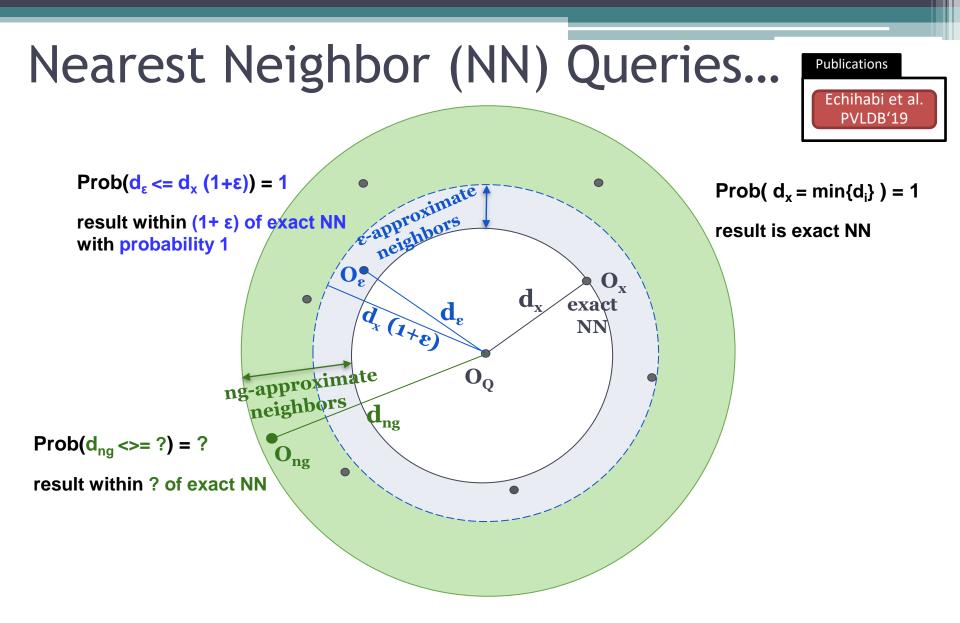
Publications

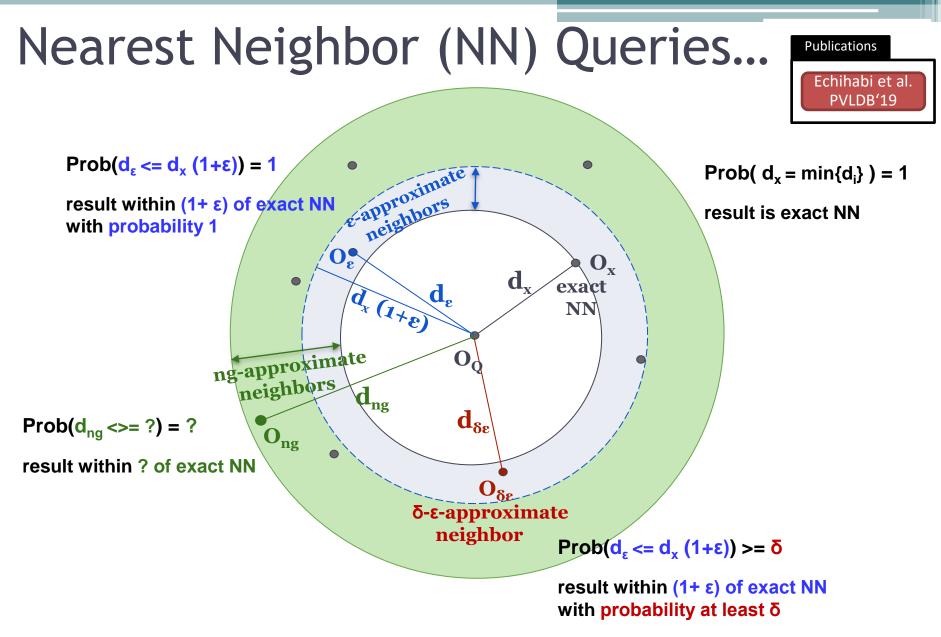


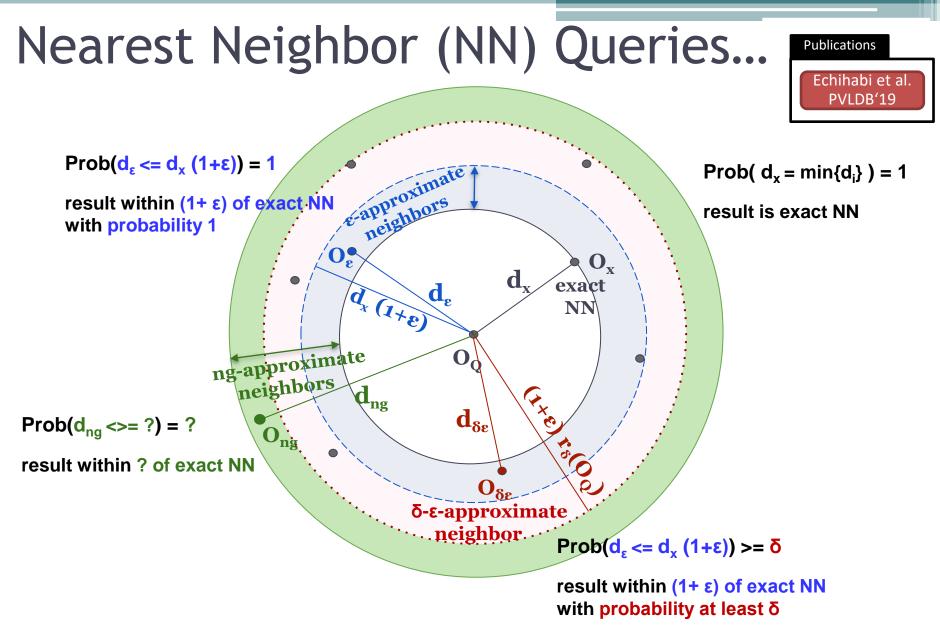




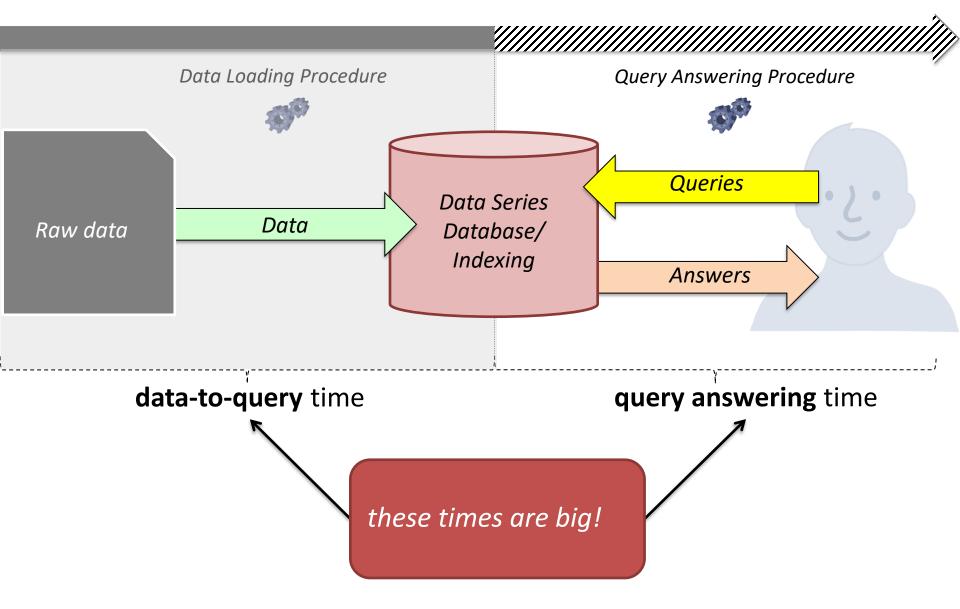




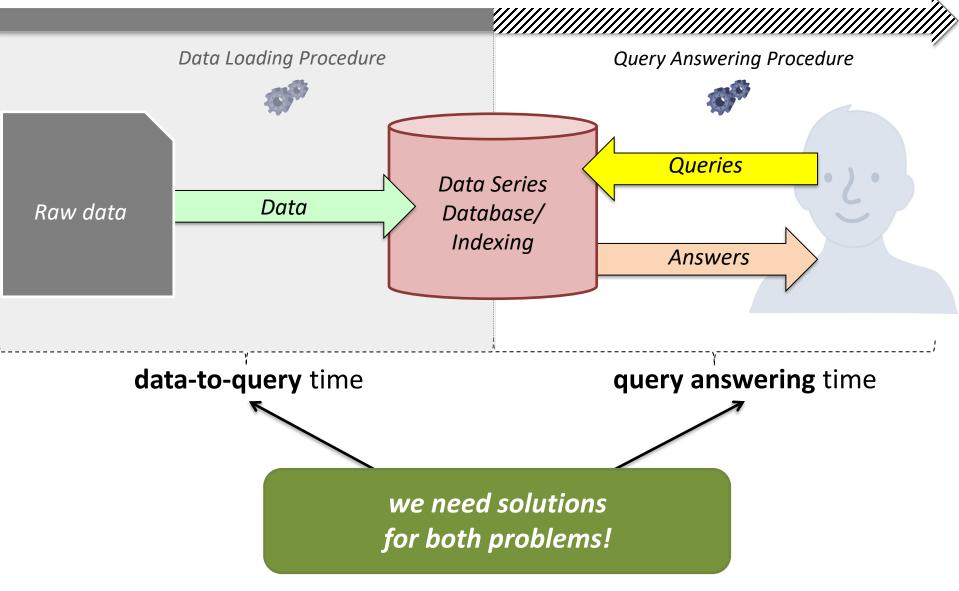




Query answering process



Query answering process

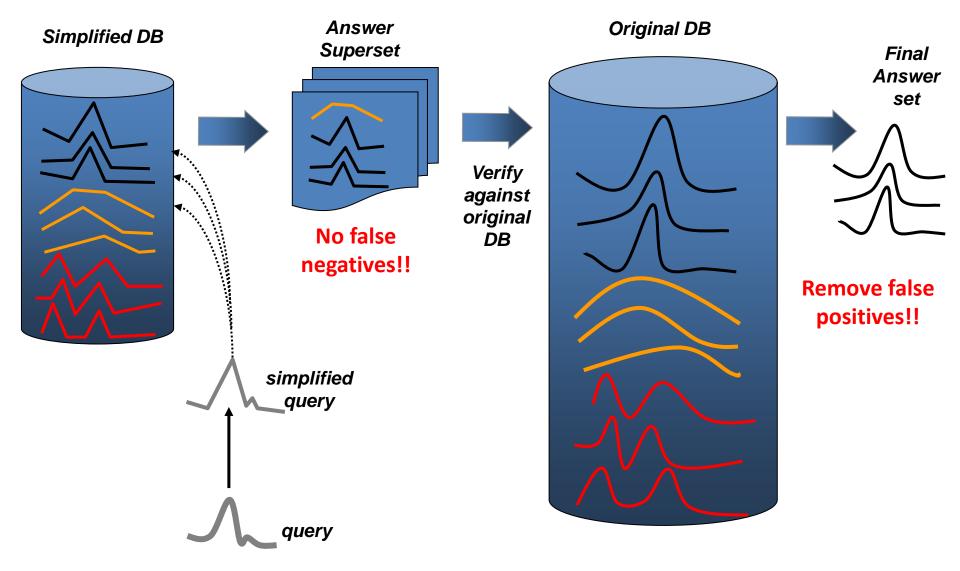


Echihabi, Palpanas - MDM 2022

GEMINI Framework

- Raw data: original full-dimensional space
- Summarization: reduced dimensionality space
- Searching in original space *costly*
- Searching in reduced space *faster*:
 - Less data, indexing techniques available, lower bounding
- Lower bounding enables us to
 - *prune search space:* throw away data series based on reduced dimensionality representation
 - guarantee correctness of answer
 - no false negatives
 - false positives filtered out based on raw data

Generic Search using Lower Bounding



GEMINI: contractiveness

• GEMINI works when:

$$D_{feature}(F(x), F(y)) \leq D_{real}(x, y)$$

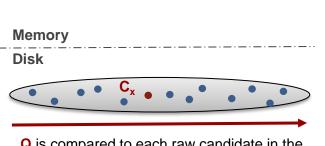
• Note that, the closer the feature distance to the actual one, the better

Questions?

Similarity Search Classes of Methods

Similarity Search Classes of Methods

Exact Search

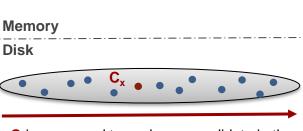


Q

Q is compared to each raw candidate in the dataset before returning the answer C_x

(a) Serial scan

Answering a similarity search query using different access paths



 $bsf = +\infty$

Q

Q is compared to each raw candidate in the dataset before returning the answer C_x

(a) Serial scan

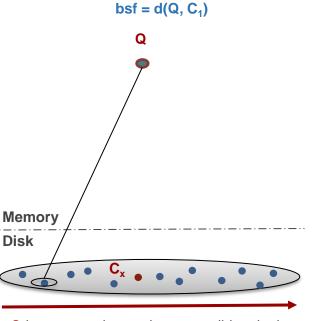
Answering a similarity search query using different access paths

 $bsf = d(Q, C_1)$ Q MemoryDisk $C_x \bullet \bullet \bullet \bullet \bullet$

Q is compared to each raw candidate in the dataset before returning the answer C_x

(a) Serial scan

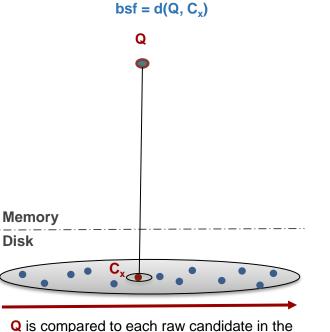
Answering a similarity search query using different access paths



Q is compared to each raw candidate in the dataset before returning the answer C_x

(a) Serial scan

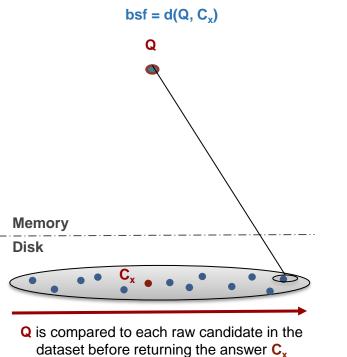
Answering a similarity search query using different access paths



Q is compared to each raw candidate in the dataset before returning the answer C_x

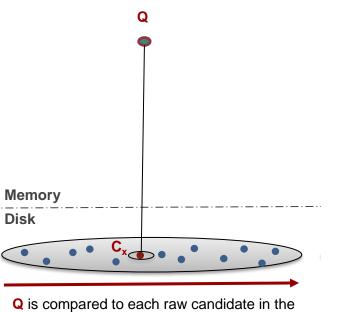
(a) Serial scan

Answering a similarity search query using different access paths



(a) Serial scan

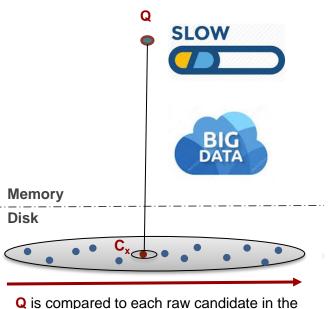
Answering a similarity search query using different access paths



Q is compared to each raw candidate in the dataset before returning the answer C_x

(a) Serial scan

Answering a similarity search query using different access paths

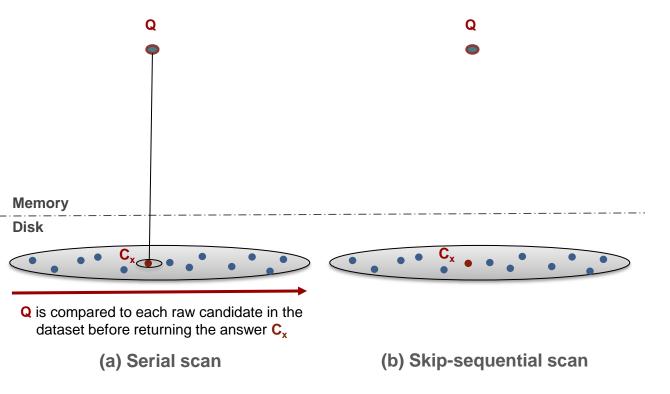


Q is compared to each raw candidate in the dataset before returning the answer C_x

(a) Serial scan

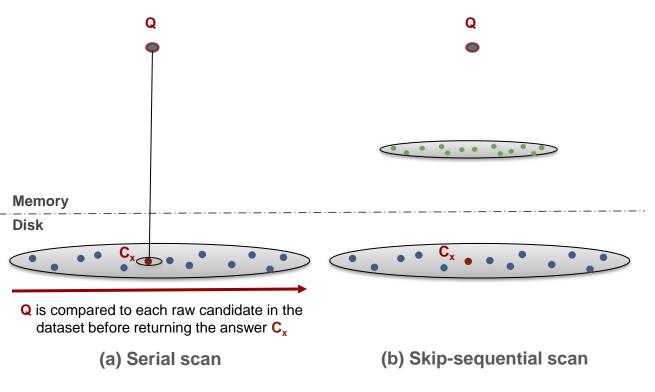
Answering a similarity search query using different access paths

Indexes vs. Scans

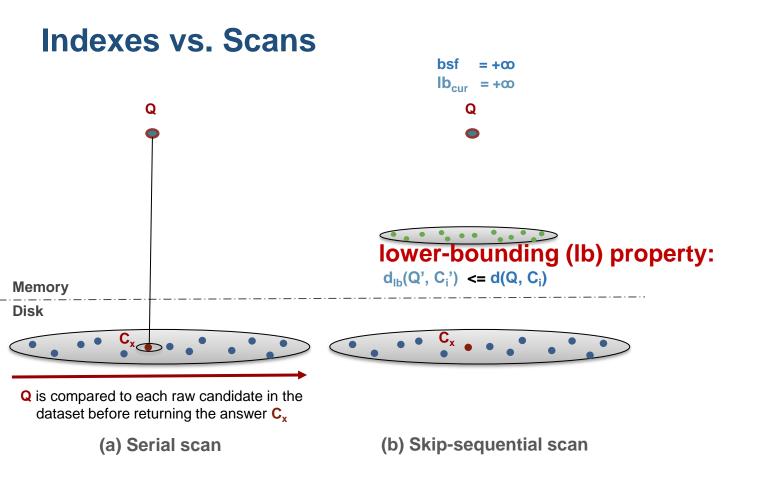


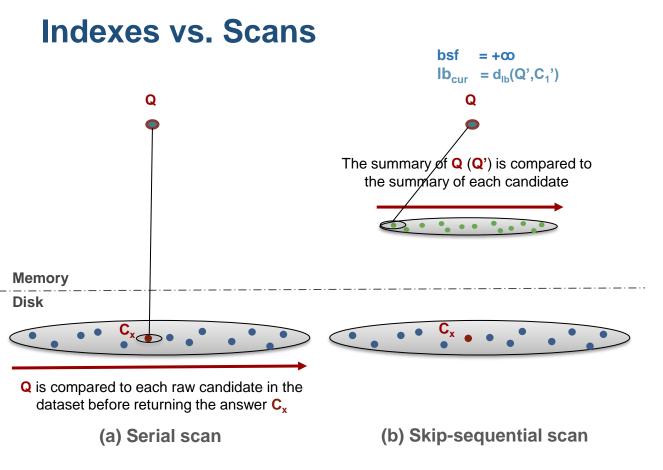
Answering a similarity search query using different access paths

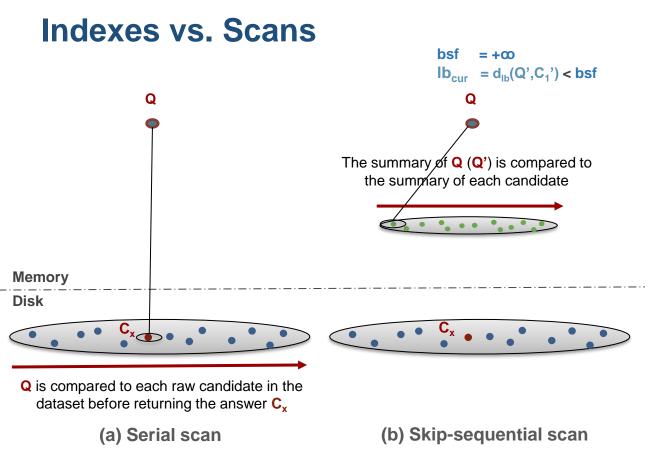
Indexes vs. Scans

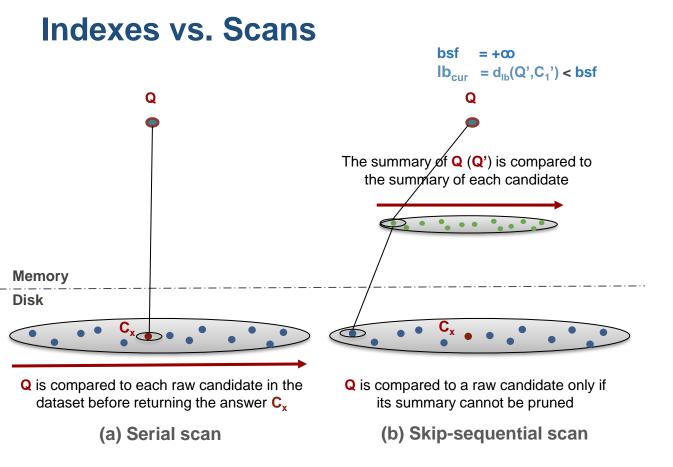


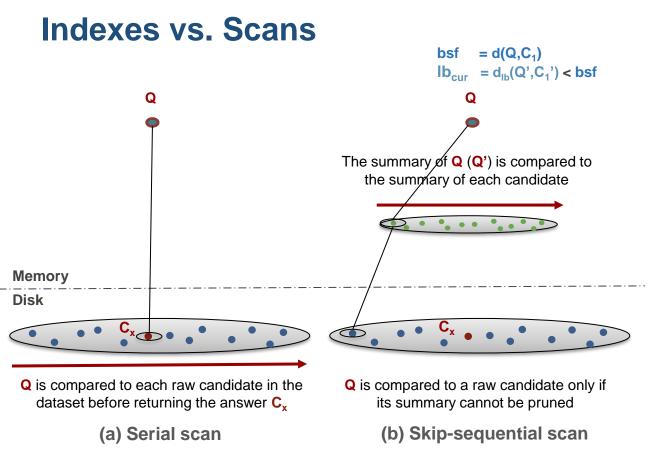
Answering a similarity search query using different access paths

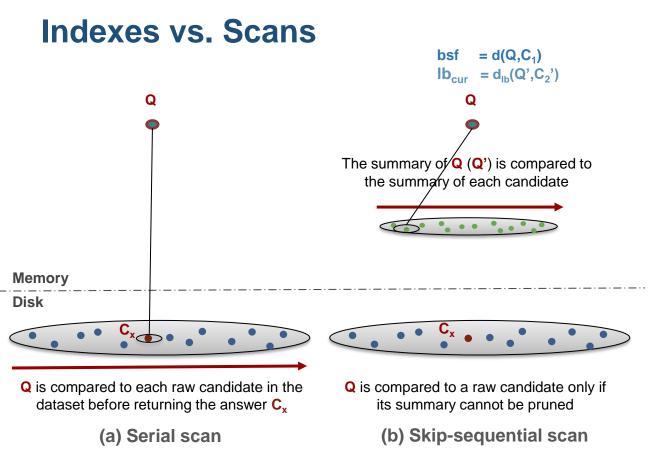


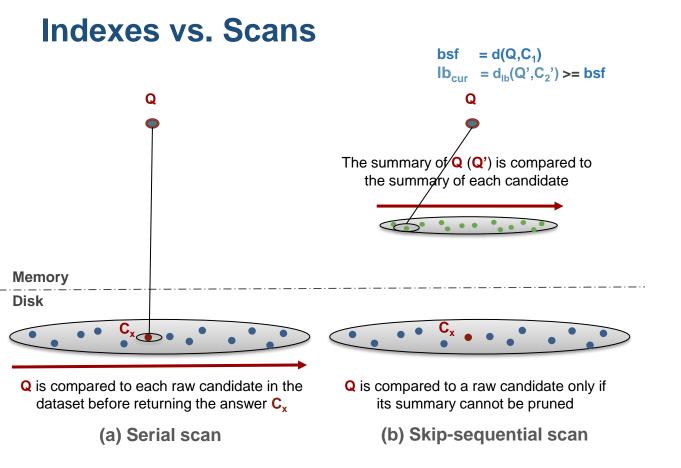


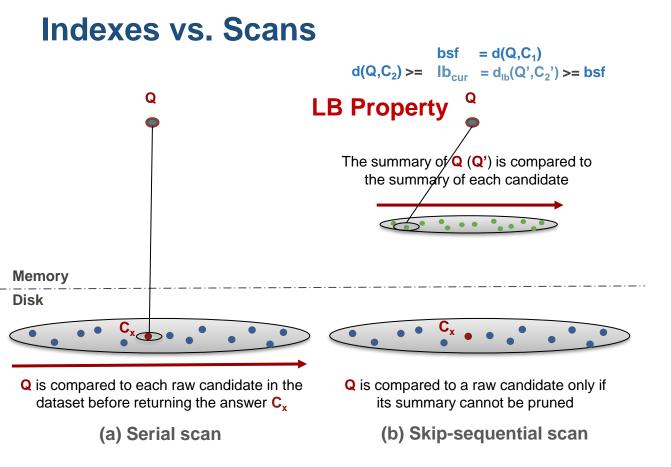


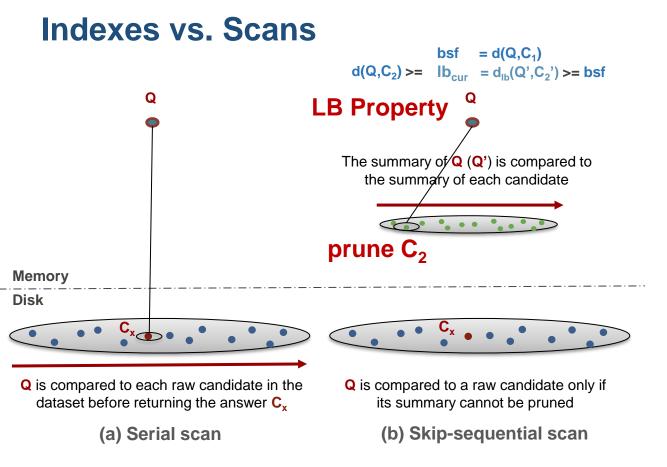


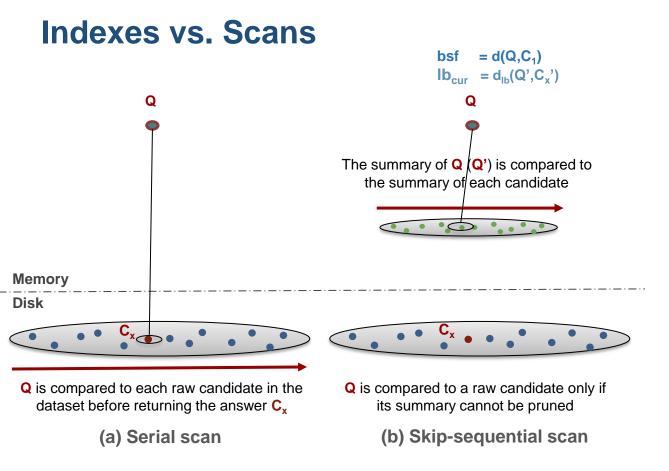


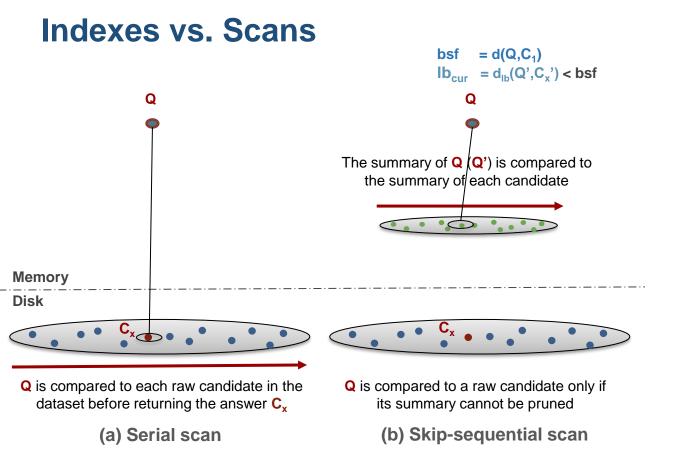


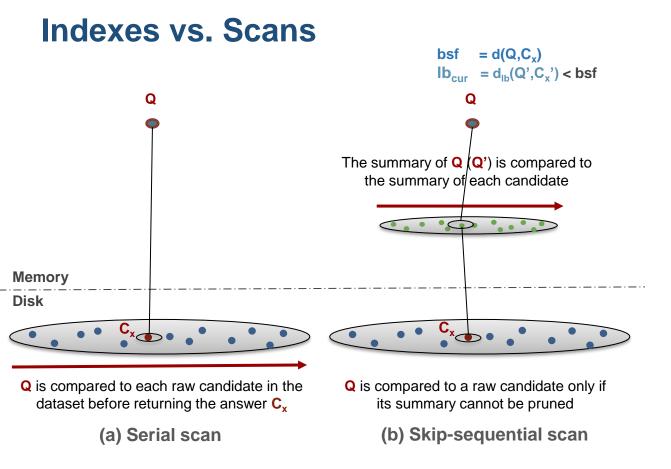


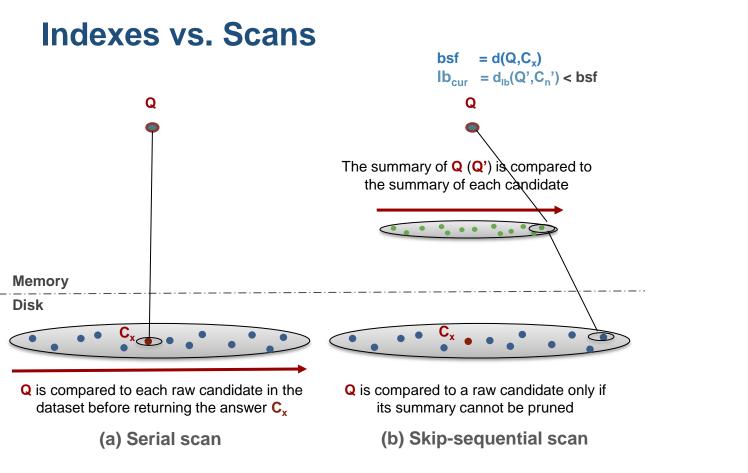




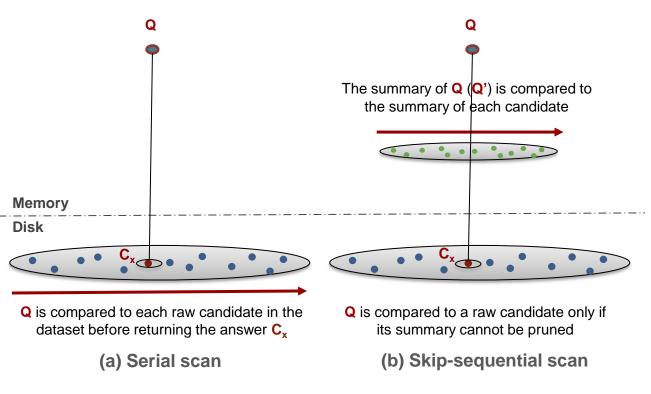






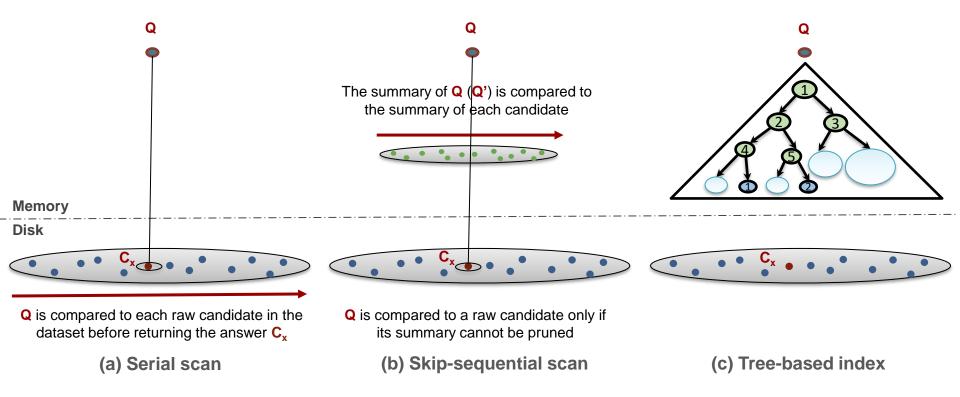


Indexes vs. Scans



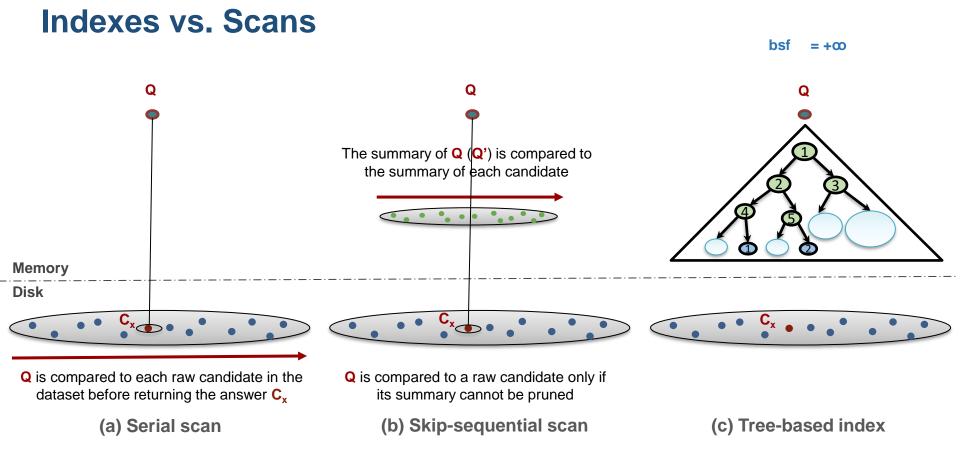
Answering a similarity search query using different access paths

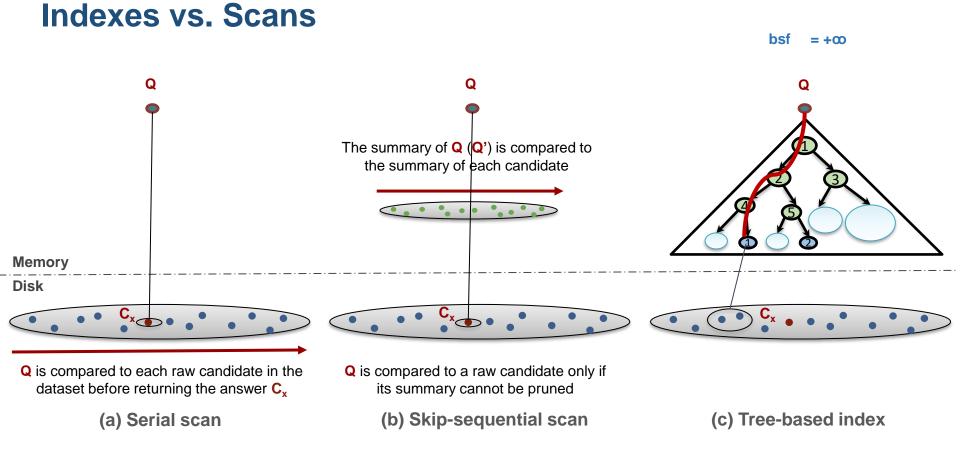
Indexes vs. Scans



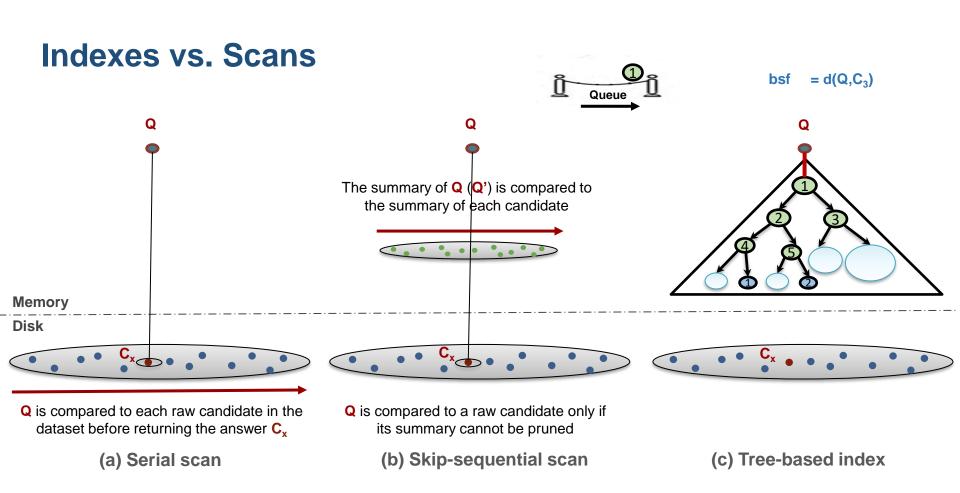
Answering a similarity search query using different access paths

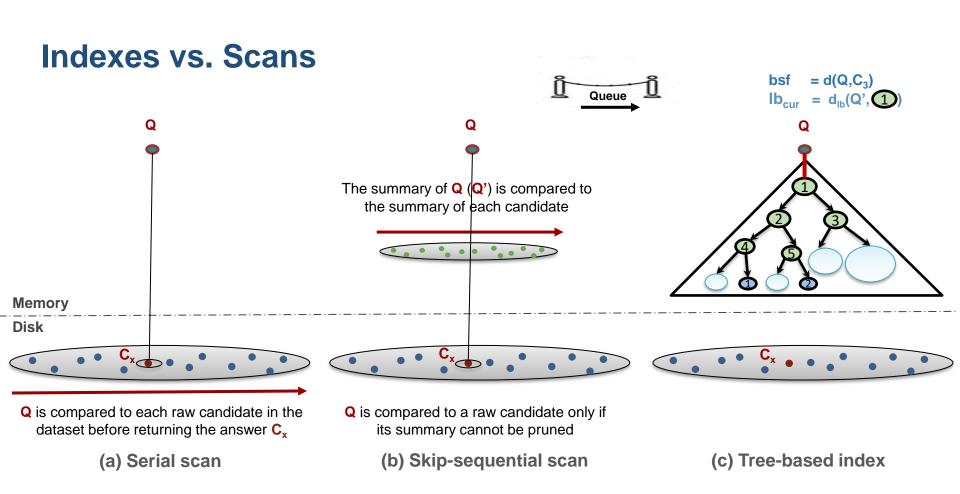
Echihabi, Palpanas - MDM 2022

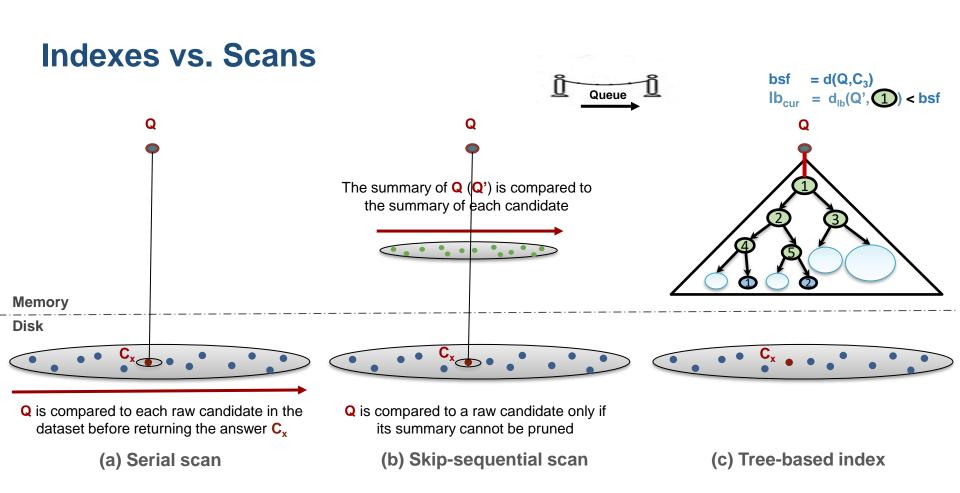


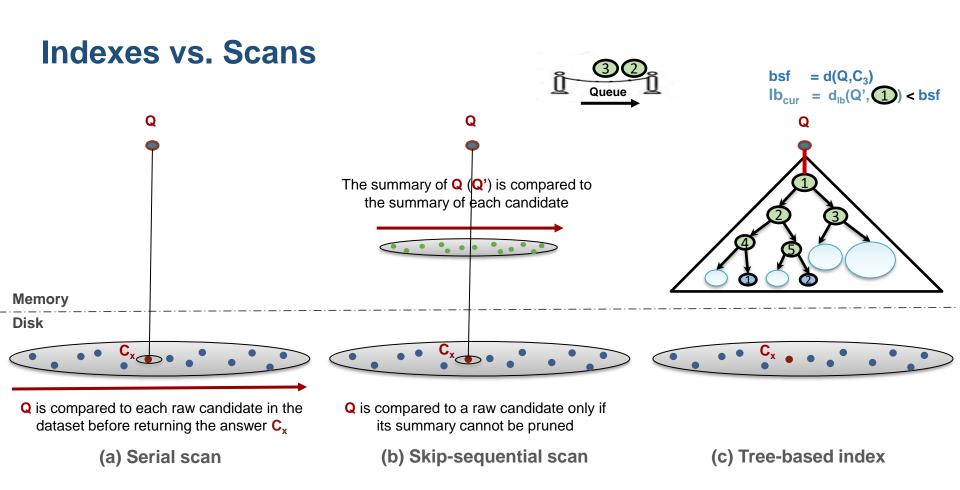


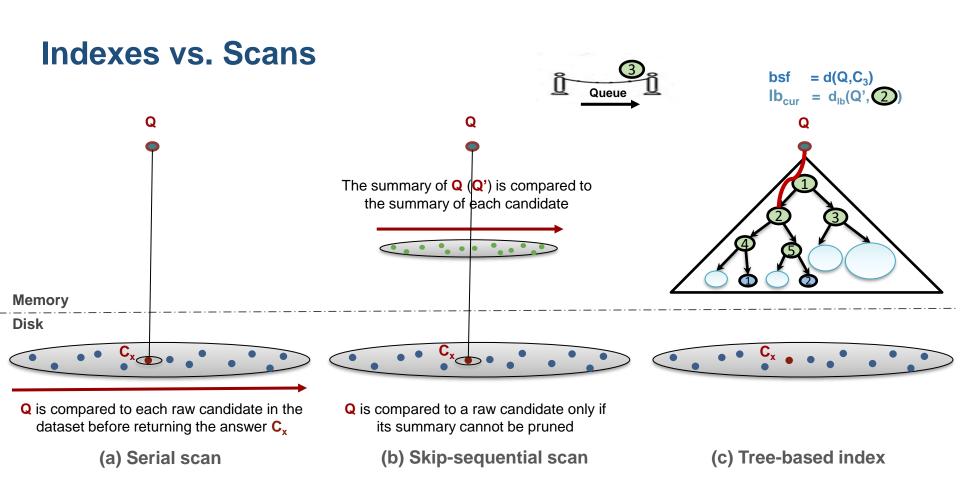


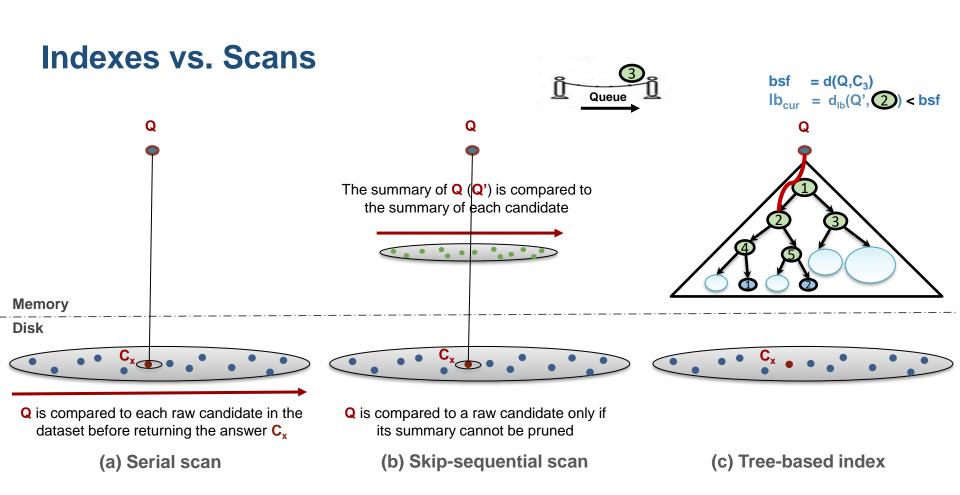


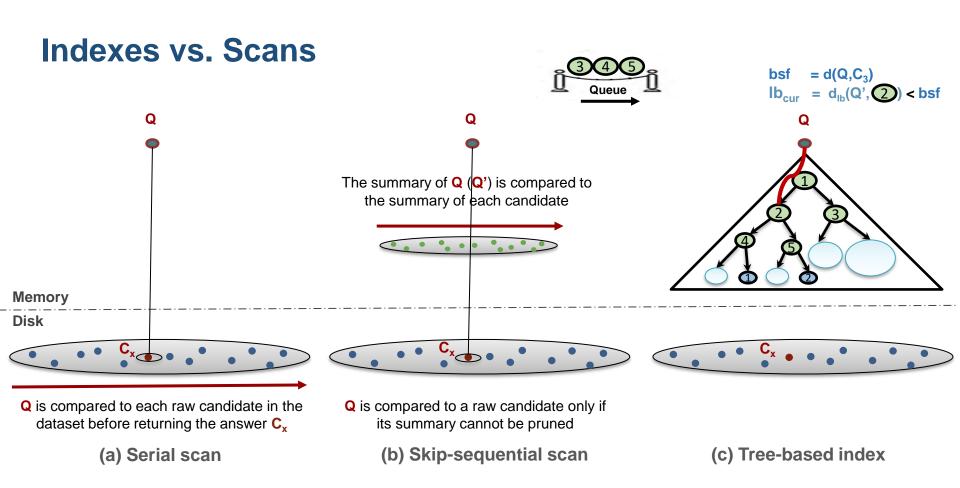


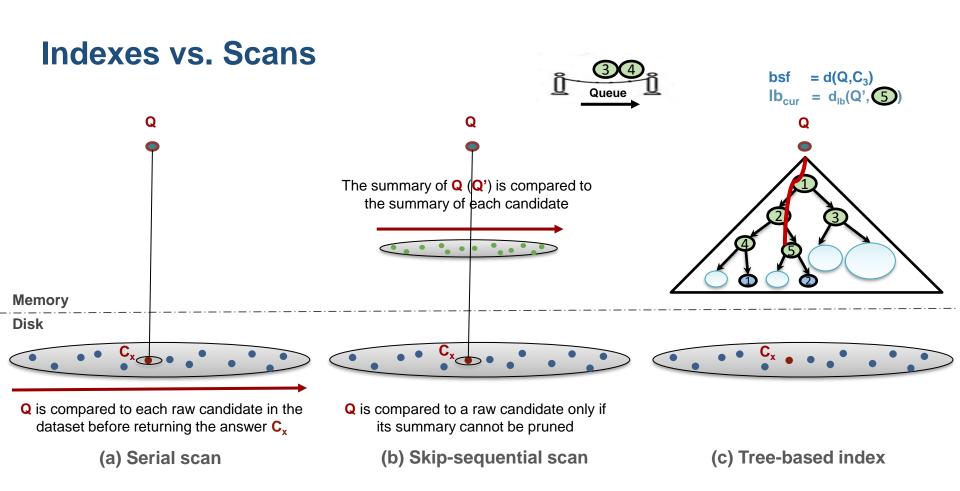


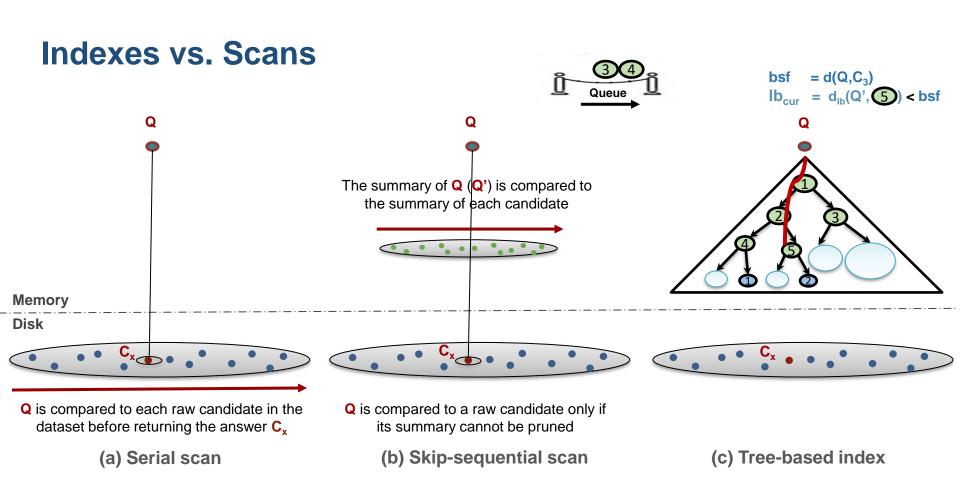


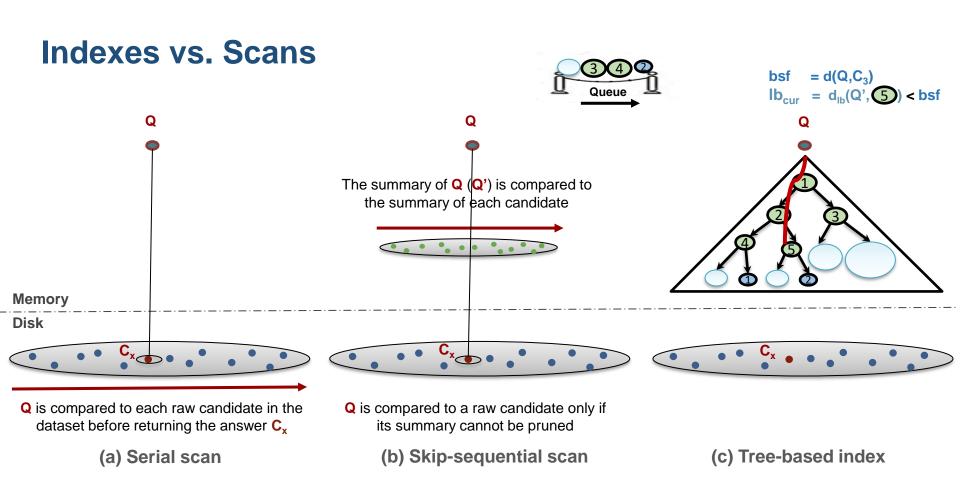


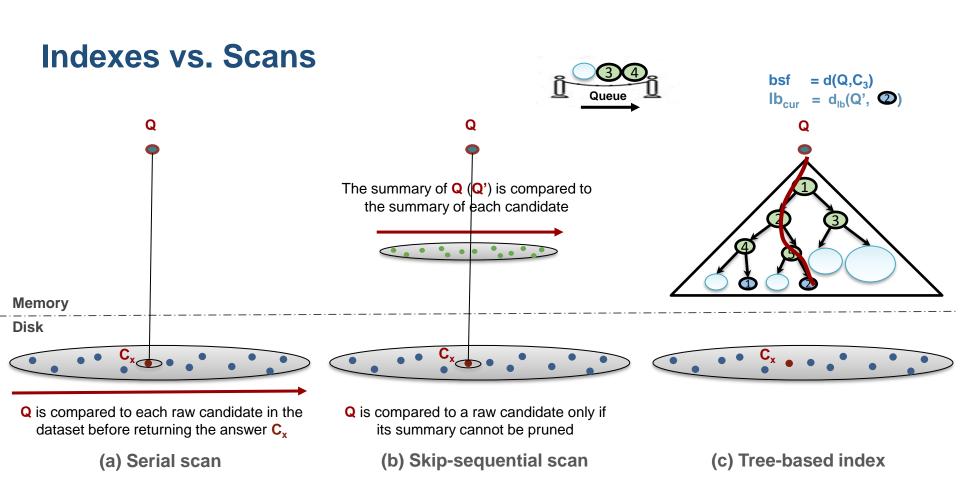


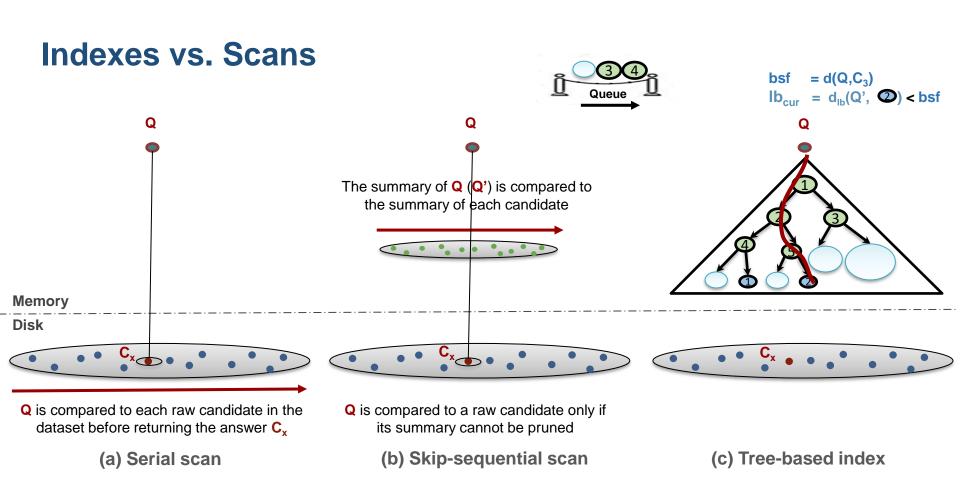


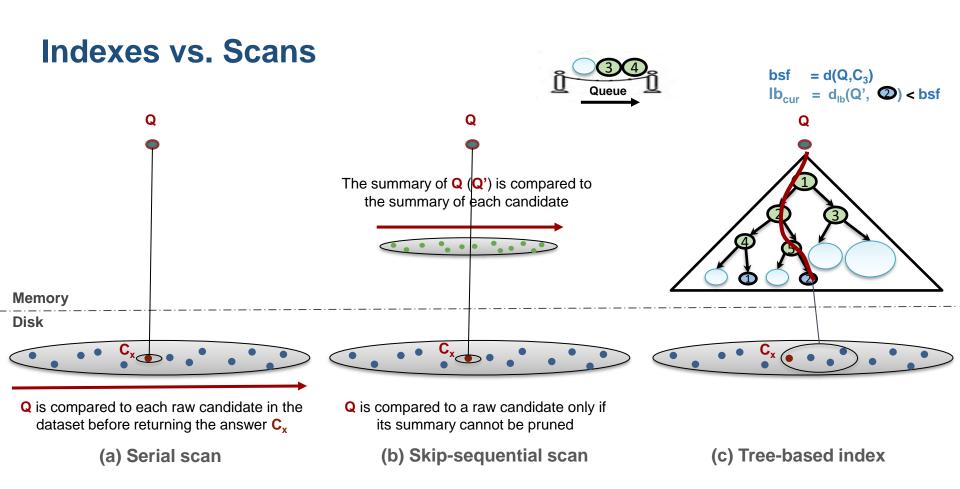


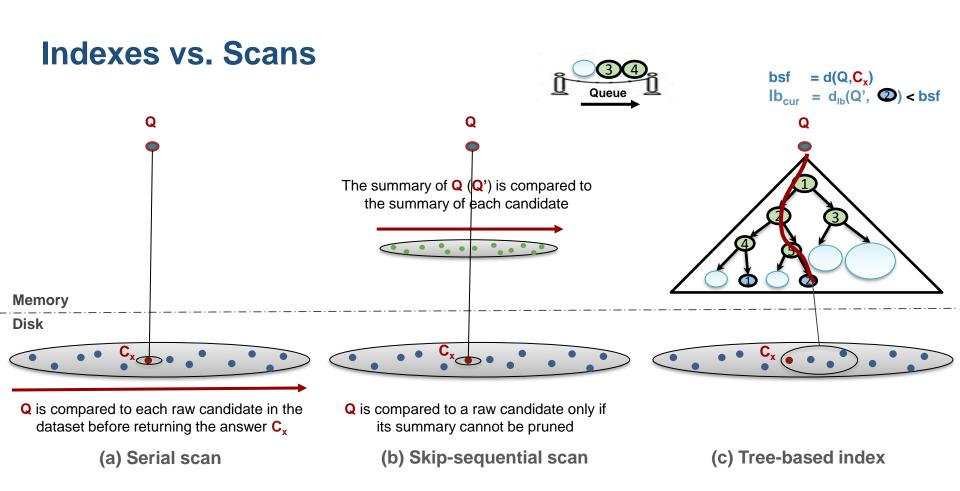


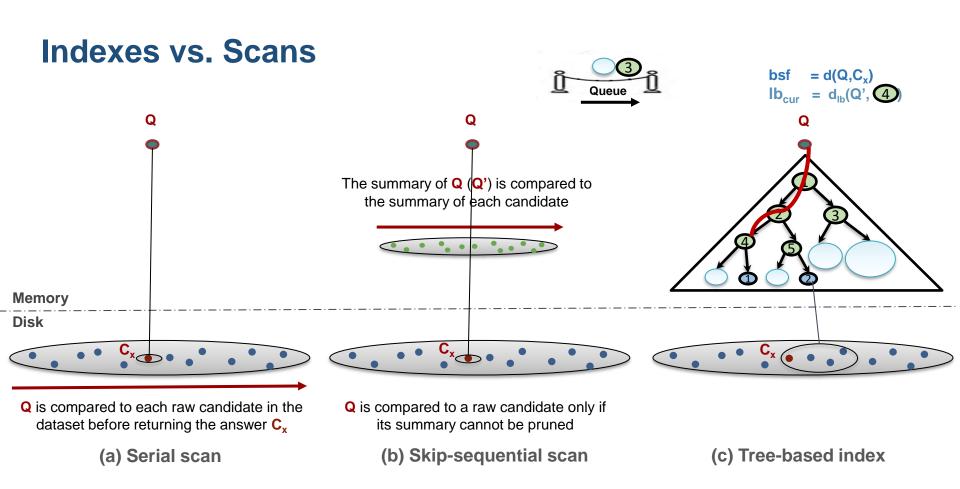


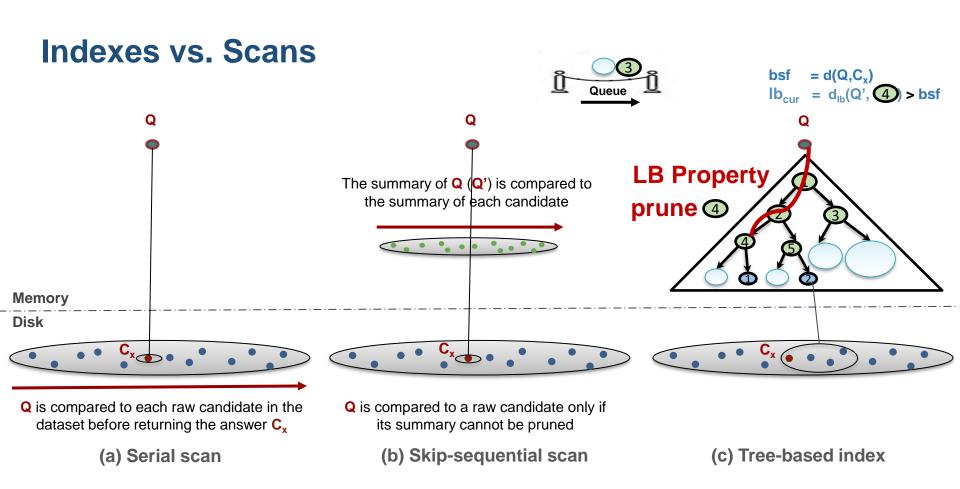


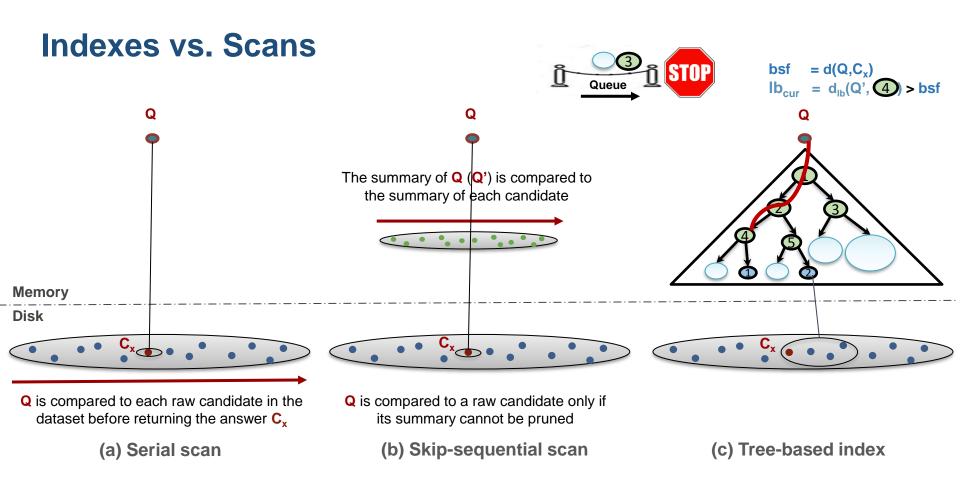


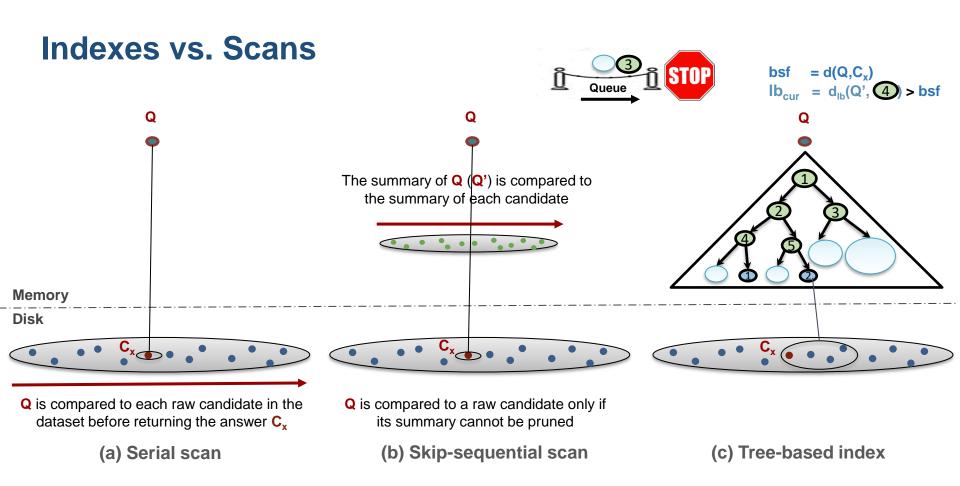






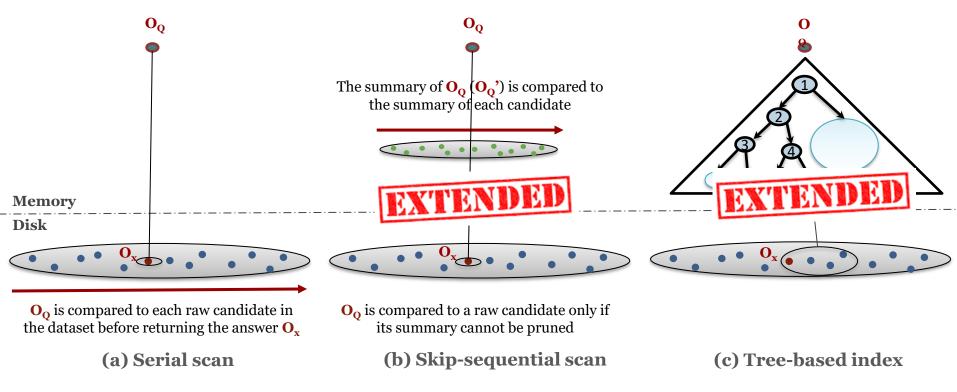






Similarity Search Data Series Extensions Approximate Search

Access Paths

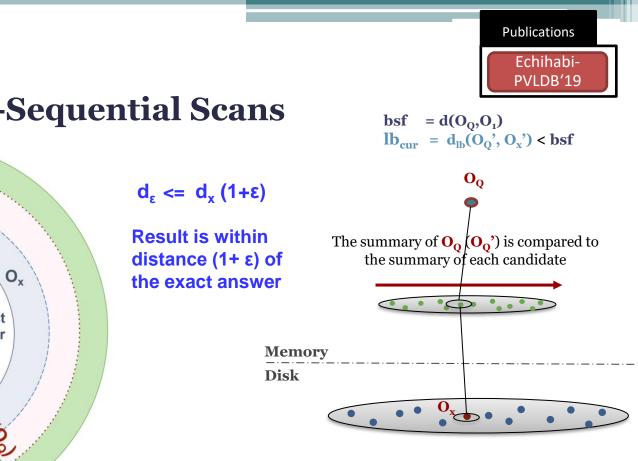


Answering a similarity search query using different access paths

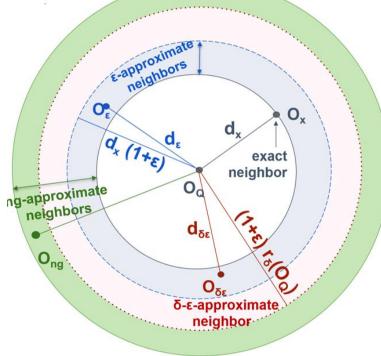
94

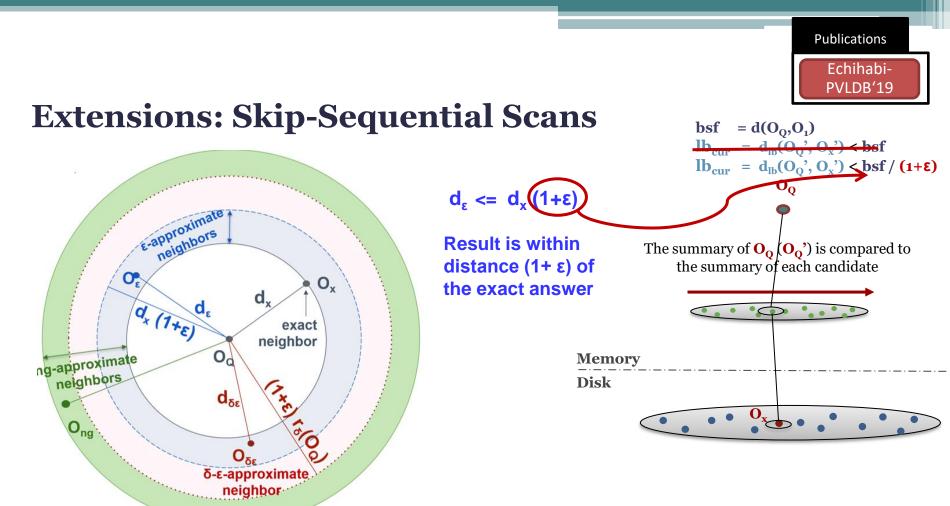
Publications

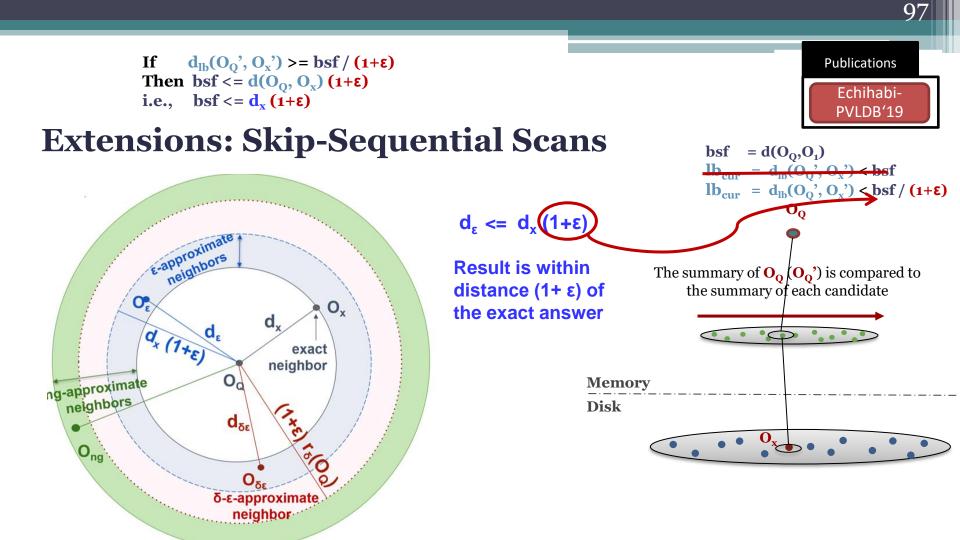
Echihabi-PVLDB'19

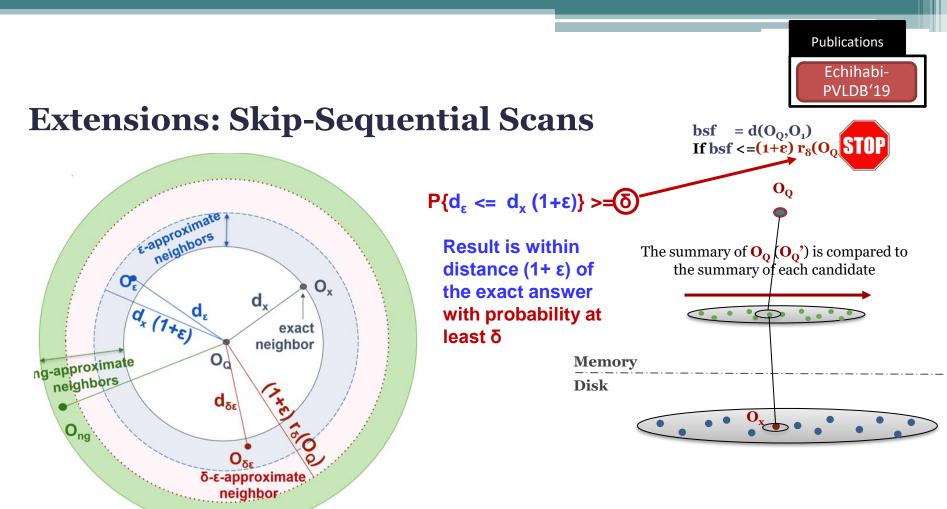


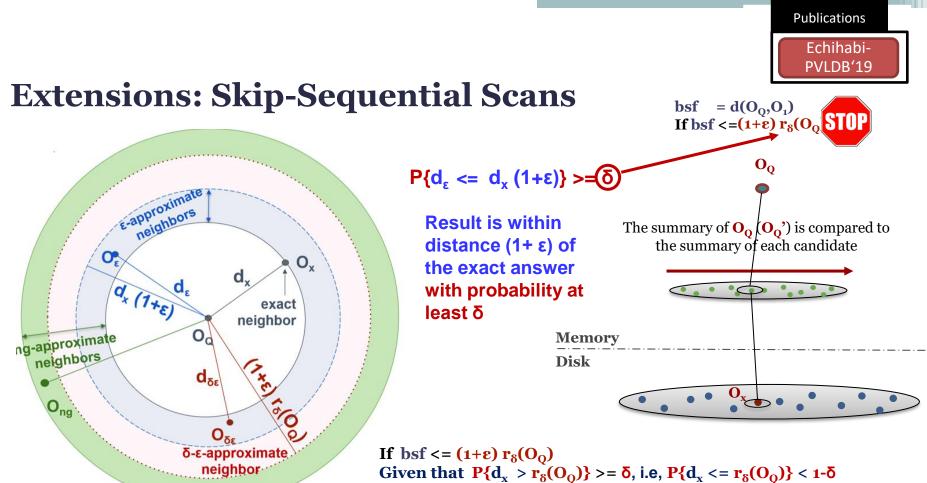
Extensions: Skip-Sequential Scans









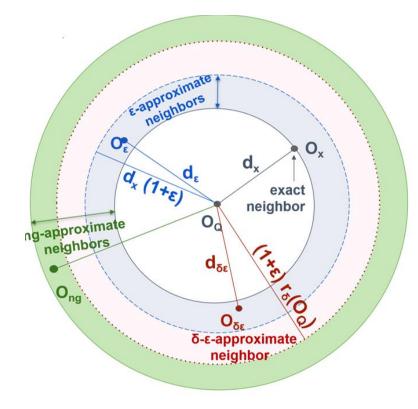


And bsf / (1+ ϵ) <= $r_{\delta}(O_Q)$ Then P{d_x <= bsf / (1+ ϵ)} < 1- δ * So P{d_y > bsf / (1+ ϵ)} >= δ ., i.e., P{bsf < (1+ ϵ)} < δ

* We assume the monotonicity of the distribution of nearest neighbors of O_0

100

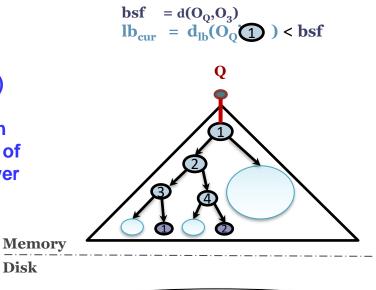
Extensions: Tree Indexes

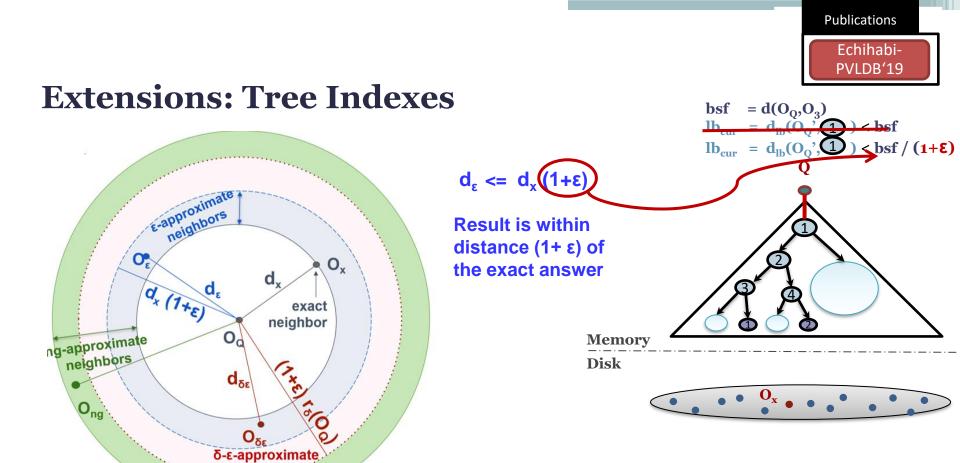


 $d_{\epsilon} \ll d_{x} (1+\epsilon)$

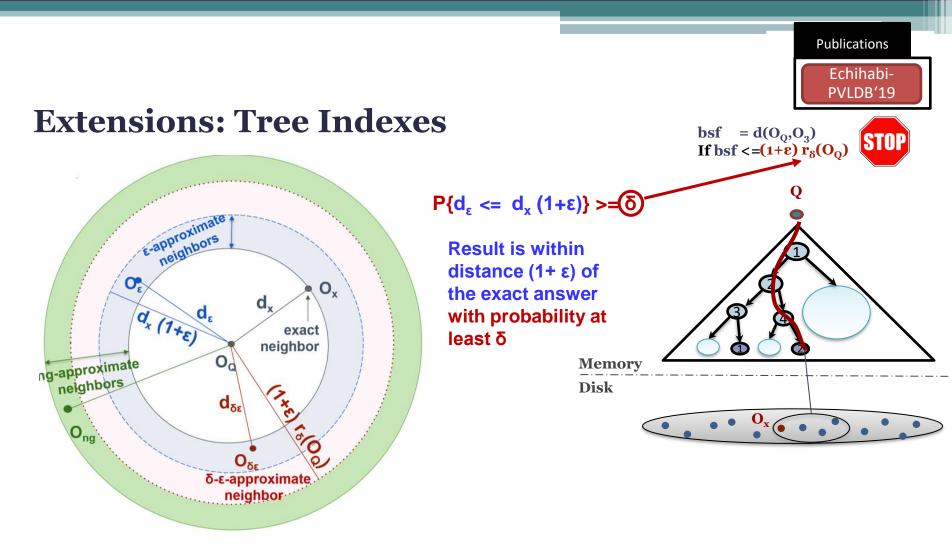
Result is within distance $(1 + \varepsilon)$ of the exact answer

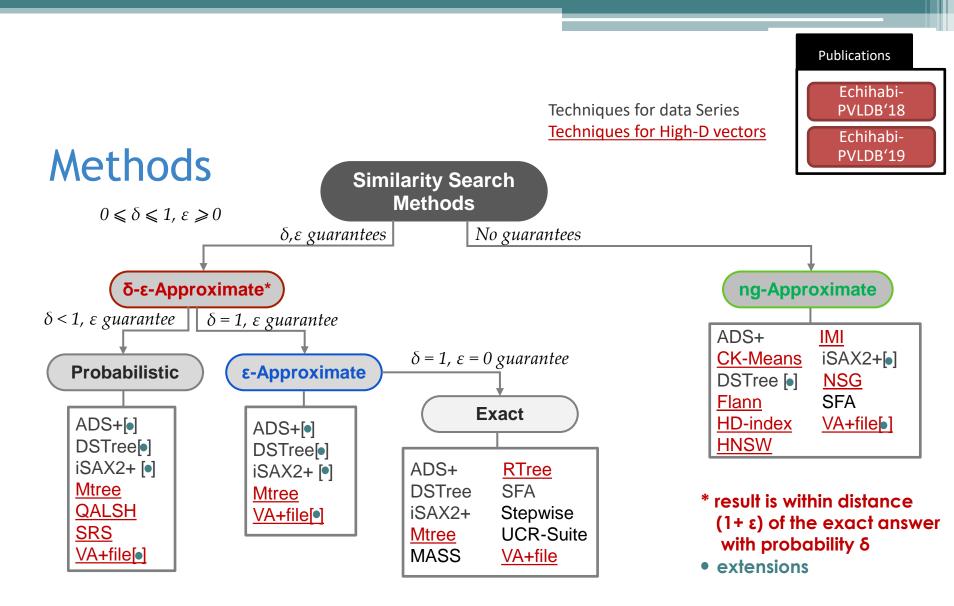
Disk





neighbor

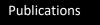




Questions?

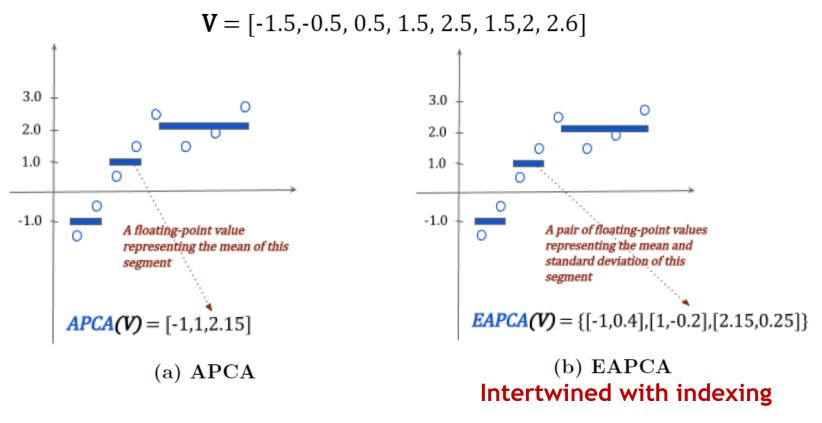
Echihabi, Palpanas - MDM 2022

Data Series Indexing



Wang-PVLDB'13

DSTree Summarization



The APCA and EAPCA representations

dino 107

DSTree Indexing

 $\mathbf{V} = [-1.5, -0.5, 0.5, 1.5, 2.5, 1.5, 2, 2.6]$ $SG[I_1] = (8)$ $\mathbf{Z}[I_1] = (Z_1)$ L $SG[I_{2}] = (4,8)$ $\mathbf{Z}[I_2] = (Z_1, Z_2)$ L₃ $SG[I_3] = (4,6,8)$ $\mathbf{Z}[I_3] = (z_1, z_2, z_3)$ L_{2}

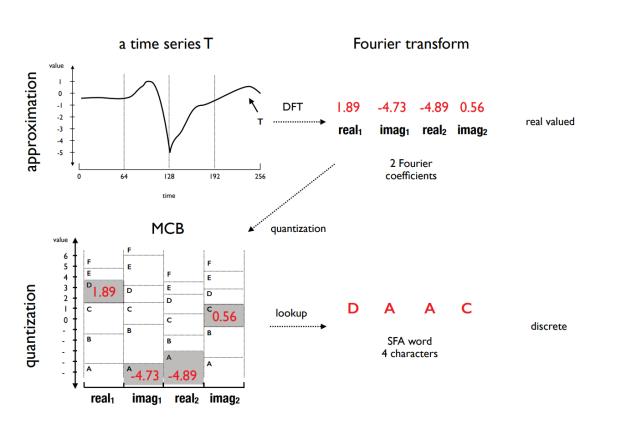
Publications Wang-PVLDB'13

Each node contains

- **#** vectors
- segmentation SG
- Synopsis Z

Each Leaf node also : stores its raw vectors in a separate disk file

Symbolic Fourier Approximation (SFA) Summarization



The SFA representation*

*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

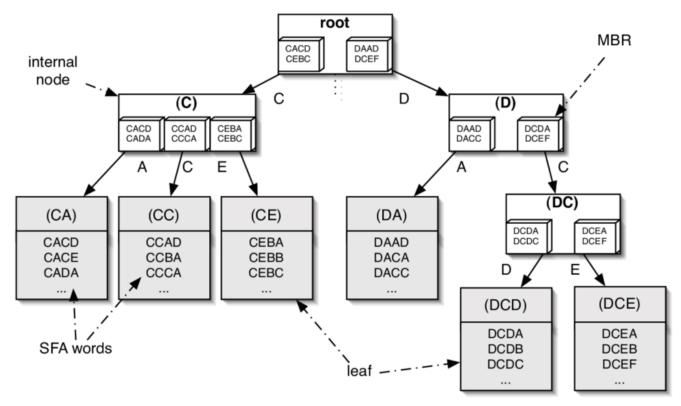
dino 108

Schafer-EDBT'12

diNo 109

Publications

SFA Indexing

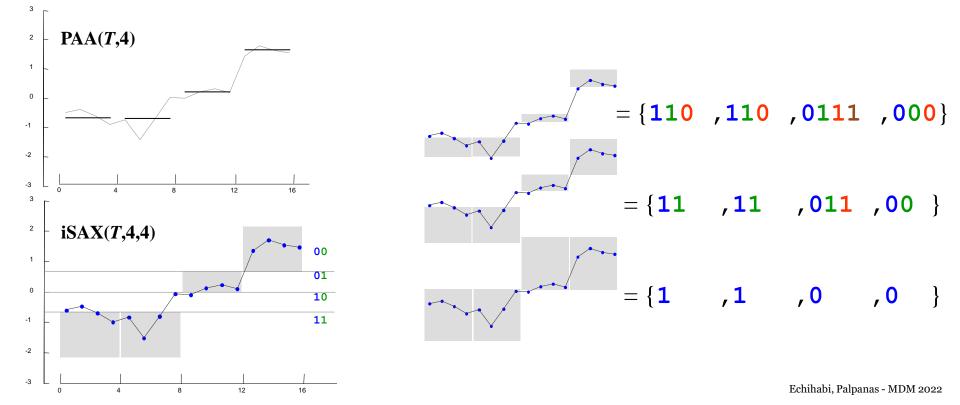


The SFA Trie*

*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

iSAX Family iSAX Summarization

• based on *i*SAX representation, which offers a bit-aware, quantized, multi-resolution representation with variable granularity

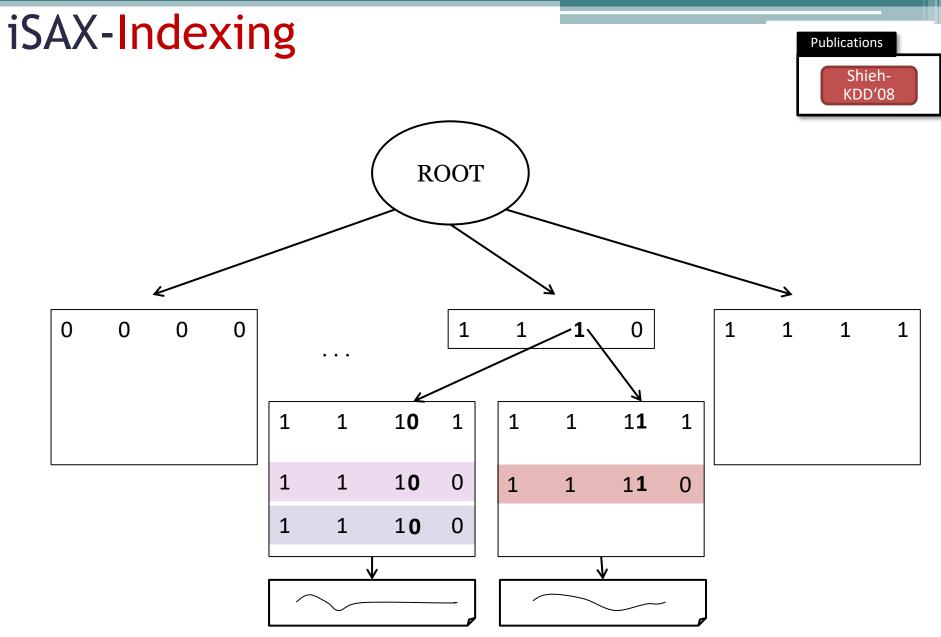


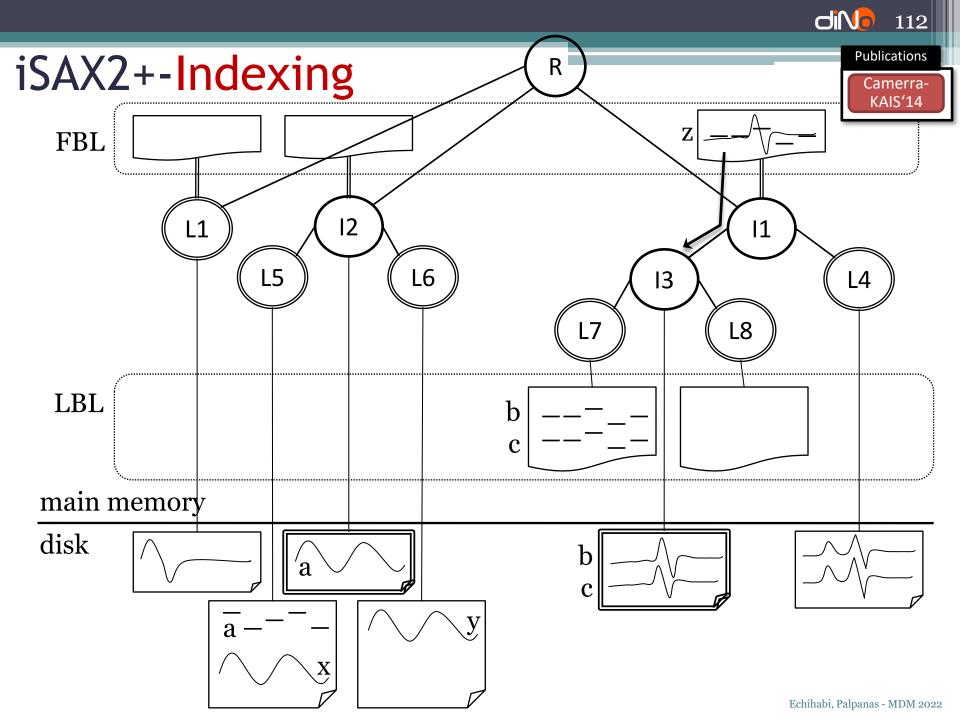
Publications

Shieh-KDD'08

110

diNo



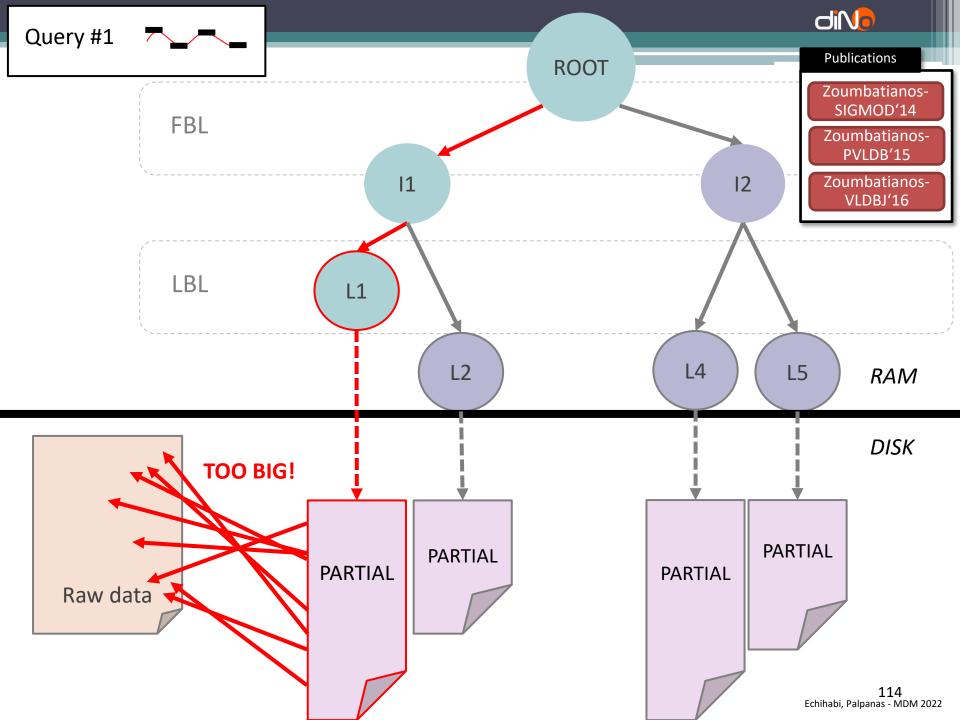


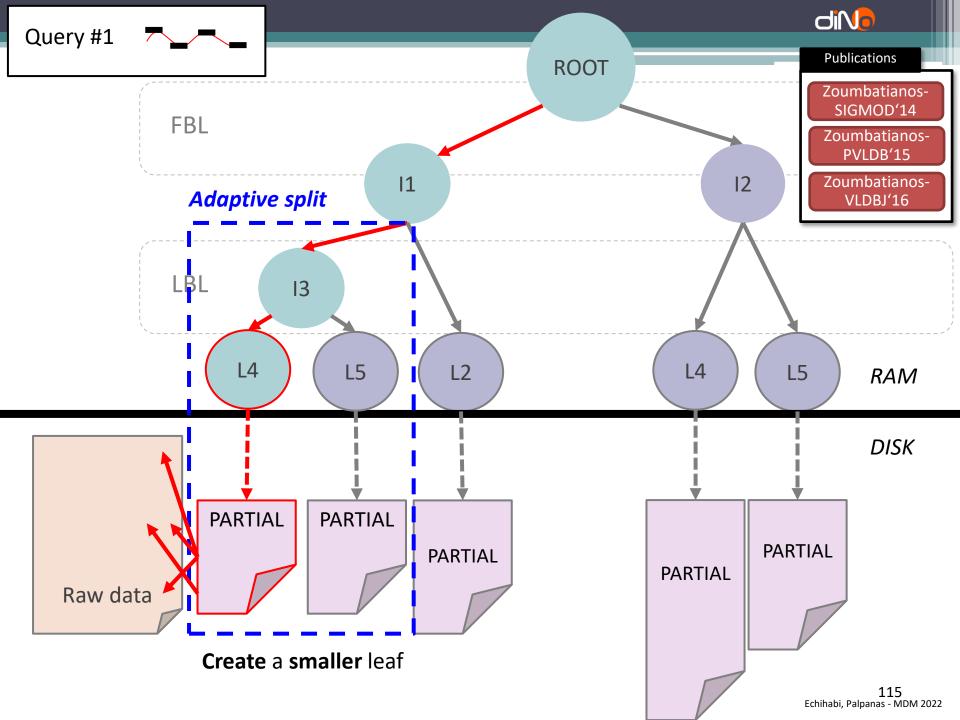
113

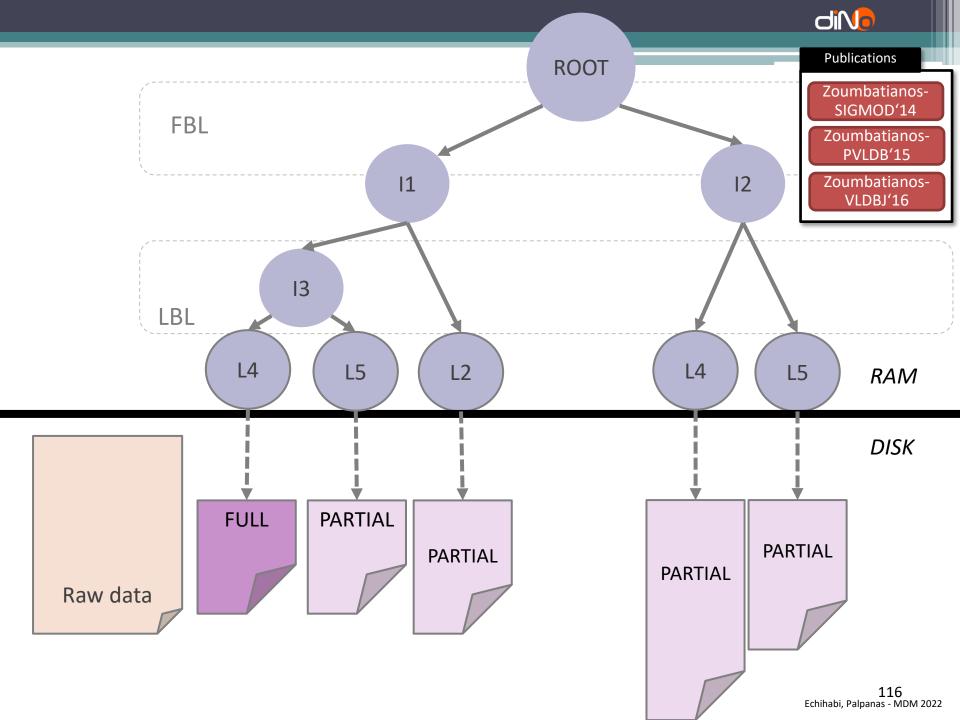
dinh

ADS+

- novel paradigm for building a data series index
 - does not build entire index and then answer queries
 - starts answering queries by building the part of the index needed by those queries
- still guarantees correct answers
- intuition for proposed solution
 - builds index using only iSAX summaries; uses large leaf size
 - postpones leaf materialization to query time
 - only materialize (at query time) leaves needed by queries
 - parts that are queried more are refined more
 - use smaller leaf sizes (reduced leaf materialization and query answering costs)





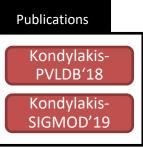


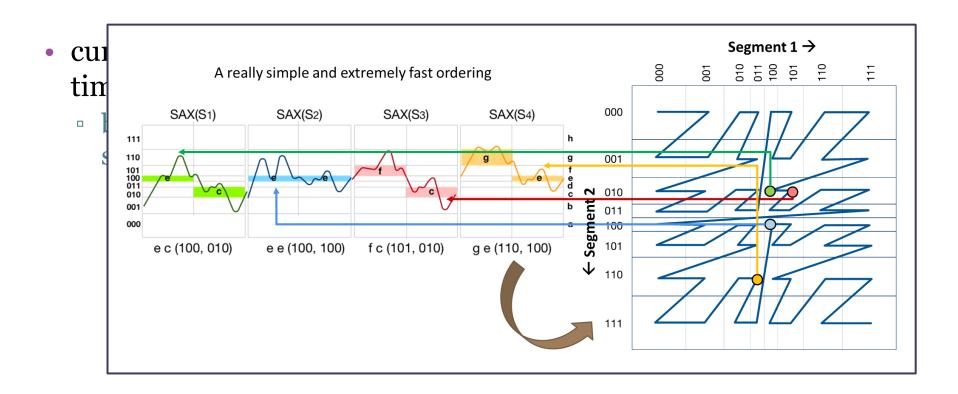
117

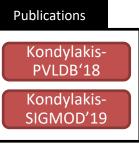
diNo

- current solution for limited memory devices and streaming time series
 - bottom-up, succinct index construction based on sortable summarizations

diNo 118





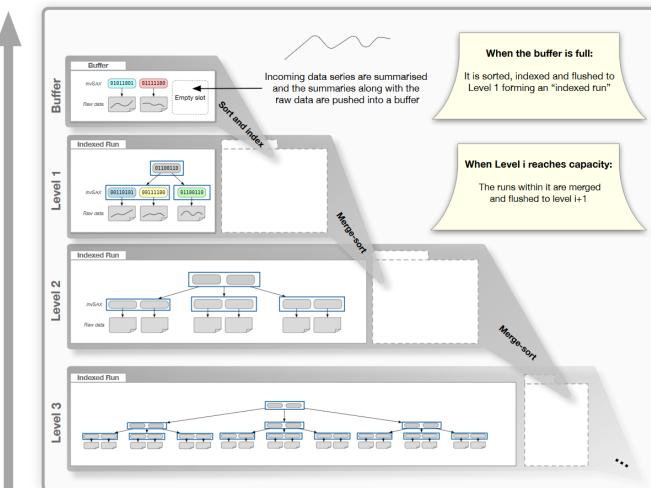


- current solution for limited memory devices and streaming time series
 - bottom-up, succinct index construction based on sortable summarizations
 - outperforms state-of-the-art in terms of index space, index construction time, and query answering time

- current solution for limited memory devices and streaming time series
 - bottom-up, succinct index construction based on sortable summarizations
 - outperforms state-of-the-art in terms of index space, index construction time, and query answering time
 - compatible with traditional single-dimensional balanced indexes
 - B+-tree, LSM-tree, ...

diNo 121

Coconut-LSM

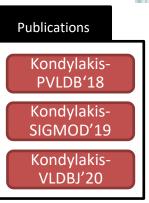


Publications Kondylakis-PVLDB'18 Kondylakis-SIGMOD'19 Kondylakis-VLDBJ'20

Newer data

Older data

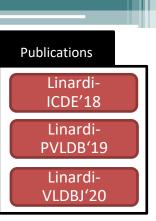
Coconut-LSM Coconut Index sorted Level 1 invSAX Data Series Built Built Coconut Coconut when full when full Index Index sorted sorted Level 0 invSAX invSAX invSAX invSAX Data Series **Data Series Data Series** Data Series Window size Window 1 Window 2



di\] 122

Echihabi, Palpanas - MDM 2022

ULISSE

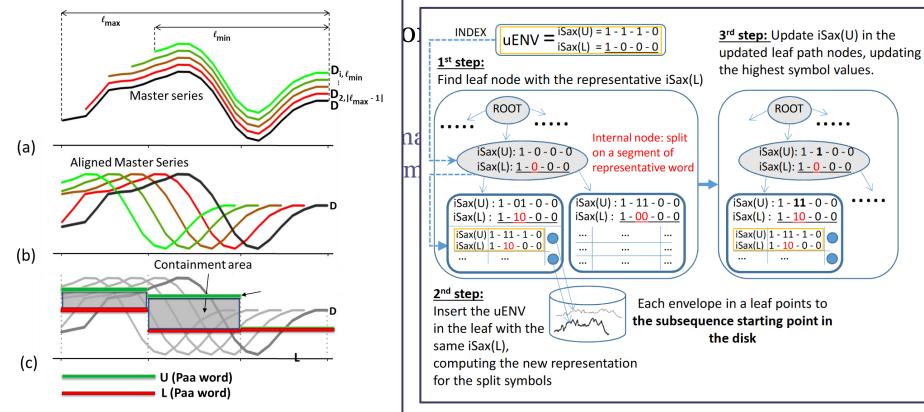


diN₀ 123

• **ULISSE**: current solution for variable-length queries

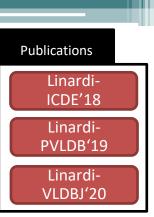
- single-index support for
 - queries of variable lengths
 - Z-normalized + non Z-normalized data
 - Euclidean + DTW distance measures

diNp 124



ULISSE

ULISSE

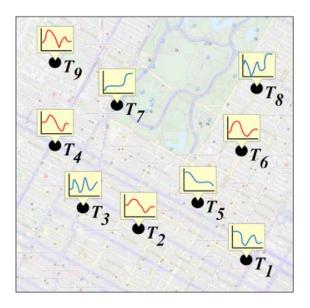


diNo 125

• **ULISSE**: current solution for variable-length queries

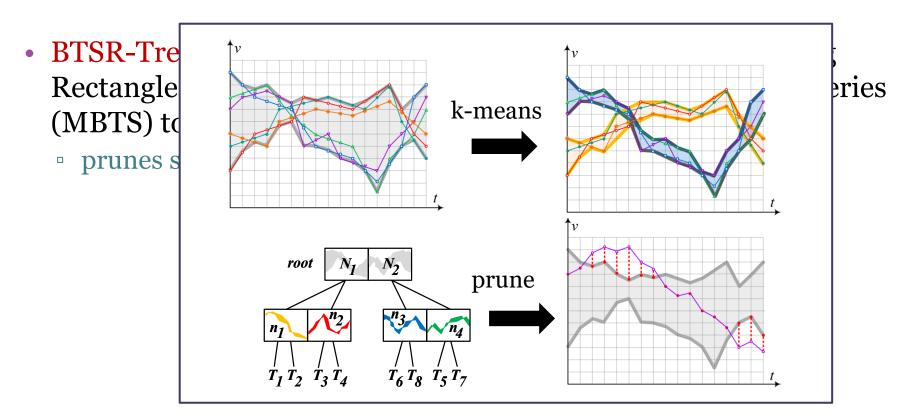
- single-index support for
 - queries of variable lengths
 - Z-normalized + non Z-normalized data
 - Euclidean + DTW distance measures
- orders of magnitude faster than competing approaches

• search both on spatial proximity and data series similarity



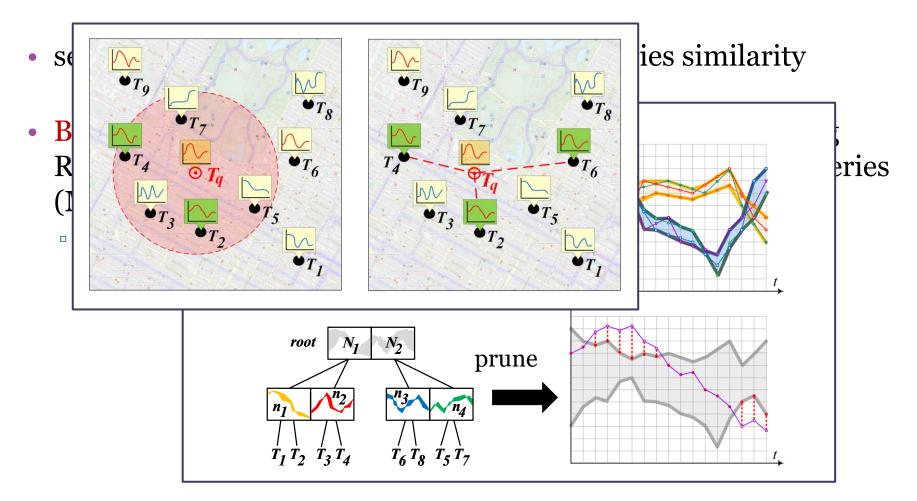
- search both on spatial proximity and data series similarity
- **BTSR-Tree**: hybrid index that combines Minimum Bounding Rectangles (MBR) and bundled Minimum Bounding Time Series (MBTS) to prune the search space
 - prunes subtrees that cannot contain any results

• search both on spatial proximity and data series similarity



Publications

Geolocated Data Series



- search both on spatial proximity and data series similarity
- **BTSR-Tree**: hybrid index that combines Minimum Bounding Rectangles (MBR) and bundled Minimum Bounding Time Series (MBTS) to prune the search space
 - prunes subtrees that cannot contain any results
- HSJ: hybrid similarity join on geolocated data series using the BTSR-Tree
 - per- and cross-partition search in parallel (adjacent bands/boxes)

diNo 130

Chatzigeorgakidis et al. SIGSPATIAL/GIS'17

Chatzigeorgakidis et al. SIGSPATIAL/GIS'18

Publications

- search both on spatial proximity and data series similarity
- BTSR-Tree: hybrid index that combines Minimum Bounding Rectangles (MBR) and bundled Minimum Bounding Time Series (MBTS) to prune the search space
 - prunes subtrees that cannot contain any results
- HSJ: hybrid similarity join on geolocated data series using the BTSR-Tree
 - per- and cross-partition search in parallel (adjacent bands/boxes)
- VisExp: interactive visual exploration on geolocated data series using either geo-iSAX or BTSR-Tree
 - geo-iSAX: iSAX index nodes augmented with MBR data

Chatzigeorgakidis et al. SIGSPATIAL/GIS'17

Chatzigeorgakidis et al. SIGSPATIAL/GIS'18

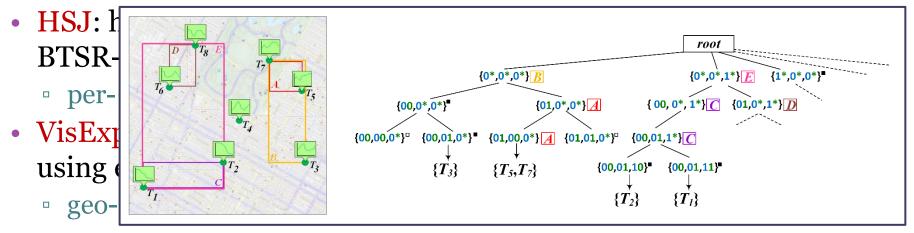
Chatzigeorgakidis et al.

Publications

131

- search both on spatial proximity and data series similarity
- BTSR-Tree: hybrid index that combines Minimum Bounding Rectangles (MBR) and bundled Minimum Bounding Time Series (MBTS) to prune the search space

• prunes subtrees that cannot contain any results



din

Chatzigeorgakidis et al. SIGSPATIAL/GIS'17

Chatzigeorgakidis et al. SIGSPATIAL/GIS'18

Chatzigeorgakidis et al. Elsev. Big Data Res. '19

Publications

132

diNo 133

Publications

Chatzigeorgakidis et al. SIGSPATIAL/GIS'17

Chatzigeorgakidis et al. SIGSPATIAL/GIS'18

Chatzigeorgakidis et al. Elsev. Big Data Res. '19

Geolocated Data Series



diNo 134

Publications

Chatzigeorgakidis et al. SIGSPATIAL/GIS'17

Chatzigeorgakidis et al. SIGSPATIAL/GIS'18

Geolocated Data Series

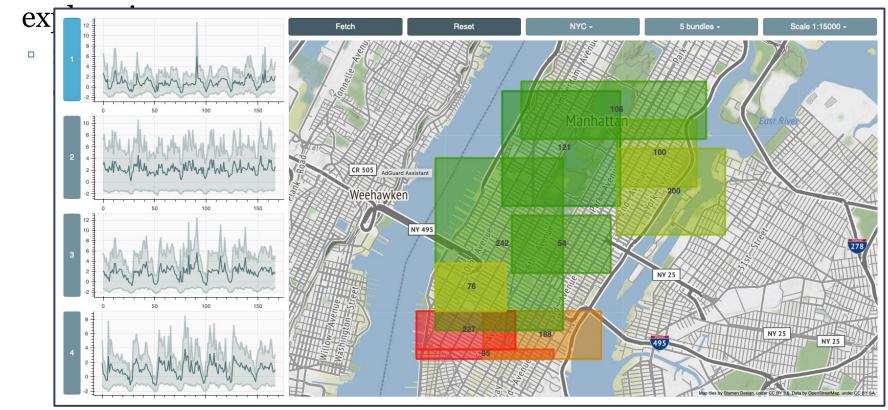
Chatzigeorgakidis et al. Elsev. Big Data Res. '19 3 ries 183 Terminal 168 2nd Avenue 129 Mon Tue Wed Thu Fri Sat Sun using Fri Sat Chambers $\{\stackrel{\dagger}{T_2}\}$ $\{ T_I \}$ T_1 - geo

spaTScope

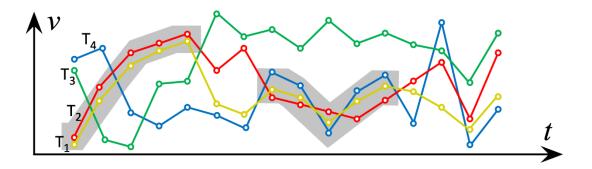
- interactive demo application for visual geolocated data series exploration
 - zoom-in/out, pan the map and receive summaries of geolocated data series and corresponding MBRs

spaTScope

• interactive demo application for visual geolocated data series

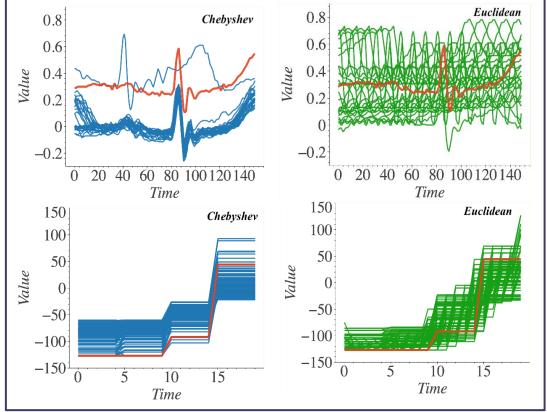


• discover subsequences, where distance between points is always < ϵ



- discover subsequences, where distance between points is always < ϵ

results that are Chebyshev-similar to the red queries



results that are Euclidean-similar to the red queries

Echihabi, Palpanas - MDM 2022

- discover subsequences, where distance between points is always < ϵ
- SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences of length ≥δ, within large collections of (short) data series
 - prunes search space by discretizing values, and using checkpoints

- discover subsequences, where distance between points is always < ϵ
- SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences of length ≥ prunes s Ints ε δ $\overline{t'+\delta}$ -1 ε j+1 -ω-ω-ωε

- discover subsequences, where distance between points is always < ε
- SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences of length ≥δ, within large collections of (short) data series
 - prunes search space by discretizing values, and using checkpoints
- **SBTSR-Tree**: solution for (x-axis) aligned subsequences within large collections of (short) data series, which are geolocated
 - BTSR-Tree index on segmented data series, with bit-vectors that mark continuity of same series across segments

diNo

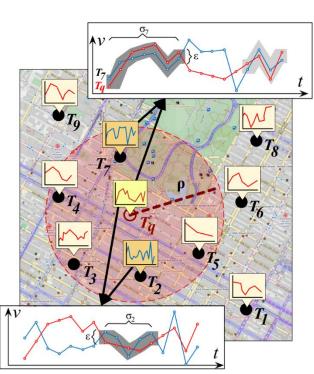
Chatzigeorgakidis et al. SSTD'19

Chatzigeorgakidis et al. SIGSPATIAL/GIS'19

Publications

141

- discover subsequences, where distance between points is always < ϵ
- SL/CP: sc of length
 prunes s
 SBTSR-Ti large colle
 BTSR-T continui



(x-axis) aligned subsequences of (short) data series alues, and using checkpoints gned subsequences within s, which are geo-located series, with bit-vectors that mark ents

diNo 142

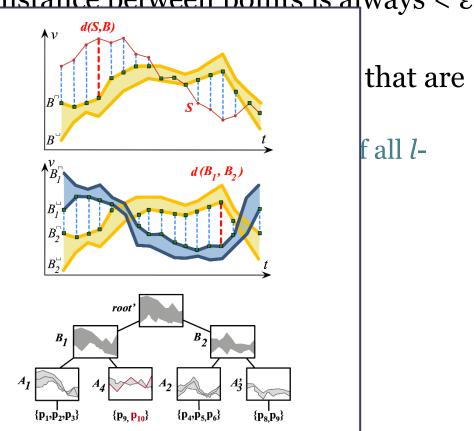
Chatzigeorgakidis et al. SSTD'19

Chatzigeorgakidis et al. SIGSPATIAL/GIS'19

Publications

- discover subsequences, where distance between points is always < ε
- **TS-Index**: solution for subsequences of a long data series *T* that are similar to a (short) query sequence of length *l*
 - k-ary balanced index, built on per-point min/max envelopes of all *l*length subsequences of *T*

- discover subsequences, where distance between points is always $< \varepsilon$
- TS-Index: solution for subse similar to a (short) query se
 - k-ary balanced index, built
 length subsequences of T



Twin Subsequence Search

- discover subsequences, where distance between points is always < ϵ
- **TS-Index**: solution for subsequences of a long data series *T* that are similar to a (short) query sequence of length *l*
 - k-ary balanced index, built on per-point min/max envelopes of all *l*length subsequences of *T*
- **TS-Index OPT**: memory footprint and bulk-loading optimizations for TS-Index
 - build index bottom-up after sorting and grouping the subsequences using a z-order space filling curve

din

Chatzigeorgakidis et al. EDBT'21

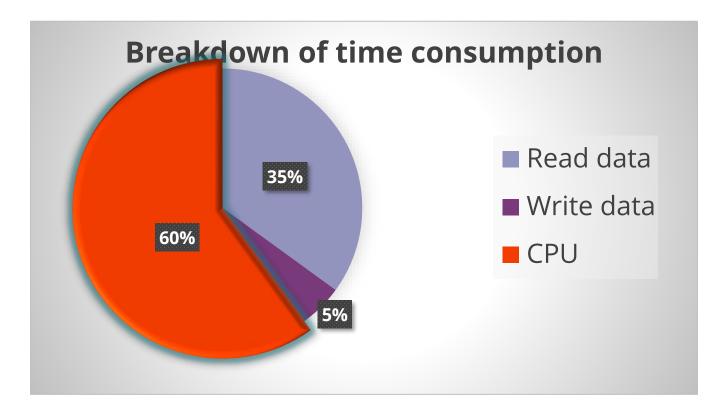
Chatzigeorgakidis et al. TKDE'22

Publications

145

Data Series Indexing Parallel & Distributed

ADS Index creation



~60% of time spent in CPU: potential for improvement!

diNp 147

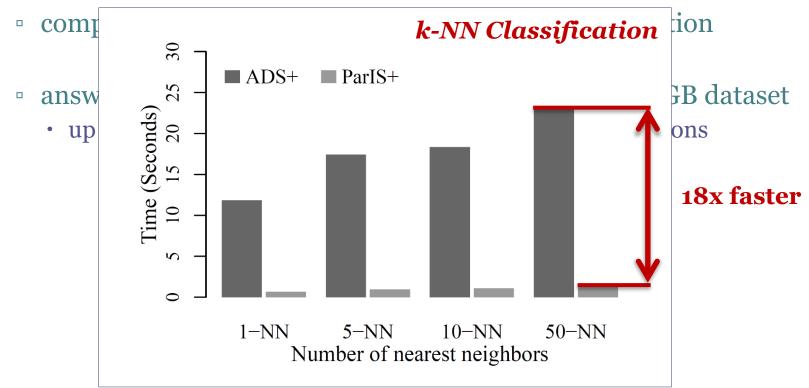
ParIS+ Parallel Indexing of Sequences

Publications Peng-BigData'18 Peng-TKDE'20

- solution for SIMD, multi-core, multi-socket architectures
 - completely masks out the CPU cost during index creation
 - answers exact queries in the order of few secs on 100GB dataset
 - up to 3 orders of magnitude faster then single-core solutions

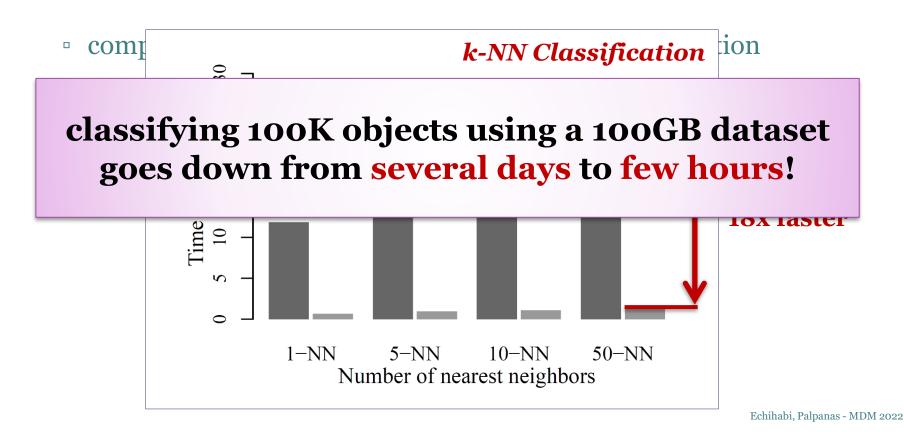
ParIS+ Parallel Indexing of Sequences

solution for SIMD, multi-core, multi-socket architectures



ParIS+ Parallel Indexing of Sequences

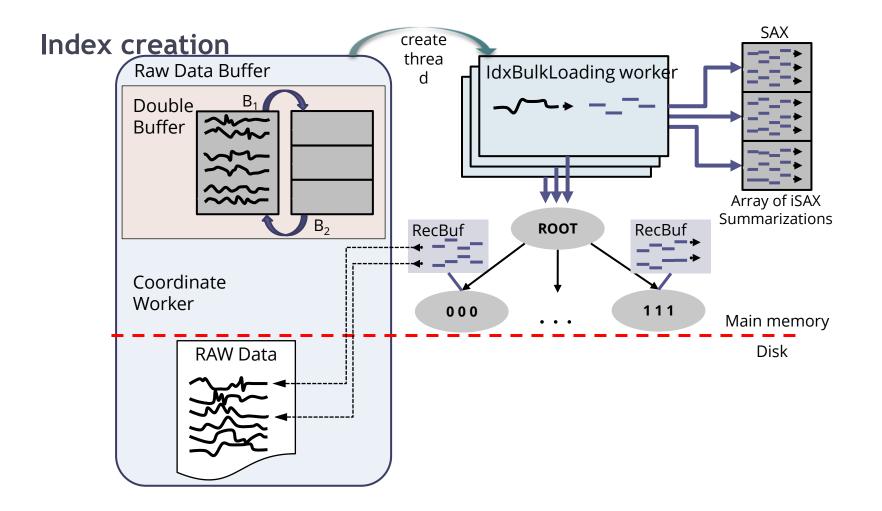
solution for SIMD, multi-core, multi-socket architectures

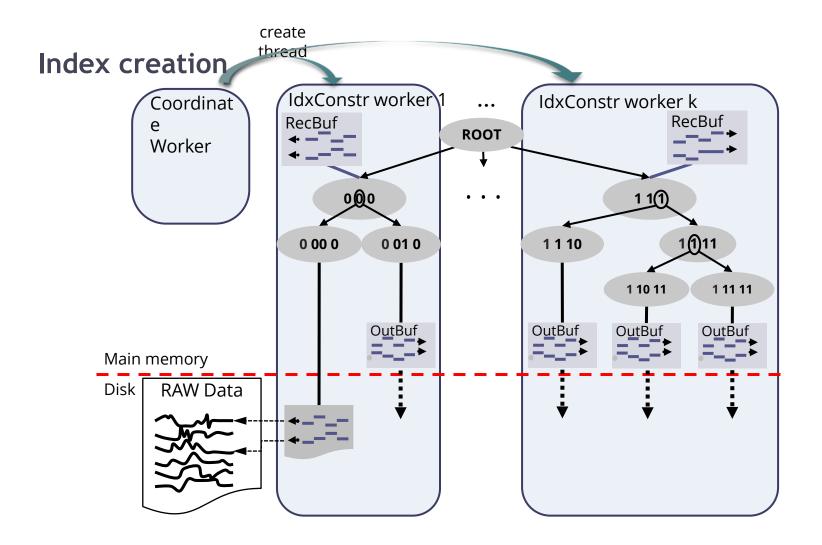


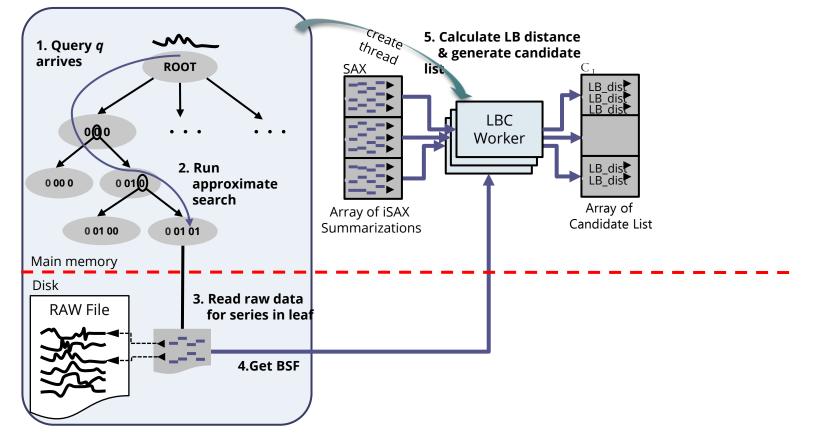
Peng-TKDE'20

Peng-BigData'18

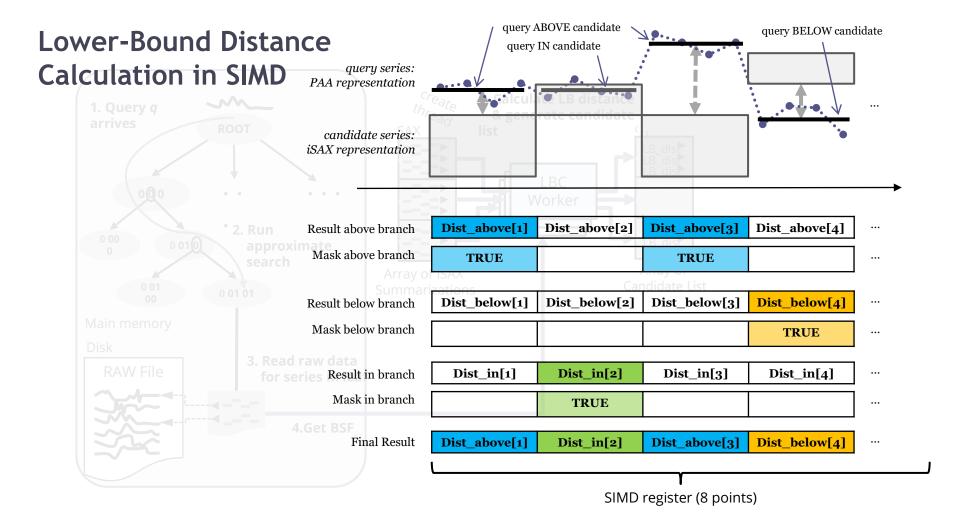
Publications







ParIS+ exact query answering



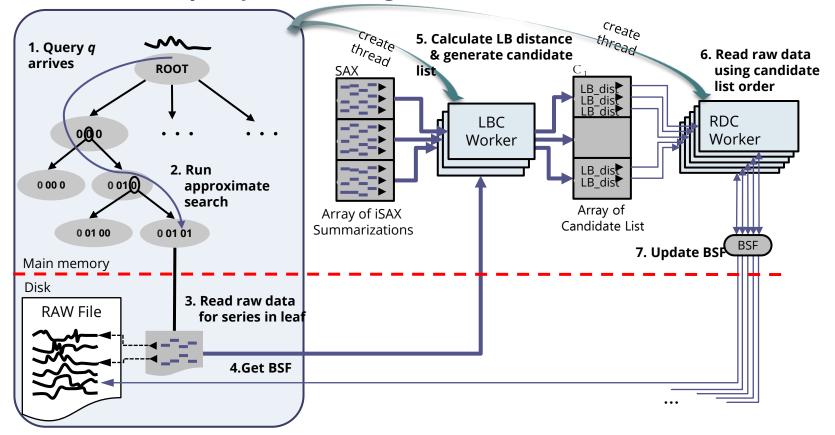
Echihabi, Palpanas - MDM 2022

Calculation in SIMD 150 Time (Nanoseconds) 100 50 0 ■ SISD ■ SIMD

Lower-Bound Distance

SIMD lower bounds are 3.4x faster

ParIS+ exact query answering



MESSI In-Memory Data Series Index

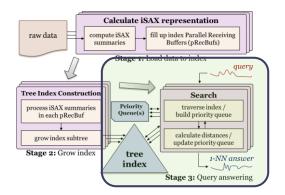
Publications Peng-ICDE'20 Peng-VLDBJ'21

157

din

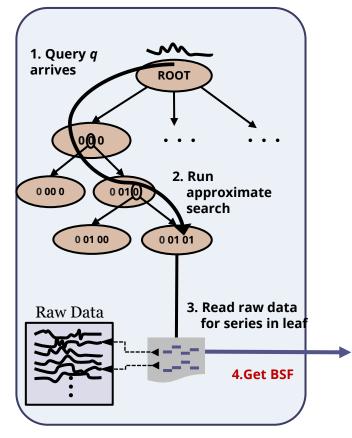
- in-memory solution for SIMD, multi-core, multi-socket architectures
 - index-creation algorithm
 - balances workload of different workers, minimizes synchronization cost
 - exact query answering algorithm
 - optimizes tree traversal and pruning
 - minimizes number of lower-bound and real distance calculations
 - answers exact queries at interactive speeds: ~50msec on 100GB
 - up to **11x faster** than competing approaches

MESSI Query answering - Stage 3



diNp 158

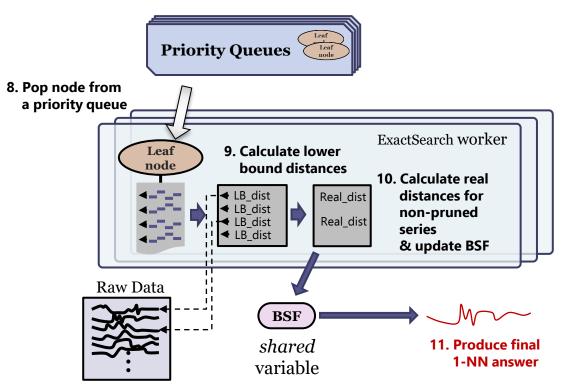
MESSI Query answering - Stage 3



MESSI Query answering - Stage 3 ROOT ... S 1. Query q Search worker arrives ROOT Interna l node 5. Traverse 000 tree index Interna 2. Run l node 0 00 0 0 01 0 approximate search Leaf Leaf Leaf node node node 0 01 00 0 01 01 6. Calculate node distance 7. if node dist<BSF insert node in PQ 3. Read raw data Raw Data for series in leaf Leaf node **Priority Queues** 4.Get BSF shared data structures

dino 160

MESSI Query answering - Stage 3



diNo

161

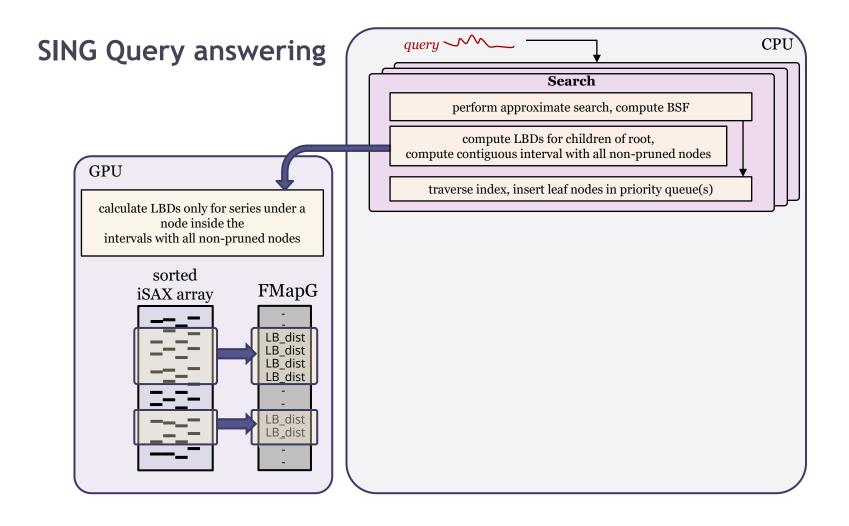
SING Sequence Indexing Using GPUs

- in-memory solution for SIMD, multi-core, multi-socket architectures with GPUs (Graphical Processing Units)
 - new exact query answering algorithm
 - CPU-GPU co-processing framework
 - new GPU-friendly lower bound distance calculation algorithm
 - answers exact queries at interactive speeds: ~32msec on 100GB dataset
 - up to 5x faster than competing approaches

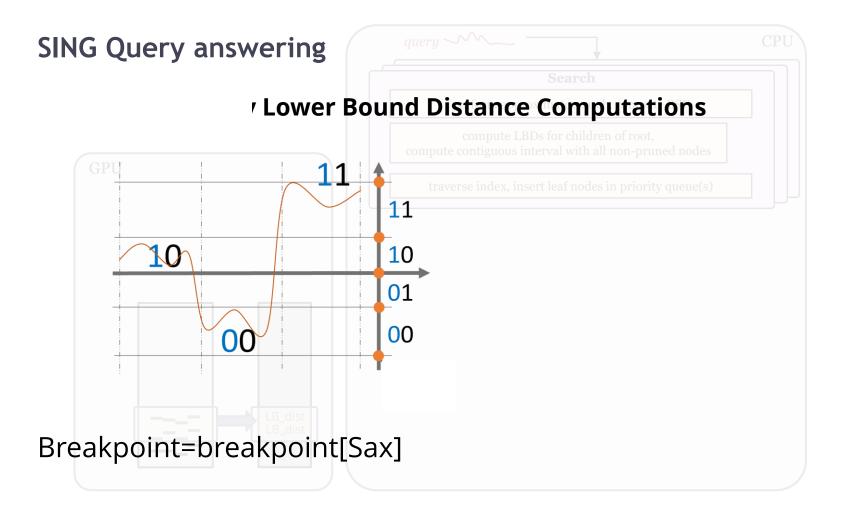
GPUs for Data Series Similarity Search

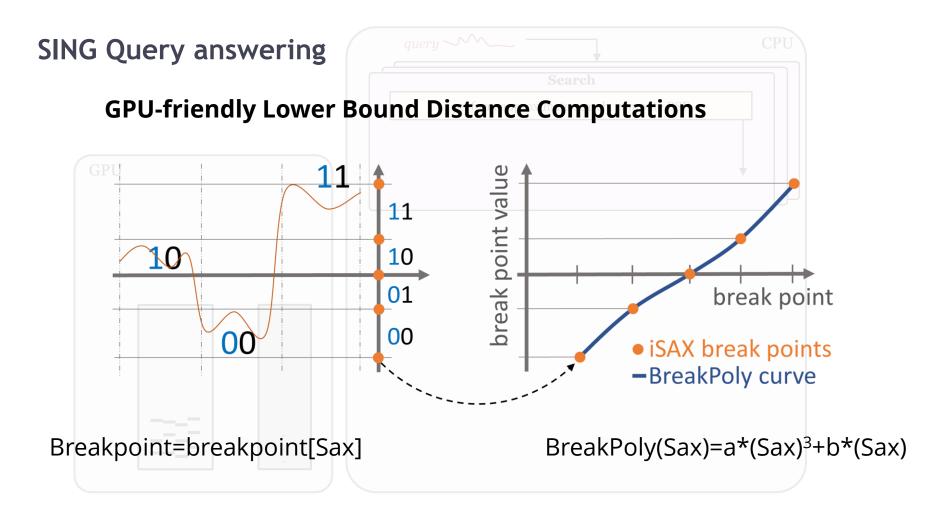
- a natural solution
 - GPUs typically part of modern hardware
 - GPUs offer massive parallelization opportunities
 - data series operations are massively parallelizable
- challenges
 - Limited GPU memory size (~12GB of RAM for modern GPUs)
 - much smaller than raw data
 - Slow interconnect speeds (PCI-Express 3.0 x16 delivers 10GB/sec)
 - moving raw data needed by individual queries prohibitively expensive
 - non-sophisticated Streaming Processors (GPU cores)
 - not suited for supporting complex data structures/branching
 - very limited in-core fast memory
 - trade-offs will change as GPU and interconnects technology advances

 $d \mathbb{N}$

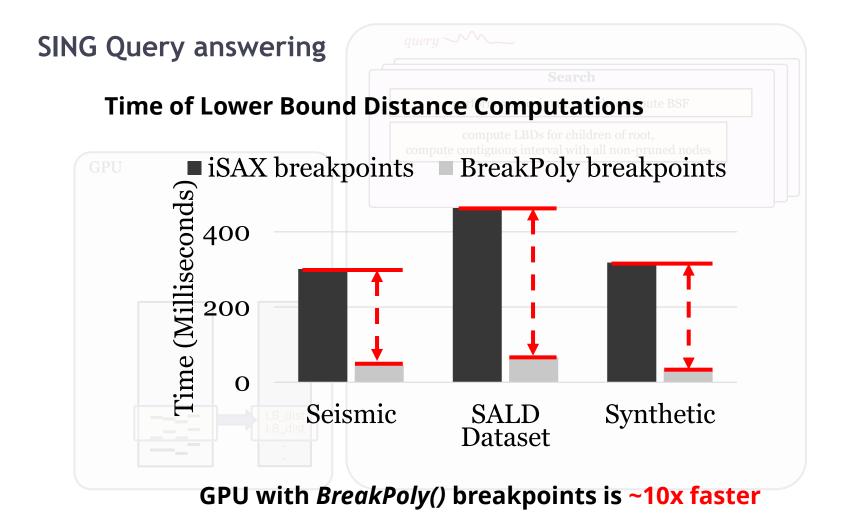


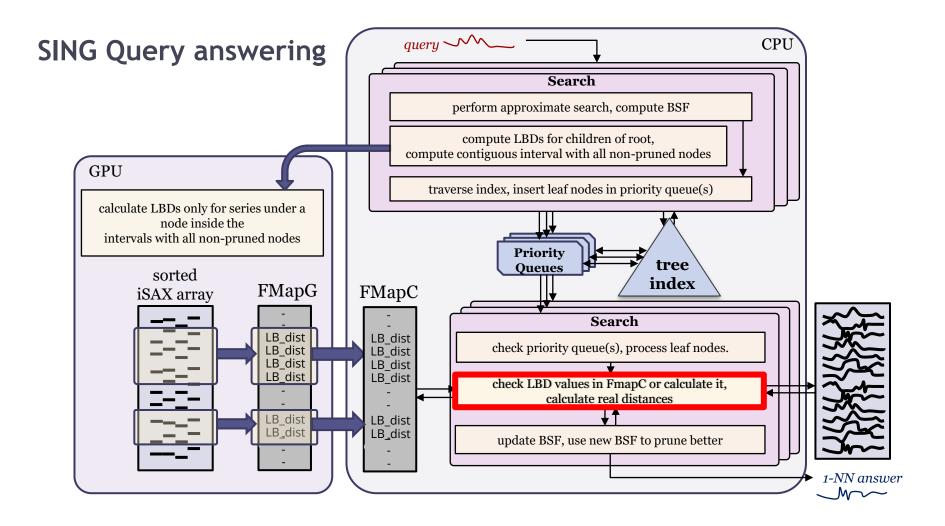
divo 166



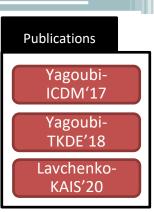


divo 168





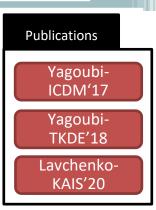
DPiSAX Distributed Partitioned iSAX



diN0 170

- solution for distributed processing (Spark)
 - balances work of different worker nodes
 - partitions series into uniform groups with parallel sampling (for load balancing)
 - creates in parallel an index for each group (in a different node)

DPiSAX Distributed Partitioned iSAX

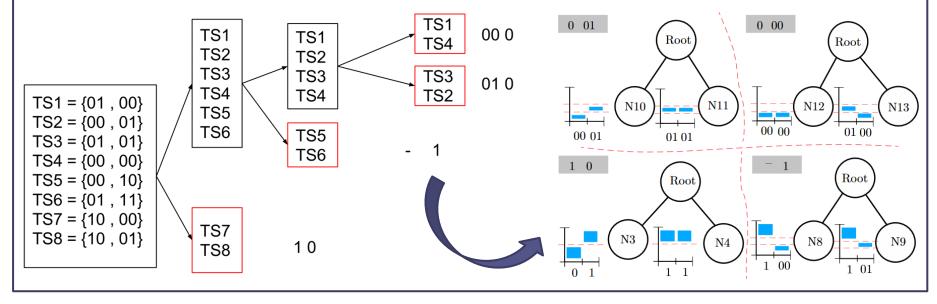


171

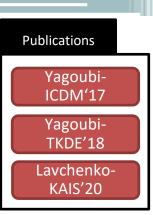
diNo

solution for distributed processing (Spark)

balance work of different worker nodes



DPiSAX Distributed Partitioned iSAX



172

din

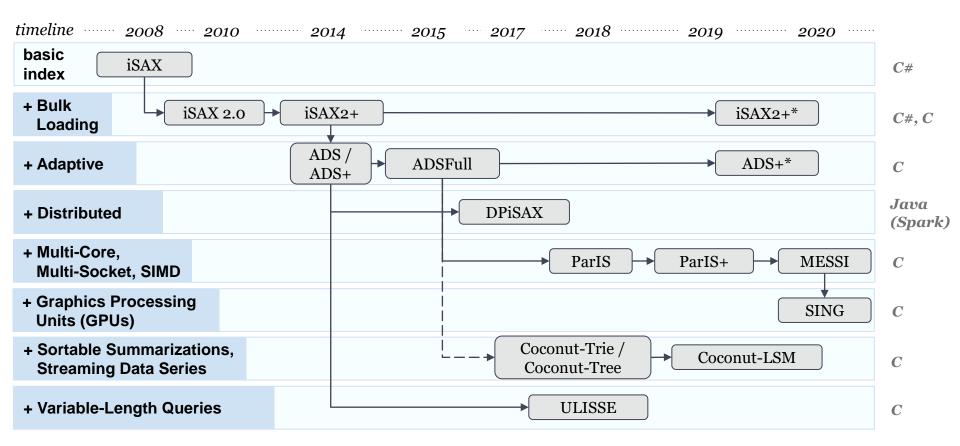
- solution for distributed processing (Spark)
 - balances work of different worker nodes
 - partitions series into uniform groups with parallel sampling (for load balancing)
 - creates in parallel an index for each group (in a different node)
 - speeds-up query answering
 - exact queries are answered by all nodes (parallelize query execution)
 - approximate queries answered only by a single node (parallelize workload execution)

Palpanas-ISIP'19

din

173

iSAX Index Family Lineage Tree



Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity search with deterministic and probabilistic quality guarantees.

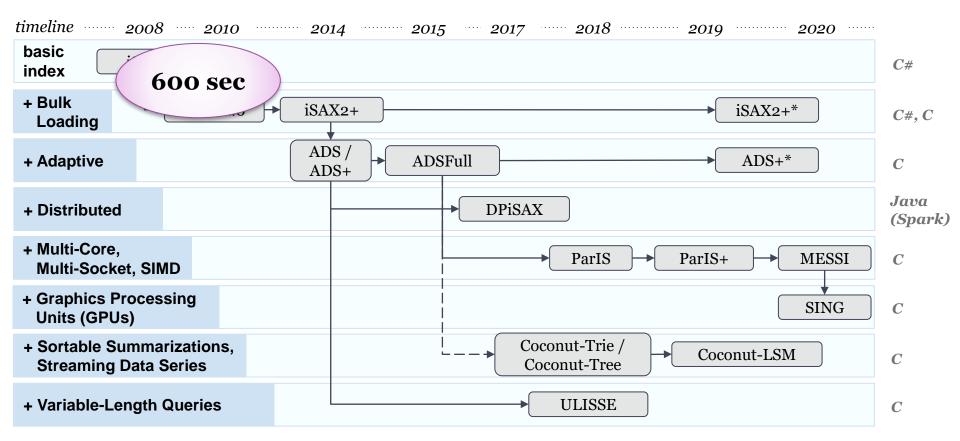
Echihabi, Palpanas - MDM 2022

Palpanas-ISIP'19

din

174

iSAX Index Family Lineage Tree



execution time for **1 similarity search query on a 100GB dataset** <u>on disk</u>

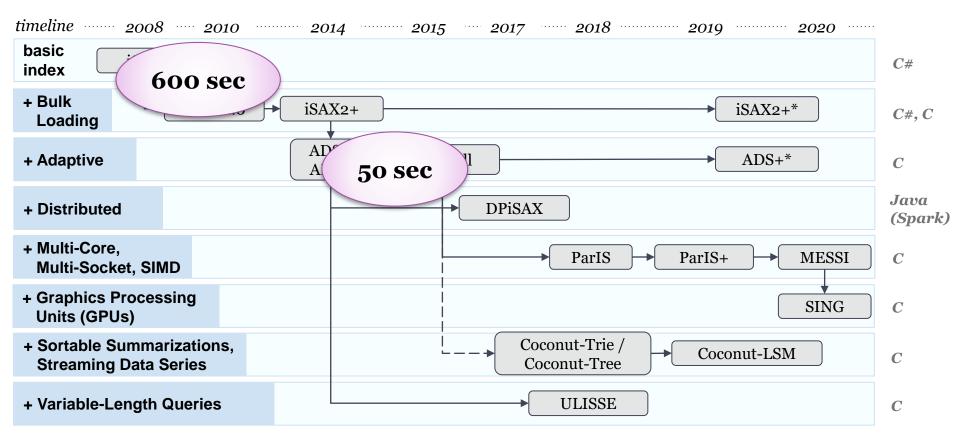
Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity search with deterministic and probabilistic quality guarantees.

Palpanas-ISIP'19

din

175

iSAX Index Family Lineage Tree



execution time for 1 similarity search query on a 100GB dataset on disk

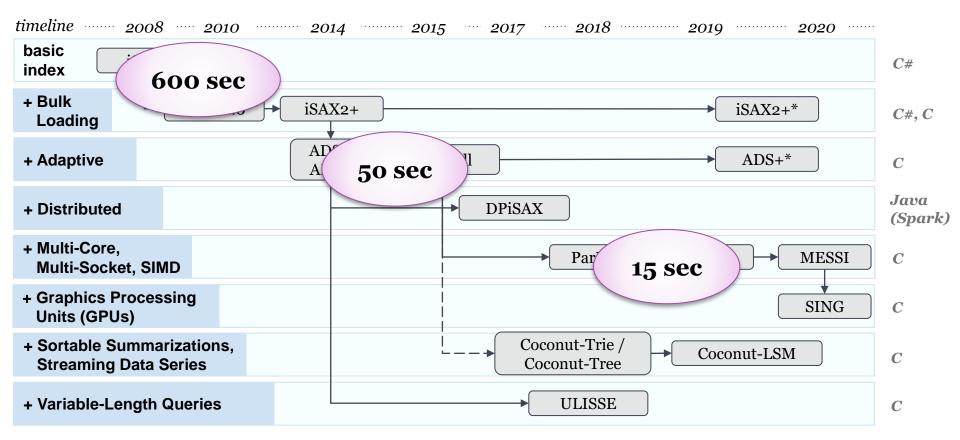
Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity search with deterministic and probabilistic quality guarantees.

Palpanas-ISIP'19

din

176

iSAX Index Family Lineage Tree



execution time for 1 similarity search query on a 100GB dataset on disk

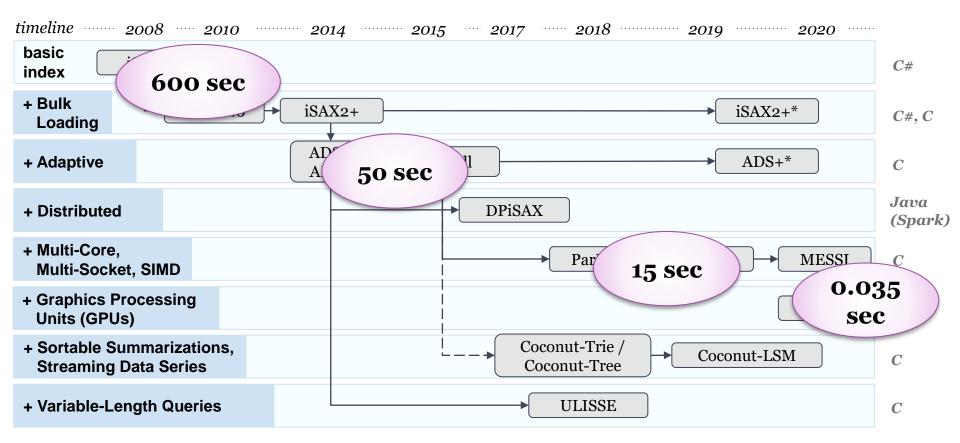
Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity search with deterministic and probabilistic quality guarantees.

Palpanas-ISIP'19

diNo

177

iSAX Index Family Lineage Tree



execution time for 1 similarity search query on a 100GB dataset in memory

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity search with deterministic and probabilistic quality guarantees.

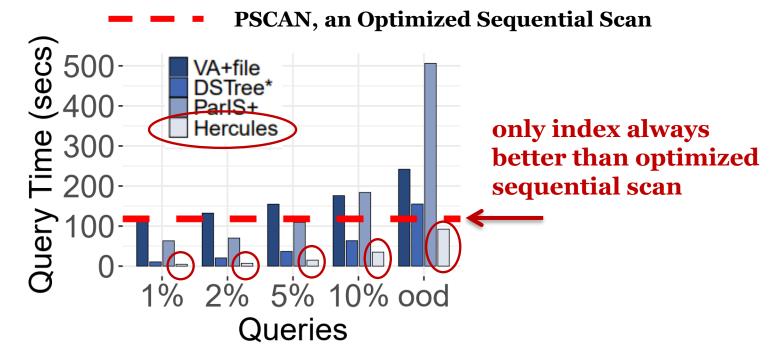
Echihabi, Palpanas - MDM 2022

Hercules Parallel Indexing of Sequences

- Disk-based solution for SIMD, multi-core, multi-socket architectures
 - Exploits the benefits of two different summarization techniques (iSAX and EAPCA), and novel indexing and query answering algorithms
 - Leads to better query answering performance than all recent state-of-the-art approaches across all popular query workloads
 - only index that outperforms optimized scan on all scenarios (including hard query workloads on disk-based datasets)
 - Performs up to one order of magnitude faster than the best competitor (which is not always the same)

Hercules Parallel Indexing of Sequences

• Disk-based solution for SIMD, multi-core, multi-socket architectures



diNo 179

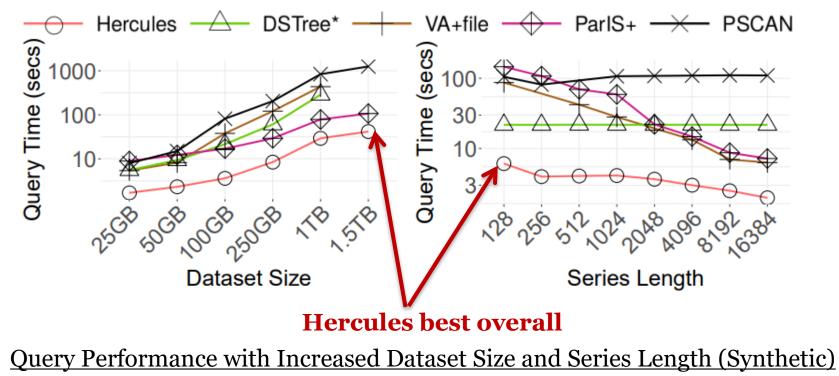
Publications

Echihabi-PVLDB'22

Query Performance with Increased Query Difficulty (Seismic100GB)-MDM 2022

Hercules Parallel Indexing of Sequences

Disk-based solution for SIMD, multi-core, multi-socket architectures



dino 180

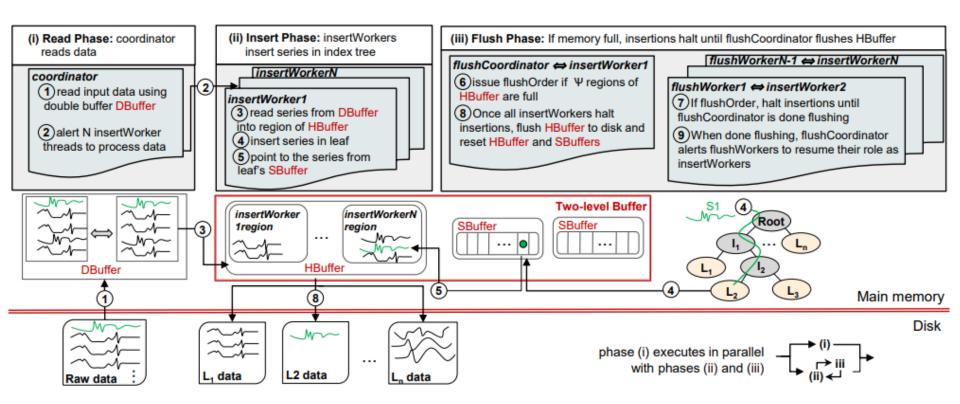
Publications

Echihabi-PVLDB'22

Hercules Index Building

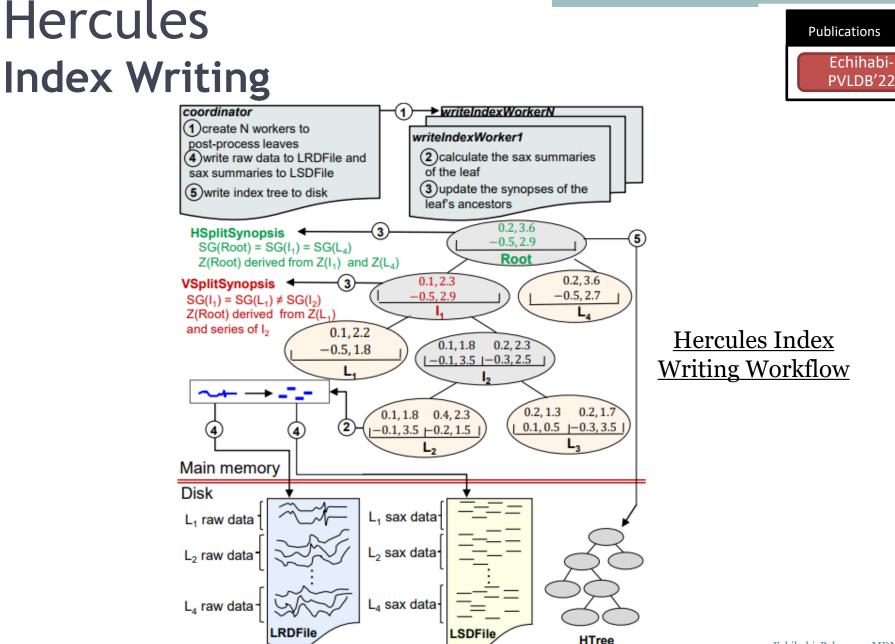
Publications Echihabi-

PVLDB'22



Hercules Index Building Workflow

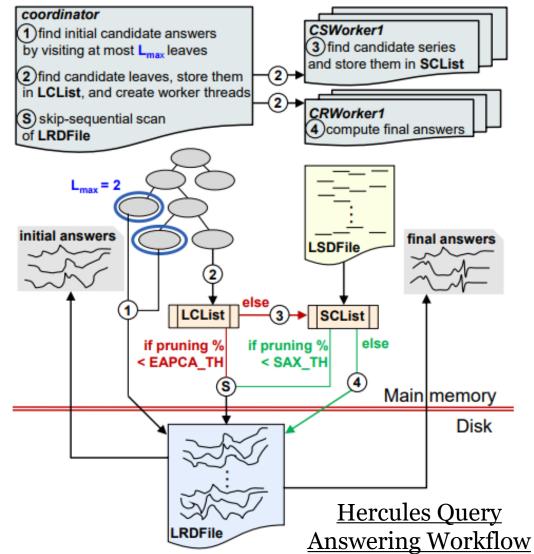
diNo 182



Echihabi, Palpanas - MDM 2022

diNo 183

Hercules Query Answering

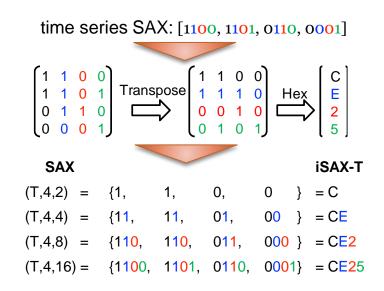


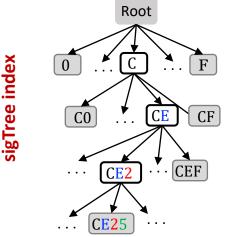
Publications

Echihabi-PVLDB'22

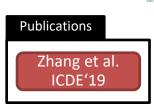
diNo 184

- solution for distributed processing (Spark)
 - based on iSAX-T representation and sigTree index
 - iSAX Transposition: transposes matrix of iSAX words of same cardinality, represents as strings
 - sigTree: prefix k-ary tree on iSAX-T strings



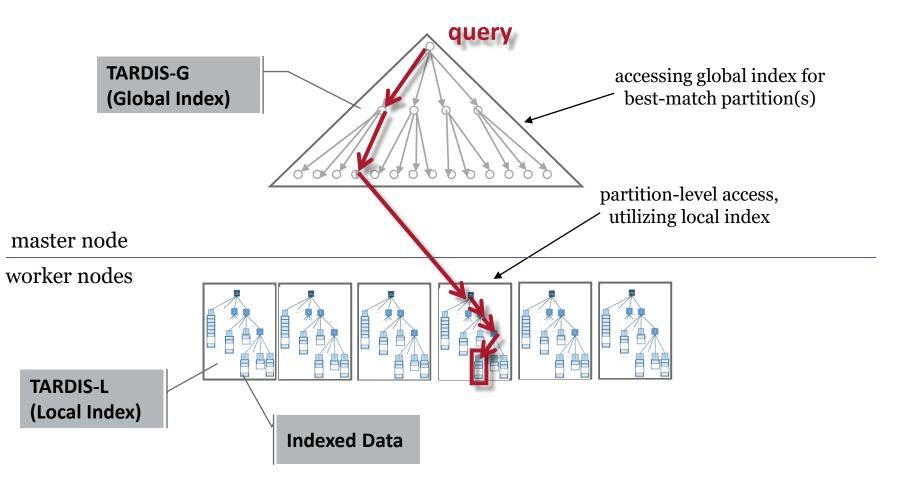


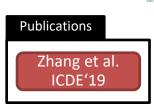
Echihabi, Palpanas - MDM 2022



ding 185

- solution for distributed processing (Spark)
 - based on iSAX-T representation and sigTree index
 - iSAX Transposition: transposes matrix of iSAX words of same cardinality, represents as strings
 - sigTree: prefix k-ary tree on iSAX-T strings
 - centralized global sigTree + distributed local sigTrees with raw data
 - global sigTree
 - constructed using statistics from local samples
 - serves as partition scheme for data re-distribution



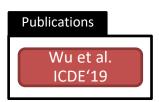


187

din

- solution for distributed processing (Spark)
 - based on iSAX-T representation and sigTree index
 - iSAX Transposition: transposes matrix of iSAX words of same cardinality, represents as strings
 - sigTree: prefix k-ary tree on iSAX-T strings
 - centralized global sigTree + distributed local sigTrees with raw data
 - global sigTree
 - constructed using statistics from local samples
 - serves as partition scheme for data re-distribution
 - query answering
 - ng-approximate k-NN queries
 - exact-match queries (does the query appear exactly the same in the dataset?)

KV-match

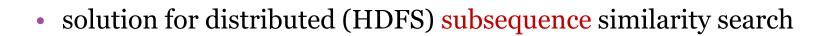


- solution for distributed (HDFS) subsequence similarity search
 - similarity search problem
 - subsequence similarity search: search for a short query inside a long series
 - *ɛ*-range queries
 - exact answers for constrained ε-range queries (using cNSM)
 - cNSM: constrained Normalized Subsequence Matching
 - essentially, constrained similarity search
 - intuitively, Z-normalization with constraints on degrees of amplitude scaling and offset shifting ($\alpha \ge 1$ and $\beta \ge 0$, respectively)

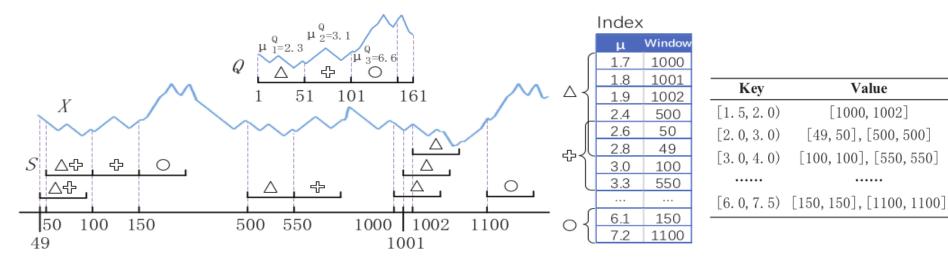
$$D(\hat{S}, \hat{Q}) \leq \varepsilon \quad \cap \quad \frac{1}{\alpha} \leq \frac{\sigma^S}{\sigma^Q} \leq \alpha \quad \cap \quad -\beta \leq \mu^S - \mu^Q \leq \beta$$

- users control extent of amplitude scaling and offset shifting
- normalized subsequence matching is a special case of cNSM

KV-match



- index creation
 - slide window on input series
 - produce ordered rows of key-value pairs
 - key K_i : a range of mean values, $K_i = [LR_i, UR_i]$
 - value V_i : the set of sliding windows whose mean values fall within K_i



• key-value table stored in HBase

Wu et al. ICDE'19

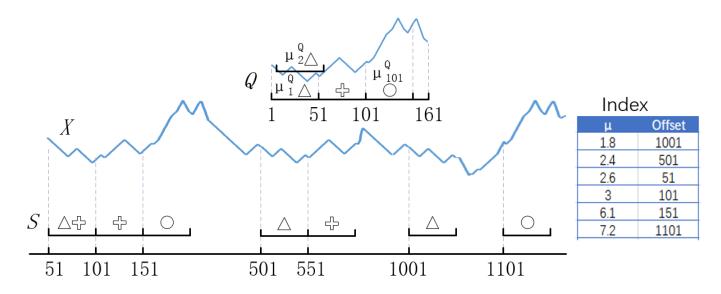
KV-match

divo 190

- solution for distributed (HDFS) subsequence similarity search
 - query answering
 - for query Q and corresponding subsequence S
 - segment Q into aligned length-w disjoint windows (requires having several indexes of different lengths)
 - + for each window $\boldsymbol{Q}_i \,$ and \boldsymbol{S}_i
 - filtering condition: S is candidate answer only if all μ_{Si} fall within [LR_i, UR_i]
 - Phase 1: Index-probing
 - generate set of candidate subsequences CS
 - Phase 2: Post-processing
 - verify subsequences in CS by computing actual distance on the raw data

L-match

- L-match improves on KV-match
 - instead of sliding a window to build the index, L-match slides a window on query
 - index is more compact
 - operations are naturally parallelizable (no data-window overlaps among nodes)



diNo

Publications

Feng et al. IEEE Access'20

191

L-match

- solution for distributed (HDFS) subsequence similarity search
 - L-match improves on KV-match
 - instead of sliding a window to build the index, L-match slides a window on query
 - index is more compact
 - operations are naturally parallelizable (no data-window overlaps among nodes)
 - compared to KV-match, L-match is slightly slower, but 10x smaller

Experimental Comparisons: Exact Query Answering

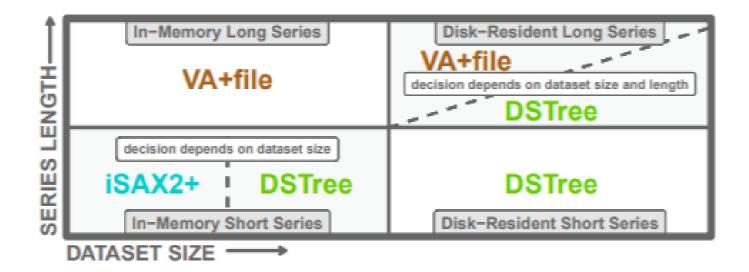
Experimental Framework

- Hardware
 - HDD and SSD
- Datasets
 - Synthetic (25GB to 1TB) and 4 real (100 GB)
- Exact Query Workloads
 - 100 10,000 queries
- Performance measures
 - Time, #disk accesses, footprint, pruning, Tightness of Lower Bound (TLB), etc.
- C/C++ methods (4 methods reimplemented from scratch)
- Procedure:
 - Step 1: Parametrization
 - Step 2: Evaluation of individual methods
 - Step 3: Comparison of best methods

195

Recommendations

Scenario: Indexing and answering 10K exact queries on HDD



di

Unexpected Results

- Some methods do not scale as expected (or not at all!)
- Brought back to the spotlight two older methods VA+file and DSTree
 - New reimplementations outperform by far the original ones
- Optimal parameters for some methods are different from the ones reported in the original papers
- Tightness of Lower Bound (TLB) does not always predict performance

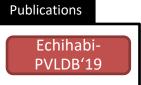
Insights

- Results are sensitive to:
 - Parameter tuning
 - Hardware setup
 - Implementation
 - Workload selection
- Results identify methods that would benefit from modern hardware

Experimental Comparisons: Approximate Query Answering

Experimental Framework

- Datasets
 - In-memory and disk-based datasets
 - Synthetic data modeling financial time series
 - Four real datasets from deep learning, computer vision, seismology, and neuroscience (25GB-250GB)
- Query Workloads
 - 100 10,000 kNN queries k in [1,100]
 - ng-approximate and δ - ϵ -approximate queries (exact queries used as yardstick)
- C/C++ methods (3 methods reimplemented from scratch)
- Performance measures
 - Efficiency: time, throughput, #disk accesses, % of data accessed
 - Accuracy: average recall, mean average precision, mean relative error
- Procedure:
 - Step 1: Parametrization
 - Step 2: Evaluation of indexing/query answering scalability in-memory
 - Step 3: Evaluation of indexing/query answering scalability on-disk
 - Step 4: Additional experiments with best-performing methods on disk



	Matching Accuracy					presentation	Implementation			
		exact	ng-appr.	ϵ -appr.	δ - ϵ -appr.	Raw	Reduced	Original	New	Disk-resident Data
Graphs	HNSW		[99]			\checkmark		C++		
	NSG		[58]			\checkmark		C++		

	Matching Accuracy					resentation	Implementation			
		exact	ng-appr.	ϵ -appr.	δ - ϵ -appr.	Raw	Reduced	Original	New	Disk-resident Data
Graphs	HNSW		[99]			\checkmark		C++		
	NSG		[58]			\checkmark		C++		
Inv. Indexes	IMI		[16, 60]				OPQ	C++		\checkmark

diN0 202

	Matching Accuracy					presentation	Implementation			
		exact	ng-appr.	ϵ -appr.	δ - ϵ -appr.	Raw	Reduced	Original	New	Disk-resident Data
Graphs	HNSW		[99]			\checkmark		C++		
Graphs	NSG		[58]			\checkmark		C++		
Inv. Indexes	IMI		[16, 60]				OPQ	C++		√
LSH	QALSH				[69]		Signatures	C++		
	\mathbf{SRS}				[136]		Signatures	C++		

diNb 203

	Matching Accuracy					presentation	Implementation			
	exact	ng-appr.	ϵ -appr.	δ - ϵ -appr.	Raw	Reduced	Original	New	Disk-resident Data	
Graphs	HNSW		[99]			\checkmark		C++		
Graphs	NSG		[58]			\checkmark		C++		
Inv. Indexes	IMI		[16, 60]				OPQ	C++		\checkmark
LSH	QALSH				[69]		Signatures	C++		
Lon	\mathbf{SRS}				[136]		Signatures	C++		
Scans	VA+file	[55]	•	•	•		DFT	MATLAB	С	\checkmark

• Our extensions

ſ		Matching Accuracy					resentation	Implementation			
		exact	ng-appr.	ϵ -appr.	δ - ϵ -appr.	Raw	Reduced	Original	New	Disk-resident Data	
Graphs	HNSW		[99]			\checkmark		C++			
Graphs	NSG		[58]			\checkmark		C++			
Inv. Indexes	IMI		[16, 60]				OPQ	C++		\checkmark	
LSH	QALSH				[69]		Signatures	C++			
Lon	\mathbf{SRS}				[136]		Signatures	C++			
Scans	VA+file	[55]	•	•	•		DFT	MATLAB	С	\checkmark	
	Flann		[107]			\checkmark		C++			
Trees	DSTree	[146]	[146]	•	•		EAPCA	Java	С	\checkmark	
	HD-index		[11]				Hilbert keys	C++		\checkmark	
	iSAX2+	[30]	[30]	•	•		iSAX	C#	С	\checkmark	

• Our extensions

diN0 205

$\begin{pmatrix} x \\ 0 \end{pmatrix}$

Unexpected Results

New data series extensions are the overall winners even for general high-d vectors

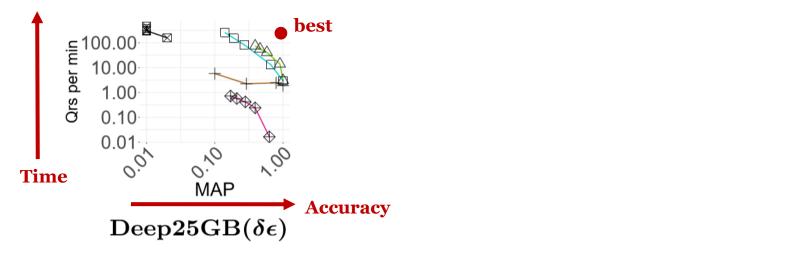
 \circ perform the best for approximate queries with probabilistic guarantees (δ - ϵ -approximate search)

dino 207

Unexpected Results

New data series extensions are the overall winners even for general high-d vectors

 perform the best for approximate queries with probabilistic guarantees (δ-ε-approximate search)

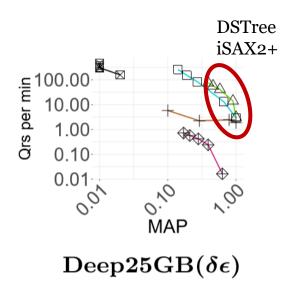


$\begin{pmatrix} x \\ 0 \end{pmatrix}$

Unexpected Results

New data series extensions are the overall winners even for general high-d vectors

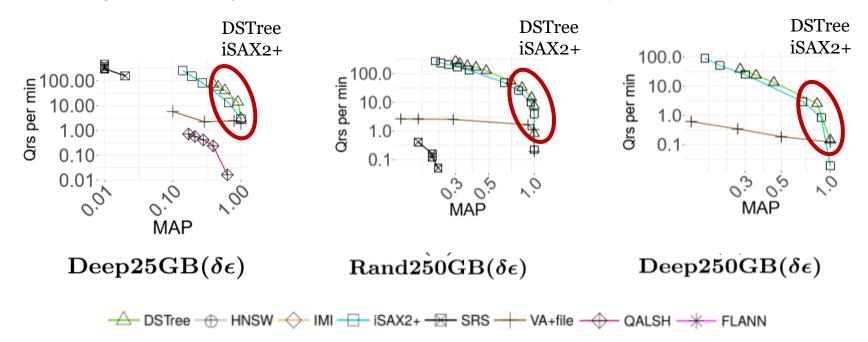
 perform the best for approximate queries with probabilistic guarantees (δ-ε-approximate search), in-memory



Unexpected Results

New data series extensions are the overall winners even for general high-d vectors

 perform the best for approximate queries with probabilistic guarantees (δ-ε-approximate search), in-memory and on-disk



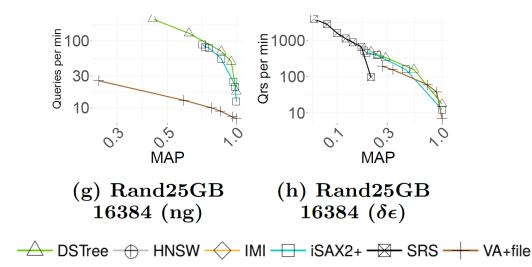
diN 209

diNo 210

Unexpected Results

New data series extensions are the overall winners even for general high-d vectors

- perform the best for approximate queries with probabilistic guarantees (δ-ε-approximate search), in-memory and on-disk
- o perform the best for long vectors

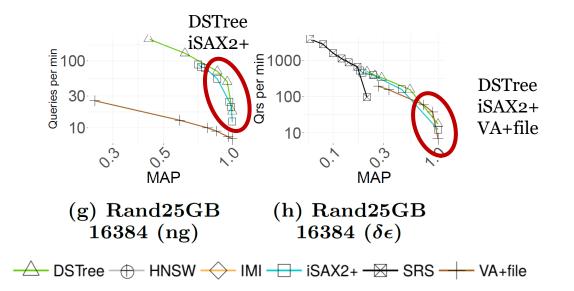


diNo

Unexpected Results

New data series extensions are the overall winners even for general high-d vectors

- perform the best for approximate queries with probabilistic guarantees (δ-ε-approximate search), in-memory and on-disk
- $\circ\,$ perform the best for long vectors, in-memory and on-disk

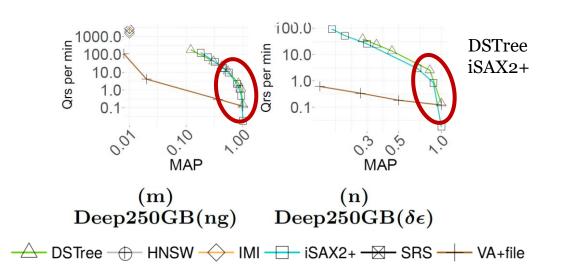


din

Unexpected Results

New data series extensions are the overall winners even for general high-d vectors

- perform the best for approximate queries with probabilistic guarantees (δ-ε-approximate search), in-memory and on-disk
- $\circ\,$ perform the best for long vectors, in-memory and on-disk
- o perform the best for disk-resident vectors

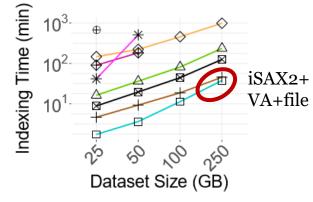


din

Unexpected Results

 New data series extensions are the overall winners even for general high-d vectors

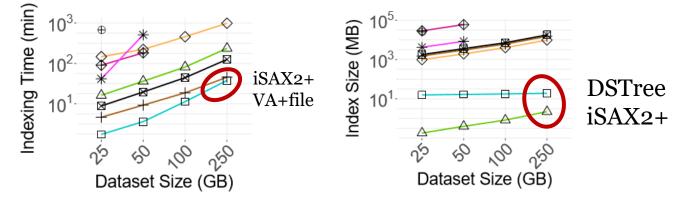
- \circ perform the best for approximate queries with probabilistic guarantees (δ - ϵ -approximate search), in-memory and on-disk
- o perform the best for long vectors, in-memory and on-disk
- o perform the best for disk-resident vectors
- o are fastest at indexing and have the lowest footprint



diNo

Unexpected Results

- New data series extensions are the overall winners even for general high-d vectors
 - \circ perform the best for approximate queries with probabilistic guarantees (δ - ϵ -approximate search), in-memory and on-disk
 - o perform the best for long vectors, in-memory and on-disk
 - o perform the best for disk-resident vectors
 - $\circ\,$ are fastest at indexing and have the lowest footprint

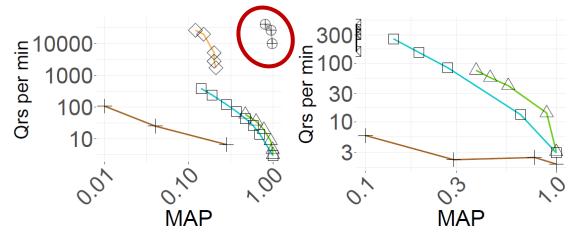


diNo

Unexpected Results

 New data series extensions are the overall winners even for general high-d vectors

- perform the best for approximate queries with probabilistic guarantees (δ-ε-approximate search), in-memory and on-disk
- o perform the best for long vectors, in-memory and on-disk
- perform the best for disk-resident vectors
- $\circ\,$ are fastest at indexing and have the lowest footprint



Only exception is HNSW winning on in-memory data, with a prebuilt index (no guarantees for the answers)

(s) Deep25GB(ng) (t) Deep25GB($\delta\epsilon$)

-\̈́Cू-

divi 216

Insights

Exciting research direction for approximate similarity search in high-d spaces:

-`Ų́-

divo

217

Insights

Exciting research direction for approximate similarity search in high-d spaces:

Currently two main groups of solutions exist:

approximate search solutions without guarantees relatively efficient

Exciting research direction for approximate similarity search in high-d spaces:

Currently two main groups of solutions exist:

approximate search solutions without guarantees relatively efficient

Insights

approximate search solutions with guarantees relatively slow

219

Exciting research direction for approximate similarity search in high-d spaces:

Currently two main groups of solutions exist:

approximate search solutions without guarantees relatively efficient

Insights

approximate search solutions with guarantees relatively slow

We show that it is possible to have efficient approximate algorithms with guarantees

-\̈́

diNo 220

Insights

Approximate state-of-the-art techniques for high-d vectors are not practical:

-\``_...___.

diNo 221

Insights

Approximate state-of-the-art techniques for high-d vectors are not practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

-\``_...___.

diN• 222

Insights

Approximate state-of-the-art techniques for high-d vectors are not practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

kNNG-based techniques slow indexing, difficult to tune, in-memory, no guarantees

Insights

Approximate state-of-the-art techniques for high-d vectors are not practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

kNNG-based techniques slow indexing, difficult to tune, in-memory, no guarantees

Quantization-based techniques slow indexing, difficult to tune, no guarantees

-\``_...___.

 $d \mathbb{N} = 22$

Insights

Approximate state-of-the-art techniques for high-d vectors are not practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

kNNG-based techniques slow indexing, difficult to tune, in-memory, no guarantees

Quantization-based techniques slow indexing, difficult to tune, no guarantees

All suffer a serious limitation: accuracy determined during <u>index-building</u> & query answering

Recommendations for approx. techniques $\int_{-\frac{1}{3}}^{\frac{1}{3}}$

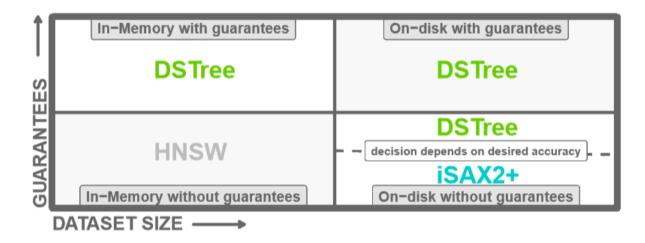
Data series approaches are the overall winners!

The only exception is HNSW for in-memory ng-approximate queries using an existing index

Recommendations

divo 226

Scenario: Answering a query workload using an existing index



Al and Similarity Search

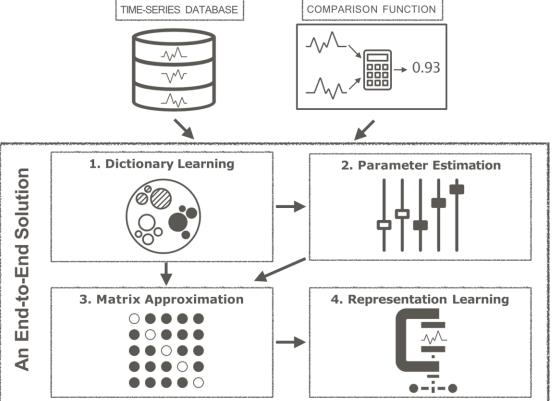
Echihabi, Palpanas - MDM 2022

AI and Similarity Search

- Representation Learning
 - Learned summarizations for data series
- Search and Indexing
 - Learned indexes
 - Similarity search on deep network embeddings

• GRAIL

- learns representations that preserve a user-defined comparison function
- of for a given comparison function:
 - extracts landmark series using clustering
 - optimizes parameters
 - exploits approximations for kernel methods to construct representations by expressing each series as a combination of the landmark series

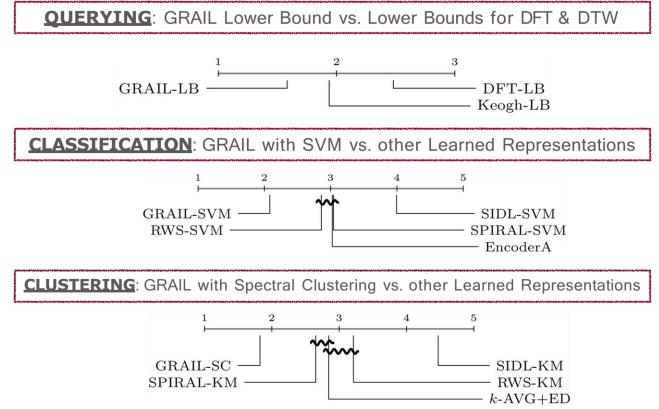


Paparrizos -PVLDB'<u>19</u>

Publications

• GRAIL

• uses the learned representations for querying, classification, clustering, ...



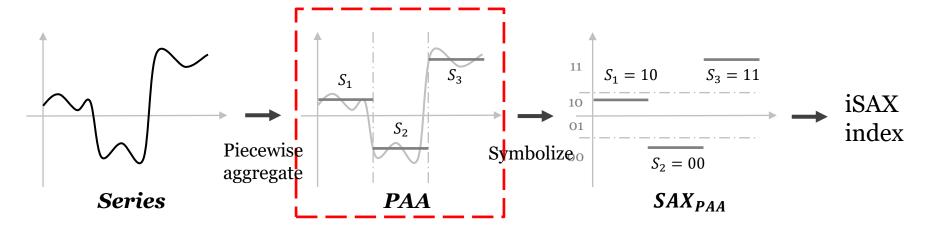
diNo 231

Paparrizos -PVLDB'19

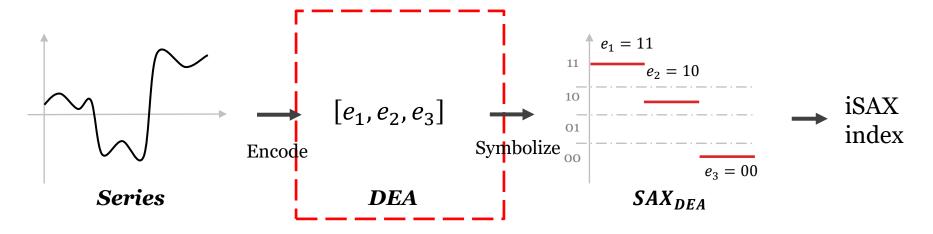
Publications

- Series Approximation Network (SEAnet)
 - novel autoencoder architecture
 - learns deep embedding approximations
 - uses those for similarity search

- Series Approximation Network (SEAnet)
 - novel autoencoder architecture
 - learns deep embedding approximations
 - uses those for similarity search



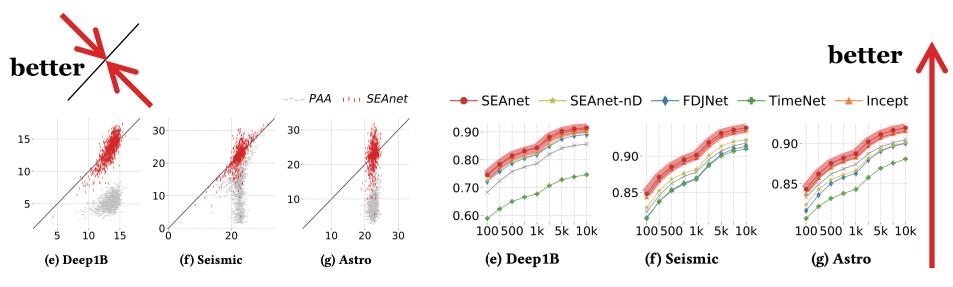
- Series Approximation Network (SEAnet)
 - novel autoencoder architecture
 - learns deep embedding approximations
 - uses those for similarity search



Publications Wang - KDD'21

- Series Approximation Network (SEAnet)
 - is an exponentially dilated ResNet architecture + Sum of Squares regularization
 - minimizes
 - reconstruction error
 - difference between distance of two vectors in embedded space and distance in original space

- Series Approximation Network (SEAnet)
 - is an exponentially dilated ResNet architecture + Sum of Squares regularization
 - minimizes
 - reconstruction error
 - difference between distance of two vectors in embedded space and distance in original space



diNo 236

Wang - KDD'21

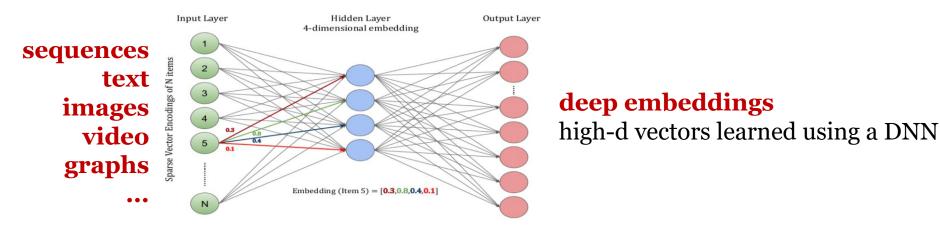
Publications

- Search and Indexing
 - Problem:
 - Sequence similarity search is hard
 - Massive datasets and high dimensionality in 100s-1000s
 - Sophisticated indexing structures and search algorithms
 - Solutions:
 - Learned Indexes
 - Improve search efficiency using deep learning
 - Indexing for learned embeddings

diN• 237

- Learned Indexes:
 - Main idea: replace an index with a learned model
 - One-dimensional learned indexes
 - Seminal work: The Case for Learned Indexes
 - Multi-dimensional indexes
 - Exhaustive tutorial on this topic at SIGSPATIAL'20: <u>https://www.cs.purdue.edu/homes/aref/learned-indexes-tutorial.html</u>
 - Some initial attempts for similarity search
 - Main challenges for multi-dimensional indexes:
 - How to sort the data?
 - How to correct prediction errors?
 - Which ML model to choose?
 - How to store the data?
 - How to learn indexes specifically for (the high-d) sequences?

• Indexing Deep Network Embeddings (DNE)

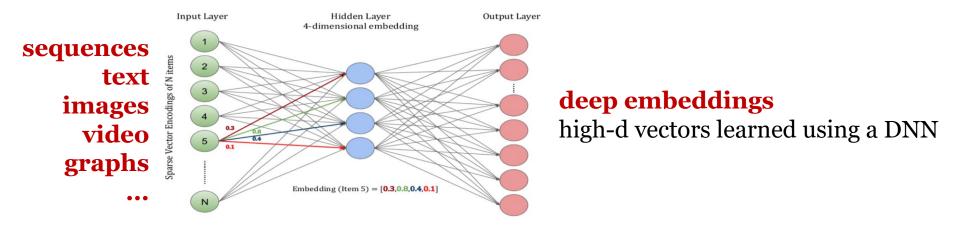


Publications

Echihabi-

PVLDB'19

Indexing Deep Network Embeddings (DNE)



- Data series techniques provide effective/scalable similarity search over DNE
- They outperform hashing-based, quantization-based inverted indexes and kNN graphs on many scenarios

Publications

Echihabi-

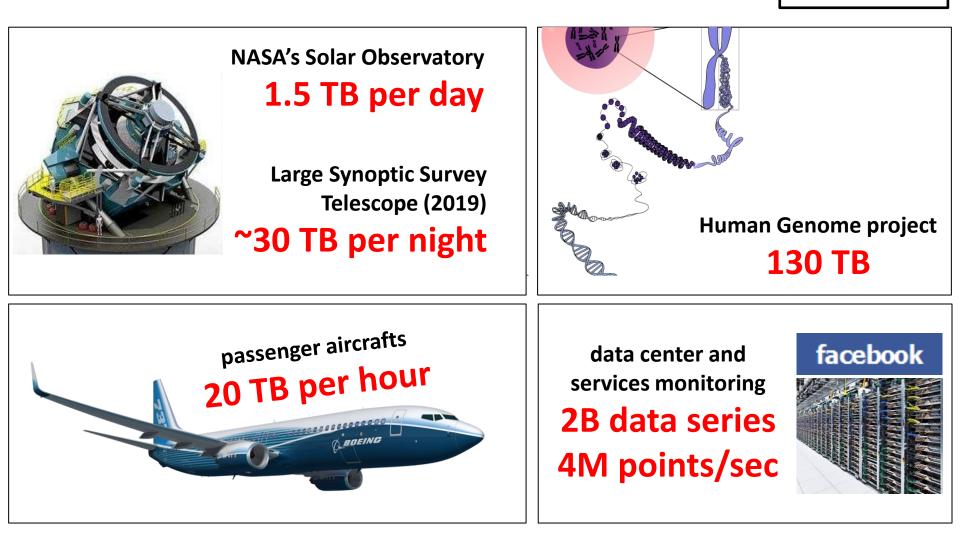
PVLDB'19

Challenges and Open Problems

Challenges and Open Problems

- we are still far from having solved the problem
- several challenges remain in terms of
 - usability, ease of use
 - scalability, distribution
 - benchmarking
- these challenges derive from modern data series applications

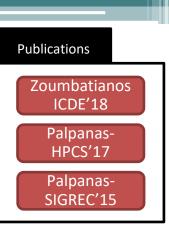
Massive Data Series Collections



Challenges and Open Problems Outline

- sequence management system
- benchmarking
- interactive analytics
- general high-dimensional vectors
- deep learning

Management System

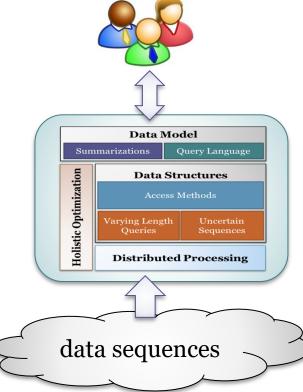


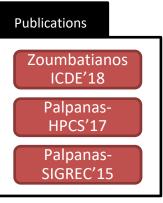
diNo 245

"enable practitioners and non-expert users to easily and efficiently manage and analyze massive data series collections"

Management System

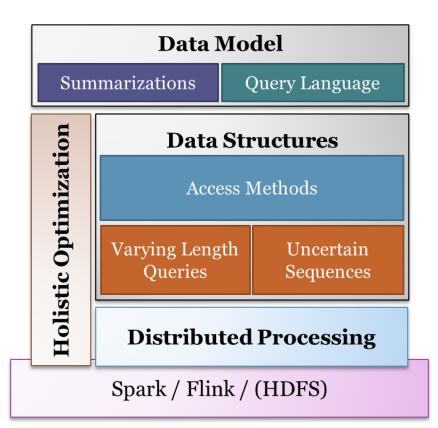
- Big Sequence Management System
 - general purpose data series management system

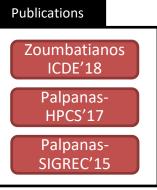




Management System

• Big Sequence Management System





Management System

• Big Sequence Management System

Data Model								
narizati	or	Scenarios						
u ===		Dataset	Idx	Exact 100	Idx+ Exact 100	Idx+ Exact 10K	Exact Easy-20	Exact Hard-20
		Small	A	D	S	D	D	D
Ň		Large	A	D	S	D	D	D
S	HDD	Astro	A	U	U	V	V	U
		Deep1B	A	U	U	U	D	U
		SALD	A	D		D	D	D
Varyin	g	Seismic	A	D	S	D	D	U
		Small	S	D	I	D	Ι	D
		Large	S	D		D		D
	SD E	Astro	Ι	V	V	V	V	
		Deep1B	S	Ι	Ι	V		U
Holistr		SALD	S	Ι	Ι		I	
		Seismic	A				D	
Spark	Spark / A: ADS D: DSTree, I: iSAX2+ S: SFA U: UCR-Suite V: VA+file							

Echihabi, Palpanas - MDM 2022

BestNeighbor:

Choosing Indexing Method for Given Dataset

method to choose between DPiSAX and ParSketch

- based on data power spectrum
 - iSAX less efficient than ParSketch for high-frequency data
- BestNeighbor uses dataset characteristics (Fourier coefficients), and chooses
 - ParSketch: if there is substantial power at least up to the 30th coefficient
 - DPiSAX: otherwise (most of energy in low order Fourier coefficients) http://im
- how do these results extend to
 - other data characteristics?
 - more indexing methods?

. . .

take hardware specifications into consideration?

Challenges and Open Problems Outline

- sequence management system
- benchmarking
- interactive analytics
- general high-dimensional vectors
- deep learning

Previous Studies

evaluate performance of indexing methods using random queries

• chosen from the data (with/without noise)

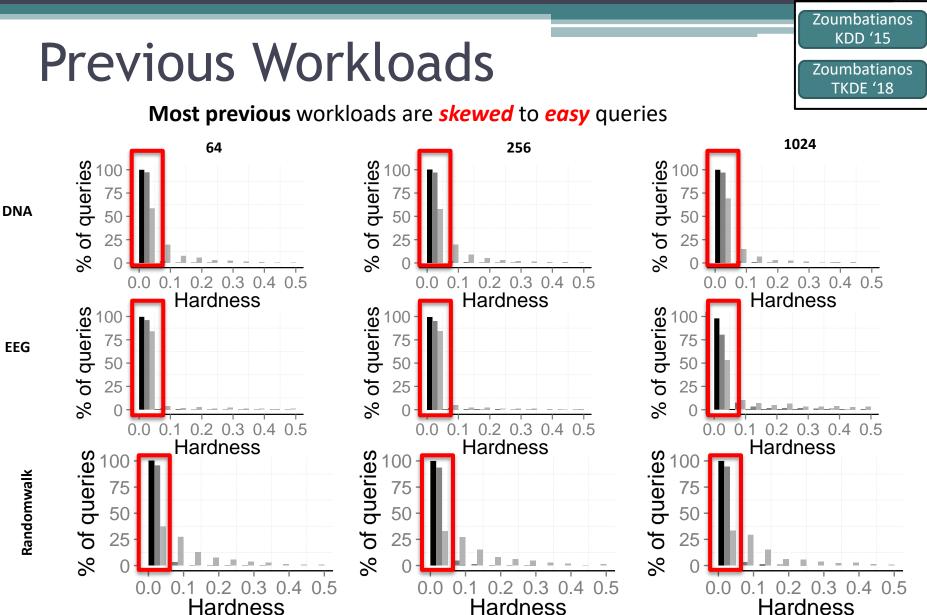
div

Previous Studies With or without noise

noise $\sqrt{}$

diNo

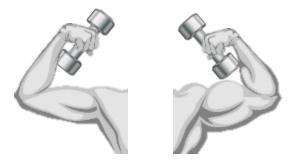
Echihabi, Palpanas - MDM 2022



Publications

Benchmark Workloads

If all queries are **easy** all indexes look **good**



If all queries are **hard** all indexes look **bad**

need methods for generating queries of varying hardness

Echihabi, Palpanas - MDM 2022

Summary

Pros:

Theoretical background

Methodology for characterizing NN queries for data series indexes

Nearest neighbor query workload generator Designed to stress-test data series indexes at varying levels of difficulty

Cons:

Time complexity

Need new approach to scale to very large datasets

Echihabi, Palpanas - MDM 2022

Publications

Zoumbatianos KDD '15

Zoumbatianos

TKDE '18

Challenges and Open Problems Outline

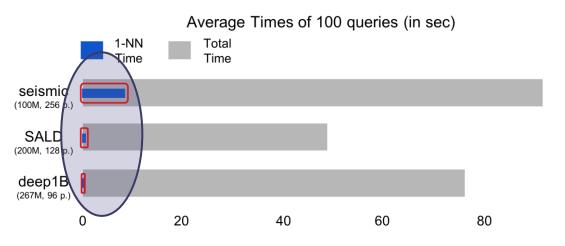
- sequence management system
- benchmarking
- interactive analytics
- parallelization and distribution
- general high-dimensional vectors
- deep learning

Interactive Analytics?

- data series analytics is computationally expensive
 very high inherent complexity
- may not always be possible to remove delays
 - but could try to hide them!

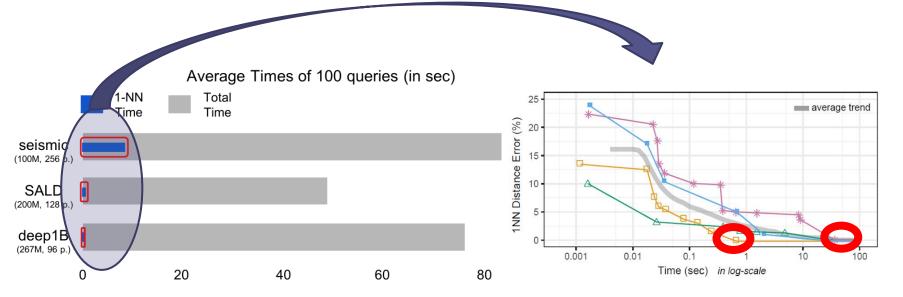
 $di N_0$ 263

- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution



Publications

- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution

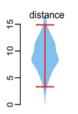


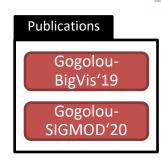
Gogolou-

BigVis'19

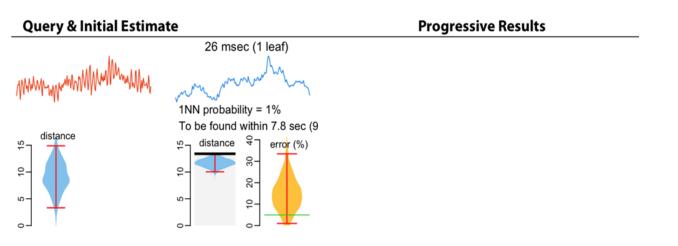
- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution
 - provide bounds on the errors (of the intermediate results) along the way

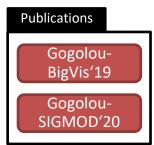
Query & Initial Estimate



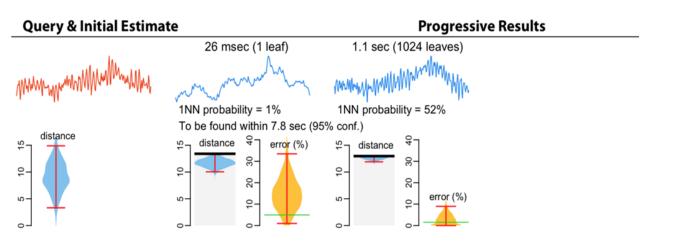


- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution
 - provide bounds on the errors (of the intermediate results) along the way



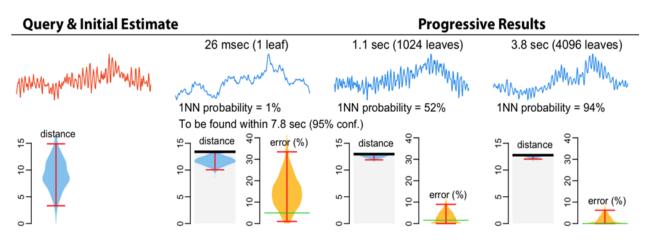


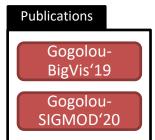
- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution
 - provide bounds on the errors (of the intermediate results) along the way



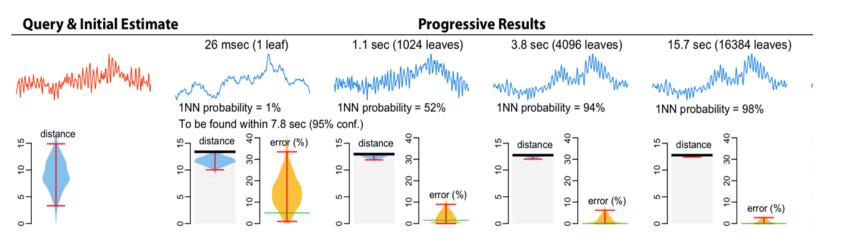


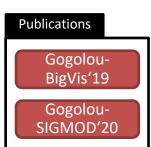
- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution
 - provide bounds on the errors (of the intermediate results) along the way



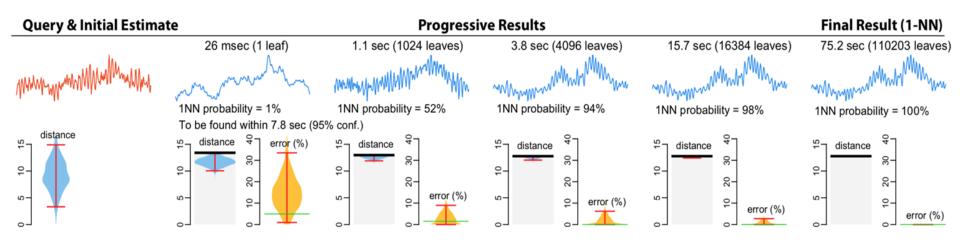


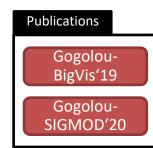
- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution
 - provide bounds on the errors (of the intermediate results) along the way





- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution
 - provide bounds on the errors (of the intermediate results) along the way





diNo

Publications Gogolou-Vis'18

diN• 272

- interaction with users offers new opportunities
 - progressive answers
 - produce intermediate results
 - iteratively converge to final, correct solution
 - provide bounds on the errors (of the intermediate results) along the way
- several exciting research problems in intersection of visualization and data management
 - *frontend*: HCI/visualizations for querying/results display
 - backend: efficiently supporting these operations

Challenges and Open Problems Outline

- sequence management system
- benchmarking
- interactive analytics
- general high-dimensional vectors
- deep learning

Echihabi-WIMS'20

Publications

Data Series vs. high-d Vectors

- two sides of the same(?) coin
 - data series as multidimensional points
 - for a specific ordering of the dimensions
- data series techniques are the overall winners, even on general high-d vector data
- several new applications (and challenges) for data series similarity search techniques!
 - design efficient techniques for ng-approximate search
 - devise efficient stopping conditions for δε-approximate search

Connections to Deep Learning

- data series indexing for deep embeddings
 - deep embeddings are high-d vectors
 - data series techniques provide effective/scalable similarity search
- deep learning for summarizing data series
 - eg, autoencoders can learn efficient data series summaries
- deep learning for designing index data structures
 - learn an index for similarity search
- deep learning for query optimization
 - search space is vast
 - learn optimization function

Overall Conclusions

- data series is a very **common** data type
 - across several different domains and applications
- complex data series analytics are challenging
 - have very high complexity
 - efficiency comes from data series management/indexing techniques
- need for Sequence Management System
 - optimize operations based on data/hardware characteristics
 - transparent to user
- several exciting research opportunities

thank you!

google: Karima Echihabi Themis Palpanas

visit: http://nestordb.com

- Ramer, U. (1972). An iterative procedure for the polygonal approximation of planar curves. *Computer Graphics and Image Processing*. 1: pp. 244-256.
- Douglas, D. H. & Peucker, T. K.(1973). Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature. *Canadian Cartographer*, Vol. 10, No. 2, December. pp. 112-122.
- Duda, R. O. and Hart, P. E. 1973. Pattern Classification and Scene Analysis. Wiley, New York.
- Pavlidis, T. (1976). Waveform segmentation through functional approximation. *IEEE Transactions on Computers*.
- Ishijima, M., et al. (1983). Scan-Along Polygonal Approximation for Data Compression of Electrocardiograms. *IEEE Transactions on Biomedical Engineering*. BME-30(11):723-729.
- N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient and robust access method for points and rectangles. In SIGMOD, pages 322–331, 1990.
- C. Faloutsos, M. Ranganathan, & Y. Manolopoulos. Fast Subsequence Matching in Time-Series Databases. In Proc. ACM SIGMOD Int'l Conf. on Management of Data, pp 419–429, 1994.
- McKee, J.J., Evans, N.E., & Owens, F.J. (1994). Efficient implementation of the Fan/SAPA-2 algorithm using fixed point arithmetic. *Automedica*. Vol. 16, pp 109-117.
- Koski, A., Juhola, M. & Meriste, M. (1995). Syntactic Recognition of ECG Signals By Attributed Finite Automata. *Pattern Recognition*, 28 (12), pp. 1927-1940.
- Seshadri P., Livny M. & Ramakrishnan R. (1995): SEQ: A Model for Sequence Databases. ICDE 1995: 232-239
- Shatkay, H. (1995). Approximate Queries and Representations for Large Data Sequences. *Technical Report cs-95-03*, Department of Computer Science, Brown University.
- Shatkay, H., & Zdonik, S. (1996). Approximate queries and representations for large data sequences. *Proceedings of the 12th IEEE International Conference on Data Engineering*. pp 546-553.
- Vullings, H.J.L.M., Verhaegen, M.H.G. & Verbruggen H.B. (1997). ECG Segmentation Using Time-Warping. *Proceedings of the 2nd International Symposium on Intelligent Data Analysis*.

- Keogh, E., & Smyth, P. (1997). A probabilistic approach to fast pattern matching in time series databases. *Proceedings of the 3rd International Conference of Knowledge Discovery and Data Mining*. pp 24-20.
- P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. Proceedings of VLDB'97, pp 426–435.
- Heckbert, P. S. & Garland, M. (1997). Survey of polygonal surface simplification algorithms, Multiresolution Surface Modeling Course. *Proceedings of the 24th International Conference on Computer Graphics and Interactive Techniques*.
- Piotr Indyk, Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. STOC 1998.
- Qu, Y., Wang, C. & Wang, S. (1998). Supporting fast search in time series for movement patterns in multiples scales. *Proceedings of the* 7th *International Conference on Information and Knowledge Management.*
- Keogh, E., & Pazzani, M. (1998). An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. *Proceedings of the 4th International Conference of Knowledge Discovery and Data Mining*. pp 239-241, AAAI Press.
- Hunter, J. & McIntosh, N. (1999). Knowledge-based event detection in complex time series data. *Artificial Intelligence in Medicine*. pp. 271-280. Springer.
- Keogh, E. & Pazzani, M. (1999). Relevance feedback retrieval of time series data. *Proceedings of the 22th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval.*
- P. Ciaccia and M. Patella. PAC Nearest Neighbor Queries: Approximate and Controlled Search in HighDimensional and Metric Spaces. In ICDE, pages 244–255, 2000.
- H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi. Vector Approximation Based Indexing for Non-uniform High Dimensional Data Sets. In CIKM, pp 202–209, 2000.

- Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., & Allan, J. (2000). Mining of Concurent Text and Time Series. *Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining*. pp. 37-44.
- Wang, C. & Wang, S. (2000). Supporting content-based searches on time Series via approximation. *Proceedings of the 12th International Conference on Scientific and Statistical Database Management.*
- Keogh, E., Chu, S., Hart, D. & Pazzani, M. (2001). An Online Algorithm for Segmenting Time Series. In *Proceedings of IEEE International Conference on Data Mining*. pp 289-296.
- Ge, X. & Smyth P. (2001). Segmental Semi-Markov Models for Endpoint Detection in Plasma Etching. To appear in *IEEE Transactions on Semiconductor Engineering*.
- Eamonn J. Keogh, Shruti Kasetty: On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. Data Min. Knowl. Discov. 7(4): 349-371 (2003)
- T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, W. Truppel (2004). Online Amnesic Approximation of Streaming Time Series. In *ICDE* . Boston, MA, USA, March 2004.
- E. Keogh. Tutorial on Data Mining and Machine Learning in Time Series Databases. KDD 2004.
- Richard Cole, Dennis E. Shasha, Xiaojian Zhao: Fast window correlations over uncooperative time series. KDD 2005: 743-749
- Jessica Lin, Eamonn J. Keogh, Li Wei, Stefano Lonardi: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2): 107-144 (2007)
- Jin Shieh, Eamonn J. Keogh: iSAX: indexing and mining terabyte sized time series. KDD 2008: 623-631
- Themis Palpanas, Michail Vlachos, Eamonn J. Keogh, Dimitrios Gunopulos: Streaming Time Series Summarization Using User-Defined Amnesic Functions. IEEE Trans. Knowl. Data Eng. 20(7): 992-1006 (2008)
- Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, Eamonn J. Keogh: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2): 1542-1552 (2008)

- M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISAPP International Conference on Computer Vision Theory and Applications, pages 331–340, 2009
- Alessandro Camerra, Themis Palpanas, Jin Shieh, Eamonn J. Keogh: iSAX 2.0: Indexing and Mining One Billion Time Series. ICDM 2010: 58-67
- S. Kashyap and P. Karras. Scalable kNN search on vertically stored time series. In KDD, pages 1334–1342 (2011)
- P. Schafer and M. Hogvist. Sfa: A symbolic fourier approximation and index for similarity search in high dimensional datasets. EDBT Conference 2012: 516–527
- T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh. Searching and mining trillions of time series subsequences under dynamic time warping. In KDD, pages 262–270. ACM, 2012.
- Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A data-adaptive and dynamic segmentation index for whole matching on time series. PVLDB, 6(10):793–804, 2013.
- M. Norouzi and D. J. Fleet. Cartesian K-Means. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR '13, pages 3017–3024, 2013
- Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, Eamonn J. Keogh: Beyond one billion time series: indexing and mining very large time series collections with iSAX2+. Knowl. Inf. Syst. 39(1): 123-151 (2014)
- Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: Solving c-approximate Nearest Neighbor Queries in High Dimensional Euclidean Space with a Tiny Index. PVLDB, 8(1):1–12, 2014
- Kostas Zoumpatianos, Stratos Idreos, Themis Palpanas: Indexing for interactive exploration of big data series. SIGMOD Conference 2014: 1555-1566
- Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Approximate nearest neighbor algorithm based on navigable small world graphs. Information Systems (IS), 45:61 68, 2014.

- T. Ge, K. He, Q. Ke, and J. Sun. Optimized Product Quantization. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 36(4):744–755, Apr. 2014
- A. Babenko and V. Lempitsky. The Inverted MultiIndex. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 37(6):1247–1260, June 2015.
- Kostas Zoumpatianos, Stratos Idreos, Themis Palpanas: RINSE: Interactive Data Series Exploration with ADS+. Proc. VLDB Endow. 8(12): 1912-1915 (2015)
- Kostas Zoumpatianos, Yin Lou, Themis Palpanas, Johannes Gehrke: Query Workloads for Data Series Indexes. KDD 2015: 1603-1612
- Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-aware Locality-sensitive Hashing for Approximate Nearest Neighbor Search. PVLDB, 9(1):1–12, 2015
- Themis Palpanas: Big Sequence Management: A glimpse of the Past, the Present, and the Future. SOFSEM 2016: 63-80
- Kostas Zoumpatianos, Stratos Idreos, Themis Palpanas: ADS: the adaptive data series index. VLDB J. 25(6): 843-866 (2016)
- Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs. CoRR, abs/1603.09320, 2016
- Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Themis Palpanas: DPiSAX: Massively Distributed Partitioned iSAX. ICDM 2017: 1135-1140
- A. Mueen, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan, C. Gupta, and E. Keogh. The Fastest Similarity Search Algorithm for Time Series Subsequences under Euclidean Distance, August 2017. http://www.cs.unm.edu/~mueen/ FastestSimilaritySearch.html.
- Katsiaryna Mirylenka, Michele Dallachiesa, Themis Palpanas: Correlation-Aware Distance Measures for Data Series. EDBT 2017: 502-505

- Katsiaryna Mirylenka, Michele Dallachiesa, Themis Palpanas: Data Series Similarity Using Correlation-Aware Measures. SSDBM 2017: 11:1-11:12
- G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, S. Athanasiou, and S. Skiadopoulos. Indexing geolocated time series data. In SIGSPATIAL, pages 19:1–19:10, 2017.
- G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, S. Athanasiou, S. Skiadopoulos, Map-based visual exploration of geolocated time series, in: Proceedings of the Workshops of the EDBT/ICDT 2018 Joint Conference (EDBT/ICDT 2018), Vienna, Austria, March 26, 2018., 2018, pp. 92–99.
- Kostas Zoumpatianos, Themis Palpanas: Data Series Management: Fulfilling the Need for Big Sequence Analytics. ICDE 2018: 1677-1678
- A. Arora, S. Sinha, P. Kumar, and A. Bhattacharya. HD-index: Pushing the Scalability-accuracy Boundary for Approximate kNN Search in High-dimensional Spaces. PVLDB, 11(8):906–919, 2018
- Michele Linardi, Themis Palpanas: ULISSE: ULtra Compact Index for Variable-Length Similarity Search in Data Series. ICDE 2018: 1356-1359
- J. Wang, T. Zhang, j. song, N. Sebe, and H. T. Shen. A survey on learning to hash. TPAMI, 40(4): 769-790 (2018).
- Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis Palpanas, Johannes Gehrke: Generating data series query workloads. VLDB J. 27(6): 823-846 (2018)
- Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, Themis Palpanas: Coconut: A Scalable Bottom-Up Approach for Building Data Series Indexes. Proc. VLDB Endow. 11(6): 677-690 (2018)
- Cagatay Turkay, Nicola Pezzotti, Carsten Binnig, Hendrik Strobelt, Barbara Hammer, Daniel A. Keim, Jean-Daniel Fekete, Themis Palpanas, Yunhai Wang, Florin Rusu: Progressive Data Science: Potential and Challenges. CoRR abs/1812.08032 (2018)
- Michele Linardi, Themis Palpanas: Scalable, Variable-Length Similarity Search in Data Series: The ULISSE Approach. Proc. VLDB Endow. 11(13): 2236-2248 (2018)
- Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, Houda Benbrahim: The Lernaean Hydra of Data Series Similarity Search: An Experimental Evaluation of the State of the Art. Proc. VLDB Endow. 12(2): 112-127 (2018)

- Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis_Polyzotis: The Case for Learned Index Structures. SIGMOD Conference 2018: 489-504
- Botao Peng, Panagiota Fatourou, Themis Palpanas: ParIS: The Next Destination for Fast Data Series Indexing and Query Answering. BigData 2018: 791-800
- D.E. Yagoubi, R. Akbarinia, B. Kolev, O. Levchenko, F. Masseglia, P. Valduriez, D. Shasha. ParCorr: efficient parallel methods to identify similar time series pairs across sliding windows. Data Mining and Knowledge Discovery (DMKD), 2018
- Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, Themis Palpanas: Coconut Palm: Static and Streaming Data Series Exploration Now in your Palm. SIGMOD Conference 2019: 1941-1944
- Themis Palpanas, Volker Beckmann: Report on the First and Second Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48(3): 36-40 (2019)
- Oleksandra Levchenko, Boyan Kolev, Djamel Edine Yagoubi, Dennis E. Shasha, Themis Palpanas, Patrick Valduriez, Reza Akbarinia, Florent Masseglia: Distributed Algorithms to Find Similar Time Series. ECML/PKDD (3) 2019: 781-785
- Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, Themis Palpanas: Coconut: sortable summarizations for scalable indexes over static and streaming data series. VLDB J. 28(6): 847-869 (2019)
- Danila Piatov, Sven Helmer, Anton Dignös, Johann Gamper: Interactive and space-efficient multidimensional time series subsequence matching. Inf. Syst. 82: 121-135 (2019)
- Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, Houda Benbrahim: Return of the Lernaean Hydra: Experimental Evaluation of Data Series Approximate Similarity Search. Proc. VLDB Endow. 13(3): 403-420 (2019)
- C. Fu, C. Xiang, C. Wang, and D. Cai. Fast Approximate Nearest Neighbor Search with the Navigating Spreading-out Graph. PVLDB, 12(5):461–474, 2019.

- Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, Anastasia Bezerianos: Comparing Similarity Perception in Time Series Visualizations. IEEE Trans. Vis. Comput. Graph. 25(1): 523-533 (2019)
- John Paparrizos, Michael J. Franklin: GRAIL: Efficient Time-Series Representation Learning. Proc. VLDB Endow. 12(11): 1762-1777 (2019)
- Jiaye Wu, Peng Wang, Ningting Pan, Chen Wang, Wei Wang, Jianmin Wang: KV-Match: A Subsequence Matching Approach Supporting Normalization and Time Warping. ICDE 2019: 866-877
- Liang Zhang, Noura Alghamdi, Mohamed Y. Eltabakh, Elke A. Rundensteiner: TARDIS: Distributed Indexing Framework for Big Time Series Data. ICDE 2019: 1202-1213
- Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis Palpanas, Spiros Athanasiou, Spiros Skiadopoulos: Local Pair and Bundle Discovery over Co-Evolving Time Series. SSTD 2019
- Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis Palpanas, Spiros Athanasiou, Spiros Skiadopoulos: Local Similarity Search on Geolocated Time Series Using Hybrid Indexing. SIGSPATIAL/GIS 2019
- G. Chatzigeorgakidis, K. Patroumpas, D. Skoutas, S. Athanasiou, and S. Skiadopoulos. Visual exploration of geolocated time series with hybrid indexing. Big Data Research, 15:12–28, 2019.
- Chatzigeorgakidis, G., Patroumpas, K., Skoutas, D. and Athanasiou, S. A Visual Explorer for Geolocated Time Series. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems. 2020
- Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Anastasia Bezerianos, Themis Palpanas: Data Series Progressive Similarity Search with Probabilistic Quality Guarantees. SIGMOD Conference 2020: 1857-1873
- Themis Palpanas. Evolution of a Data Series Index The iSAX Family of Data Series Indexes. CCIS, 1197 (2020)

- Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Themis Palpanas: Massively Distributed Time Series Indexing and Querying. IEEE Trans. Knowl. Data Eng. 32(1): 108-120 (2020)
- Botao Peng, Panagiota Fatourou, Themis Palpanas: MESSI: In-Memory Data Series Indexing. ICDE 2020: 337-348
- Kefeng Feng, Peng Wang, Jiaye Wu, Wei Wang: L-Match: A Lightweight and Effective Subsequence Matching Approach. IEEE Access 8: 71572-71583 (2020)
- Abdullah Al-Mamun, Hao Wu, Walid G. Aref: A Tutorial on Learned Multi-dimensional Indexes. <u>SIGSPATIAL/GIS 2020</u>: 1-4
- Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang, Rong Kang, Julian Feinauer, Kevin Mcgrail, Peng Wang, Diaohan Luo, Jun Yuan, Jianmin Wang, Jiaguang Sun: Apache IoTDB: Timeseries database for Internet of Things. Proc. VLDB Endow. 13(12): 2901-2904 (2020)
- Botao Peng, Panagiota Fatourou, Themis Palpanas. Paris+: Data series indexing on multi-core architectures. TKDE, 2020
- Michele Linardi, Themis Palpanas. Scalable Data Series Subsequence Matching with ULISSE. VLDBJ 2020
- John Paparrizos, Chunwei Liu, Aaron J. Elmore, Michael J. Franklin: Debunking Four Long-Standing Misconceptions of Time-Series Distance Measures. SIGMOD Conference 2020
- Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. Scalable Machine Learning on High-Dimensional Vectors: From Data Series to Deep Network Embeddings. In WIMS, 2020
- Oleksandra Levchenko, Boyan Kolev, Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseflia, Themis Palpanas, Dennis Shasha, Patrick Valduriez. BestNeighbor: Efficient Evaluation of kNN Queries on Large Time Series Databases. Knowledge and Information Systems (KAIS), 2020

- Botao Peng, Panagiota Fatourou, Themis Palpanas. SING: Sequence Indexing Using GPUs. ICDE, 2021
- Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis Palpanas, Spiros Athanasiou, Spiros Skiadopoulos: Twin Subsequence Search in Time Series. EDBT 2021
- Botao Peng, Panagiota Fatourou, Themis Palpanas. Fast Data Series Indexing for In-Memory Data. VLDBJ 2021
- Qitong Wang, Themis Palpanas: Deep Learning Embeddings for Data Series Similarity Search. KDD 2021
- G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, T. Palpanas, S. Athanasiou and S. Skiadopoulos: Efficient Range and kNN Twin Subsequence Search in Time Series. TKDE 2022
- Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas, Houda Benbrahim: Hercules Against Data Series Similarity Search. PVLDB 2022

References (time series management systems)

- InfluxDB: <u>https://www.influxdata.com/</u>
- Timescale: <u>https://www.timescale.com</u>
- Beringei: <u>https://github.com/facebookarchive/beringei</u>
- Druid: <u>https://druid.apache.org</u>
- Prometheus: <u>https://Prometheus.io</u>
- CrateDB: <u>https://crate.io</u>
- IoTDb: <u>https://iotdb.apache.org</u>
- OpenTSDB: <u>http://opentsdb.net/</u>
- QuasarDB: <u>https://www.quasardb.net/</u>
- Timestream: <u>https://aws.amazon.com/timestream/</u>
- Apache IoTDB: <u>https://iotdb.apache.org/</u>
- nestor: <u>http://nestordb.com/</u>