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Streaming Data Collection with a Private
Sketch-based Protocol

Ying Li, Xiaodong Lee, Botao Peng, Themis Palpanas, Jingan Xue

Abstract—Data stream collection is critical to analyze service
conditions and detect anomalies in time, especially in Internet
of Things. However, it may undermine the individual privacy.
Local differential privacy (LDP) has recently become a popular
privacy-preserving technique protecting users’ privacy. However,
most of them are still limited to the assumption of one-item
collection, resulting in poor utility when extended to the multi-
item collection from a very large domain. This paper proposes a
private streaming data collection framework, PSF, which takes
advantage of sketches. Combining the proposed background
information and a decode-first collection-side workflow, the
framework improves the utility by reducing the errors introduced
by the sketching algorithm and the privacy budget utilization
when collecting multiple items. We analytically prove the superior
accuracy and privacy characteristics of PSF. In order to support
specific computing tasks, we build two private protocols based on
PSF, PrivSketch and PrivSketch+, aiming at frequency estimation
and mean estimation, respectively. We demonstrate the utility of
PrivSketch and PrivSketch+ theoretically, and also evaluate them
experimentally. Our evaluation, with several diverse synthetic
and real datasets, demonstrates that PrivSketch is 1-3 orders
of magnitude better than the competitors in terms of utility in
both frequency estimation and frequent item estimation, while
being up to ∼100x faster. PrivSketch+ performs ∼4 orders of
magnitude better than advanced solutions, such as Piecewise
Mechanism (PM) and Hybrid Mechanism (HM), under a limited
privacy budget.

Index Terms—LDP, Sketch, Frequency estimation, Mean esti-
mation.

I. INTRODUCTION

Motivation. Privacy protection issues in data stream col-
lection have attracted attention, typically in Internet of
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Things (IoT) [1]–[3]. The data stream collection has become
widespread for the purpose of analysis and services [4]–
[6]. For instance, by gathering passive DNS traffic, security
service providers can figure out domains related with domain
generation algorithms (DGA) that are usually used in botnets,
and then attach them to blacklists to block access to these
domains [7]. Although such an approach results in more
convenient and secure services for users, it may undermine
their privacy [2], [3]. For example, domain names in the DNS
traffic reflect the individuals’ network activities, including the
websites that the users visit, which can expose the users’ daily
routines and interests. Given the increased awareness regarding
privacy protection, several regulations and laws have been
promulgated, such as the GDPR [8] in the European Union and
the Personal Information Protection Law [9] in China, which
further restrict data collection without privacy protection.

Local Differential Privacy (LDP) has emerged as a widely
adopted technique for preserving individual privacy during
data collection. Data is locally perturbed by users before being
transmitted, eliminating the need for trust in the collector.
Without knowing the actual values of individual users, the
collector can obtain approximate statistics, mitigating the risk
of privacy breaches. In LDP, a parameter denoted as ϵ is
used to quantify the amount of perturbation applied to the
data. This parameter plays a crucial role in determining the
level of privacy protection and the utility achieved by the
privacy-preserving algorithm. LDP does not rely on any trust,
leading several technology companies (such as Apple [10],
Google [11], Microsoft [12]) to adopt it in their applications.

Utility Problem. Several research have dedicated efforts to
developing LDP solutions for private data collection. However,
these approaches often encounter limitations when applied to
the collection of data streams, due to the following reasons:
(i) The data stream is heterogeneous among different users.
The heterogeneity refers to the varying size of data items
generated by different users, also known as data length. Some
works [12]–[14] assume to collect only one item in an interval,
which is inconsistent with the real-world situation in data
stream collection. Some works [15]–[17] represent the data
stream as set-valued data and unify the data size by Padding
and Sampling [15], where the unified size L needs to be prede-
fined or estimated. However, the stream generated in different
intervals by one user can also be heterogeneous, which means
the predefined or estimated L in a collection is not universal
and additional estimation is required for each collection, thus
affecting the efficiency. (ii) The domain of items in data
streams is often vast, such as URLs and IP addresses. The large
cardinality of these domains results in high computation and
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communication expenses, along with increased perturbation
errors. Although several existing research have focused on
frequency estimation [16], [17] and mean estimation [14] for
multi-dimensional data collection, these approaches are still
not suitable for large-cardinality domains.

The sketching technique is among the most widely used
to provide an efficient data structure for streaming data pro-
cessing, which can also play an important role in designing
a practical LDP protocol for data stream collection. The
Private Count-Mean Sketch (PCMS) algorithm, introduced
by Apple [10], demonstrates the effectiveness of sketches in
reducing the large cardinality under LDP. This is particularly
useful in scenarios where only a small fraction of items from
a vast domain are accessed by individual users, i.e., the data of
each user is sparse. In addition, sketches have the additional
advantage of unifying the user data length, thus avoiding the
extra cost introduced by Padding and Sampling [15]. However,
the PCMS algorithm is limited to data collection for single
items. When extending it to support data stream collection,
several challenges arise: (i) The sketching algorithm under
LDP introduces extra errors which can not be disregarded. The
collision errors in sketches increase with the size of each user’s
dataset because the probability of data hashed to the same po-
sition positively correlates with the size of dataset [18]. When
the collector collects perturbed sketches from users under LDP,
all these sketches are aggregated directly, similar to encode
all data into a single sketch, resulting in a rise in collisions.
Therefore, a solution is required to lessen collisions without
resorting to giant sketches, which would raise communication
costs. (ii) Without an upper bound on the amount of data
generated by users, the number of different counters between
two users can be as large as the size of sketches. To preserve
user-level privacy, it is necessary to allocate the privacy budget
among the counters in the sketch. However, this allocation may
introduce significant inaccuracies and compromise the utility
of the collected data. So, to reduce estimation errors, efficient
privacy budget utilization is required.

Our solution. To meet the above challenges, we intro-
duce PSF, a privacy-preserving sketch-based framework for
data stream collection, aimed at achieving high utility. PSF
introduces a novel approach to encoding multiple items into
a single sketch, without unifying the size of items of each
user beforehand. An innovative workflow is introduced for
the collector-side under LDP, where the perturbed sketch is
decoded before aggregation and calibration. The workflow is
distinct from a conventional LDP protocol that aggregates and
calibrates first, thereby avoiding collision errors when directly
aggregating all perturbed local sketches. Furthermore, PSF
leverages the ordering matrix taken from the original sketch, in
order to protect each user’s sketch privacy while allowing the
collector to extract the minimum index information (cf. proof
in Section IV-D). This is the first effort to use background
information to improve utility, which effectively mitigates
the errors when estimating the minumum. Additionally, PSF
transmits reasonably accurate information with a constrained
budget for privacy by utilizing the sampling technique to
enhance the information utilization in the sketch. As a re-
sult, the error arising from uniformly allocating the privacy

budget is reduced. Overall, PSF enhances the utility of the
private data stream collection. Based on our framework, we
propose PrivSketch for the problem of frequency estimation,
and PrivSketch+ for the problem of mean estimation, in the
context of data streams. We demonstrate the effectiveness
of our designs both theoretically and experimentally. Our
private streaming data collection protocols used for frequency
and mean estimation form the fundamental technology for
data analysis. They can further aid in detecting anomalies,
monitoring traffic patterns, and identifying data trends. As
a result, these protocols hold great potential for widespread
application in various monitoring scenarios across different
domains, such as network security, transportation systems.

Contributions. A summary of our contributions1 is pre-
sented following.
• We design a novel private data collection framework,

PSF, for streaming data collection, which utilizes sketching
techniques. PSF is the first sketch-based privacy-preserving
framework that considers the errors introduced by the sketch-
ing algorithm. It adopts a different strategy from traditional
LDP: it decodes before aggregating, based on the analysis of
these errors. Additionally, to reduce the perturbation errors and
improve the utility, PSF leverages background information to
keep minimum index and employs the sampling technique to
improve information utilization. Based on PSF, we propose
PrivSketch and PrivSketch+, in order to perform frequency
and mean estimation, respectively, in data streams.
• We demonstrate that the utilization of the ordering matrix

as background information in PSF does not compromise the
privacy of individuals, through a rigorous analysis and proof
(cf. Section IV-D). Our work introduces a novel concept of the
indistinguishable input set, wherein the collector is unable to
differentiate any two values contained in the set. Our results
show that by incorporating appropriate additional background
information, the utility of LDP algorithms can be enhanced
without compromising the privacy of the users.
• We conducted comprehensive experiments to show the

effectiveness of our proposed solutions, PrivSketch and PrivS-
ketch+, on both synthetic and real datasets. In our experiments,
these solutions are compared with state-of-art algorithms.
Results demonstrate that PrivSketch exhibits significantly im-
proved utility compared to existing algorithms for frequency
estimation and frequent item estimation, with accuracy en-
hancements ranging from 1 to 3 orders of magnitude. Further-
more, the speed of PrivSketch is observed up to ∼100x faster.
When privacy-preserving requirements are strict (i.e., privacy
budget is small), PrivSketch+ performs about 4 orders of mag-
nitude better than its advanced mean estimation competitors,
Piecewise Mechanism (PM) and Hybrid Mechanism (HM).

II. BACKGROUND AND PROBLEM STATEMENT

A. Local Differential Privacy

Differential privacy (DP) [19] is a solid privacy-preserving
technology, of which privacy protection is quantified by pre-
cise mathematical proofs. DP assumes that the third-party

1A preliminary version of this work has appeared elsewhere [1].
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collector is trustworthy, i.e., the collector processes original
data from users without disclosing users’ data or using them
for malicious activities. However, third-party collectors in the
real world are sometimes linked to data breaches, due to at-
tacks or internal malicious behavior. Therefore, LDP [20] was
proposed, which does not rely on a trusted collector. Under
LDP, the data is perturbed before sending to the collector and
the original data remains locally. Its formal definition follows:

Definition 1 (ϵ-Local Differential Privacy [20]): A ran-
domized algorithm M satisfies ϵ-local differential privacy
(ϵ > 0), if and only if for any two input tuples x, x′ ∈ D
and output y, then Pr[M(x)=y]

Pr[M(x′)=y] ≤ eϵ.
Intuitively, the collector cannot infer the value of the original

data after perturbation, which means the input by the user
becomes indistinguishable from the collector. The degree of
indistinguishability is determined by the value of the privacy
budget ϵ. When ϵ = 0, the original value is entirely indistin-
guishable. The perturbation makes the data totally deviate from
the original value, with no utility. When ϵ becomes larger, the
original data become easier to distinguish, and the higher the
utility. One of the main properties of LDP is the sequential
composition mechanism, which can be used to decompose a
complex LDP algorithm into a sequence of simple algorithms.

Theorem 1 (Sequential Composition Mechanism [21]):
Assume a randomized algorithm M consists of a sequence of
randomized algorithms Mi(1 ≤ i ≤ t). When for each i,Mi

satisfies ϵi-LDP, M satisfies
∑t

i=1 ϵi-LDP.
Theorem 1 indicates that the problem of collecting data
streams can be split into multiple sub-problems of collect
statistics about only one item in the stream.
Randomized Response (RR) [11], [22]. One of the funda-
mental mechanisms for achieving LDP is RR. It allows users
not always provide the truth, i.e., original value. Specifically,
in the case of binary values, users can answer truthfully with a
certain probability p, or respond with the opposite value with
a probability q=1−p. To make RR satisfy ϵ-LDP:

maxPr[M(x) = y]

minPr[M(x′) = y]
=

p

1− p
= eϵ, (1)

therefore p= eϵ

1+eϵ . Denote the percentage of 1 received by the
collector as f . To obtain the estimation of the true percentage
of input x = 1, according to the perturbation probability, the
collector can calibrate f as f

2p−1 + 1−p
2p−1 .

Piecewise Mechanism (PM) [14]. This is an advanced
perturbation mechanism for mean estimation. In frequency
estimation, the frequency of each user is a binary value.
Different from this, in mean estimation, the value of each user
is numerical and within a specific range, which is assumed to
be [−1, 1]. PM confines the perturbed range of the value and
divides the range into three “pieces”. It perturbs the value
to the “piece” which is close to the original value with a
high probability, in order to minimize variance. Formally, the
Probability Density Function (PDF) of perturbed value y is

pdf(M(x) = y) =

{
p, y ∈ [ℓ(x), r(x)],
p

eϵ
, y ∈ [−C, ℓ(x)) ∪ (r(x), C],

(2)

where

p =
eϵ − eϵ/2

2eϵ/2 + 2
,

C =
eϵ + eϵ/2

eϵ − eϵ/2
,

ℓ(x) =
C + 1

2
x− C − 1

2
,

r(x) = ℓ(x) + C − 1.

Thus, the perturbed value belongs to [−C,C], where
[l(x), r(x)] is the center “piece” close to the original value
x, and [−C, ℓ(x)) and (r(x), C] are the other two “pieces”
further away from x. The perturbed value y is sampled from
[l(x), r(x)] with a high probability p, and from [−C, ℓ(x)) and
(r(x), C] with a low probability p

eϵ .
Hybrid Mechanism (HM) [14]. Prior to PM, Duchi et
al. [23] and Nguyên et al. [24] proposed to discretize the
numerical value x to 1 or −1 (with a probability 1+x

2 and
1−x
2 respectively), and then use RR to solve the problem of

mean estimation. Under a small privacy budget ϵ, Duchi et al’s
method has a smaller variance, even though in most cases it is
larger than that of PM. Therefore, HM proposes to combine
the advantages of these two solutions. When ϵ ≤ 0.61, the
solution proposed by Duchi et al is adopted. When ϵ > 0.61,
PM is chosen with a probability of 1 − e−ϵ/2, and Duchi et
al’s solution is chosen with a probability of e−ϵ/2.

B. Sketching

Data streams are often sparse, which include only a small
fraction of the items from a large domain. Thus, to count the
occurrences of items, an efficient data structure is required.
A typical solution is to compress items to a smaller domain,
e.g., with sketching [25], which usually uses the matrix of
size K × M to store the statistics of streams. Sketching is
a two-phase process. In the update phase, items from the
large domain (size d) are mapped into a smaller domain (size
M ) using K hash functions. The corresponding counters are
updated accordingly. In the query phase, the items’ counts are
estimated using the counters associated with the original items.
Count-Min Sketch (CMS) [18] is one of the efficient
sketching technique. Formally, CMS is represented by a matrix
X of K rows and M columns, serving as counters. Each row
i is associated with one hash function Hi, which maps items
from the domain {1, . . . , d} to {1, . . . ,M}. Note these hash
functions are pairwise-independent. When any item x from [d]
is observed in the stream, the following updates are performed:
Xk,Hk(x) = Xk,Hk(x) + 1,∀1 ≤ k ≤ K. When querying the
count c(x) of the item x, its estimation c̃(x) is [18]:

c̃(x) = min
1≤k≤K

Xk,Hk(x). (3)

Private Count-Mean Sketch (PCMS-Mean) [10] is an LDP
algorithm proposed by Apple for obtaining private data counts.
It utilizes a Count-Mean Sketch matrix X to store the counts
of data items. To protect users’ privacy, each user generates
updated data locally and perturbs them. Then, the collector
only receives the perturbed data. Specifically, K hash func-
tions are shared among users and the collector. For each item
x in the data stream, the user chooses one of K hash functions,
denoted by Hk, to encode the update. After encoding, the
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kth row of the sketch is updated, where only Xk,Hk(x) = 1,
and the remaining positions are −1. The updated row X̂k is
sent to the collector after the client uses the random response
mechanism to independently perturb each position in Xk to
achieve the LDP. Subsequently, the collector sums up the
locally perturbed row X̂k indexed by the same k, then, obtains
an aggregated matrix of the same size of the original matrix
X . Finally, the item frequency is estimated by summing the
corresponding counters across the rows of the aggregated
matrix and averaging the sum. PCMS assumes only one item
is collected for each user at intervals. Thus, the selected rows
of different users differ at most 2 positions. When using RR
to protect the privacy, based on Theorem 1, the perturbation
probability is eϵ/2

1+eϵ/2
.

C. Problem Statement

The focus of this paper is on the problems of frequency
and mean estimation for data streams. The problem involves
a collector that is curious but honest, and a set of users U
of size n. Each user, Ui, generates a streaming data, which
is presented as a set of items of length L(i)(L(i) ≥ 0) and
denoted by S(i) = {S(i)

1 , S
(i)
2 , . . .}, |S(i)| = L(i). Each item

S
(i)
ℓ (0 ≤ ℓ ≤ L(i)) is discrete value and drawn from a large

domain D of size |D| = d, that is, S
(i)
ℓ ∈ D. The defined

streaming data refers to continuously generated data, such as
DNS queries, website clickstreams, and travel records [13].

Frequency Estimation. The item frequency means the ratio
of the number of users who possess the item to the total
number of users. Formally, f(x) represents the frequency of
item x (x ∈ D), defined as:

f(x) =
1

n
|{i|∃ℓ, 0 ≤ ℓ ≤ L(i), S

(i)
ℓ = x}|. (4)

Mean Estimation. The mean estimation for each item x ∈
D is to estimate the average number of x possessed by n users.
Formally, the mean is defined as follows:

v(x) =
1

n

n∑
i=1

|{l|0 ≤ ℓ ≤ L(i), S
(i)
ℓ = x}|. (5)

A summary of symbols is presented in Table I, which are
listed along with their corresponding meanings.

III. BASELINE SOLUTIONS

We describe a naive solution to our problem obtained by
extending PCMS-Mean [10] (see Section II-B). Recall that
PCMS-Mean uses a matrix X(i) of size K×M to encode data,
and a randomized response algorithm to perturb a selected row
X

(i)
k in the sketch matrix. It assumes each user only possesses

one item, L(i) = 1. In our problem, where L(i) ≥ 0, PCMS-
Mean can be extended through multi-time executions using
one-item encoding and one-time execution using multi-item
encoding, as two naive solutions shown in Fig. 1.

The first solution is to execute the original PCMS-Mean
multiple times, denoted by nPCMS-Mean. To keep the indis-
tinguishability of different users, nPCMS-Mean unifies each
user’s data length as L by Padding and Sampling first and
then performs PCMS-Mean L times. However, this solution
requires multiple transmissions, and the estimation error will

TABLE I
NOTATION.

Symbol Description
U the user set
n the size of the user set, |U | = n
Ui the ith user
S(i) the set of data that Ui possess
L(i) the number of data that Ui possess, |S(i)| = L(i)

S
(i)
l the lth data that Ui possess, 0 ≤ ℓ ≤ L(i)

D the domain of data
d the size of domain, |D| = d
x a value from D, x ∈ D

f(x) the frequency of x
v(x) the mean value of x
M the randomized algorithm used in LDP
T the computing task

ΨM,ΦM the perturbed and calibrated algorithms used in M
UT, QT a pair of encoding and decoding algorithms for T

G the ordering matrix generation algorithm
H1, H2, . . . , HK hash functions used by the sketching algorithm

M the domain size of hash functions
X(i) the original sketch representing S(i)

X̂(i) the perturbed sketch of X(i)

I(i) the index of selected counter X̂(i)
k,m

O(i) the ordering matrix of X(i)

c(x) the actual count of x
Cmax the upper bound of c(x)
c̃(x) the count of x estimated by querying CMS
Q(x) the perturbed count of x by querying perturbed sketches
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(c) Execute multiple times
Fig. 1. Solutions based on PCMS-Mean. (a) Existing PCMS-Mean (each
user produces one item). When the user produces multiple items, (b) extends
PCMS-Mean to encode multi-items, and (c) just executes PCMS-Mean
multiple times.

accumulate, resulting in low accuracy [15]. Besides, nPCMS-
Mean allocates the privacy budget ϵ between L times. Thus,
the perturbed probability p is set to eϵ/2L

1+eϵ/2L
, because there

are two positions to be protected each time as explained in
Section II-B. Dividing the ϵ by L is a naive way to apply
the sequential composition to satisfy LDP, resulting in further
deterioration of the utility.

Another solution, denoted Multi-PCMS-Mean, is to encode
multiple items using one sketch in PCMS-Mean. Since there
is no limitation on the data length of each user and all the
data will be encoded in one sketch, the updated positions
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in the selected row Xk are between 0-M . Therefore, the
difference between any two selected rows is at most M
instead of 2. To protect the privacy of each position under
ϵ-LDP, Multi-PCMS-Mean utilizes a naive way that ensures
the perturbation for each position should satisfy ϵ

M -LDP.
Thus, according to Theorem 1, Multi-PCMS-Mean satisfies
ϵ-LDP. By using Equation (1) (and replacing ϵ with ϵ/M ), the
perturbed probability p is set to eϵ/M

1+eϵ/M
in Multi-CMS-Mean.

A large M can incur a low privacy budget allocated to each
position, which means heavy perturbation and poor utility.

In terms of communication overhead, nPCMS-Mean costs
L times of Multi-PCMS-Mean, because its multi-execution
using one-item encoding leads to transferring perturbed row
of size M with times of the unified data length L. It is
possible that 2L ≤ M makes the perturbation error in nPCMS-
Mean smaller than in Multi-PCMS-Mean. However, collecting
multiple times could accumulate perturbation errors and esti-
mation errors, resulting in the worse performance of nPCMS-
Mean, as shown in Section VII-A. Although Multi-PCMS-
Mean is a better solution than nPCMS-Mean, the irrational
allocation of the privacy budget makes it performs poorly,
especially when the data length (i.e., L) and the size of hash
dimension (i.e., M ) is large. Furthermore, it is worth noting
that the sketching algorithm under LDP introduces errors that
cannot be ignored. As the large domain is encoded into a
much smaller sketch, the probability of hash collisions are
large [10]. When the number of users increases, since all
their data are encoded into the same sketch, the probability
of the collisions happening becomes higher and the sketching
errors grow larger. The sketching algorithm itself also affects
the accuracy of estimations. Different algorithms have varying
properties and characteristics that can influence the estimation
errors. Research [26] shows, compared to Count-Mean Sketch,
Count-Min Sketch has a smaller estimation error. Therefore,
we propose that LDP algorithms take advantage of the Count-
Min Sketch and use the privacy budget efficiently to address
the problem described in Section II-C.

IV. PRIVATE SKETCH-BASED FRAMEWORK

We propose Private Sketch-based Framework (PSF), which
combines CMS with a randomized mechanism M in LDP,
for streaming data collection. Unlike a naive approach that
we call PCMS-Min, which directly replaces the sketching
algorithm in PCMS-Mean with the Count-Min Sketch, PSF
proposes a novel decode-first workflow for the collector (cf.
Section IV-B) to reduce collisions in sketches, and utilizes the
ordering matrix (cf. Section IV-C) to decide on the minimum
index to use for its estimations. In order to enhance the utility,
PSF also incorporates a sampling technique to provide more
useful information under the strict perturbation.

The procedure of PSF is shown in Fig. 2. PSF consists of
four components: encoder, perturber, decoder, and calibrator.
For each user, the encoder encodes multiple items from the
original data stream using the Count-Min Sketch first. Then,
the perturber samples one of the counters in the sketch and
perturbs the sampled counter. Subsequently, the perturber
computes the counter orders of the original sketch X(i) and

generates the ordering matrix O(i), which is sent with the
perturbed count X̂

(i)
k,m and the sampled index I(i) = (k,m)

to the collector. For the collector, the decoder recovers the
value from [1,m] back to [1, d] and infers the perturbed
count for item x ∈ D based on the X̂

(i)
k,m received, which

corresponds to the query procedure in a sketching algorithm.
Specifically, the decoder calculates the minimum index for
each item x based on the ordering matrix O(i). If there is an
item x′ satisfying Hk(x

′) = m, where (k,m) is the index of
the sampled perturbed counter X̂

(i)
k,m, the decoder updates its

corresponding counters. Afterwards, the calibrator aggregates
the count calculated from each user’s data and calibrates the
perturbation error to accurately estimate the items’ frequency.

A. Overview

Formally, there is a pair of encoding and decoding algo-
rithms ⟨UT, QT⟩ for different tasks T, a pair of algorithms
⟨ΨM,ΦM⟩ for randomized mechanisms M, and an ordering
matrix generation algorithm G.

• ⟨UT, QT⟩ are algorithms used to encode streaming data
S(i) from the original domain D into Count-Min Sketch
X(i), and restore each item count c(x)(x ∈ D) from
perturbed sketch X̂(i) to the original domain. The en-
coding and decoding processes correspond to the pair of
update and query algorithms in CMS (cf. Section II-B).
We define it as follows: X(i) = UT(S

(i)), c(i)(x) =
QT(X̂

(i), x). Note the design of encoding/decoding al-
gorithms is slightly different on different computing
tasks, and the details are discussed in Section V-A and
Section VI-A.

• ⟨ΨM,ΦM⟩ are algorithms used to perturb and calibrate
the count in a randomized mechanism M (i.e. RR, PM).

• G is an algorithm used to generate the ordering matrix
O(i) that records the ordering of counters in original
sketches X(i); G is designed to keep the estimation
unbiased (we discuss G in detail in Section IV-C).

The PSF can be described as follows, which consists of two
phases:

• User-side Phase: According to the computing task T
(i.e., frequency estimation, or mean estimation), each user
transforms their original data streams into a sketch using
UT. Then, the user utilizes ΨM to perturb the sampled
counter with privacy budget ϵ at position (k,m) in CMS.
The process can be defined as:

ΨM(ϵ)(UT(·), k,m).

At the same time, the user calculates the ordering matrix
using (the matrix generation algorithm) G based on the
sketch, that is:

G(UT(·)).

Each user needs to execute the above processes locally.
• Collector-side Phase: After collecting the perturbed

counter and ordering matrices of all users, the collector
first decodes the counts using QT, and then performs cal-
ibration and estimation using ΦM(ϵ), defined as follows:

ΦM(ϵ)(QT(·)) ·K ·M,

where K ×M is the size of the sketch, and the factor
of K ·M is used for calibration due to sampling.
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Fig. 2. Overview of PSF.
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Fig. 3. Different workflows between PrivSketch with traditional protocols.

The framework is shown in Algorithm 1. It has one part for
users (lines 1-5) and the other for the collector (lines 6-11).
We elaborate on the details in the following sections.

B. Decoding-First Collector-Side Workflow

An important characteristic of PSF is the decoding-first
feature on the collector side, which plays a crucial role in
mitigating collisions in the private sketching protocol. Unlike
many LDP protocols that overlook the decoding algorithm
implemented by the collector, PSF recognizes its importance
and includes it as an important part of the procedure. As shown
in Fig. 3, the user side includes an encoder and a perturbator,
and the collector side includes a calibrator and a decoder.

Considering sketching procedures in the naive protocol,
PCMS-Min (as the same as traditional LDP protocols), colli-
sions can occur when encoding data streams and calibrating
counts. When encoding data streams, as the user Ui possesses
more items, there is a higher probability that more items are
hashed into the same position, thus, the more collisions there
will be. A good choice of the sketching parameters can reduce
errors caused by this collision. When calibrating counts,
the calibrator aggregates perturbed sketches from users, thus
resulting in more collisions, which has the same effect of
encoding all user data into a single sketch. To eliminate the
possibility of collisions during the calibration step, PSF adopts
a novel collector-side workflow where the perturbed data are
decoded first before calibrating. The calibrator does not sum
the sketches anymore and just aggregates the perturbed counts
without collisions. To show the effectiveness of our decoding-
first workflow, the theoretical proof is presented as follows.

Theorem 2: For estimating the count of a value x ∈ D using
Count-Min Sketch, mink

∑n
i=1 X

(i)
k,Hk(x)

represents the results

of aggregating sketches before decoding,
∑n

i=1 mink X
(i)
k,Hk(x)

Algorithm 1 PSF
Require: {S(1), S(2), . . . , S(n)}, ϵ,K,M,D ⊂ D

1: select a set of hash functions H = {H1, H2, . . . , HK}
2: for each i ∈ [1, n] do
3: I(i), X̂

(i)

I(i)
, O(i) ← PSF-UserM,T(S

(i), ϵ, n,K,M,H)
4: send I(i), X̂(i), O(i) to the collector
5: end for
6: set I ← {I(1), I(2), . . . , I(n)}
7: set X̂ ← {X̂(1)

I(1)
, X̂

(2)

I(2)
, . . . , X̂

(n)

I(3)
}

8: set O ← {O(1), O(2), . . . , O(n)}
9: for each x ∈ D do

10: ĉ(x)← PSF-CollectorM,T(x, ϵ, n,M,H, I, X̂ ,O)
11: end for
12: return {ĉ(x)|x ∈ D}

represents the results of decoding sketches before aggregating,
the following formula holds:

min
k

n∑
i=1

X
(i)

k,Hk(x)
≥

n∑
i=1

min
k

X
(i)

k,Hk(x)
≥ c(x) (6)

where c(x) represents the true count of x.
Proof: For each user Ui and any 1 ≤ k ≤ K, X(i)

k,Hk(x)

reflects the count of both x and x′(x′ ̸= x), which are hashed
into the same position with x.

X
(i)

k,Hk(x)
= c(i)(x) +

∑
{c(i)(x′)|x′ ∈ S(i), Hk(x) = Hk(x

′)}.

For the minimum index k where X
(i)
k,Hk(x)

is minimal, the

equation above holds. As a result,
∑n

i=1 mink X
(i)
k,Hk(x)

=

c(x)+
∑

c(x′) ≥ c(x). Moreover, X(i)
k,Hk(x)

≥ mink X
(i)
k,Hk(x)

always holds. Thus,
∑n

i=1 X
(i)
k,Hk(x)

≥
∑n

i=1 mink X
(i)
k,Hk(x)

,
1 ≤ k ≤ K. Considering mink is one of the case that be-
longs to [1,K], we can conclude that mink

∑n
i=1 X

(i)
k,Hk(x)

≥∑n
i=1 mink X

(i)
k,Hk(x)

.
According to Theorem 2, when the estimation of our pri-

vate protocol is unbiased (compared with the result of CMS
without privacy protection), our decoding-first workflow on
the collector side can reduce the errors. We elaborate on the
approach to achieve unbiased estimation next.
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C. Ordering Matrix Generation
In PSF, the randomized response mechanism introduces

variability to the minimum index of the perturbed count,
thereby impeding unbiased estimation. For the collector, the
estimation of each item x is obtained from perturbed CMS of
each user Ui, i.e., X̂(i). Denote the count of item x as c(x) and
the function used to calibrate c(x) as h. Thus, the estimated
count ĉ(x) can be represented as h(

∑n
i=1 mink X̂

(i)
k,Hk(x)

). To
ensure that the randomized mechanism utilized in PSF does
not introduce any bias in the estimation, the expectation of
the estimation on perturbed matrix (i.e., ĉ(x)) should be same
as that of the estimation based on the original matrix (i.e.,
c̃(x) =

∑n
i=1 mink X

(i)
k,Hk(x)

). That is,

E[ĉ(x)] = E[h(
n∑

i=1

min
k

X̂
(i)

k,Hk(x)
)] = c̃(x) =

n∑
i=1

min
k

X
(i)

k,Hk(x)
.

Denote the row indices of the minimum count for x in the
perturbed and original sketches k′ and k, respectively. Due to
the randomization, these two row indices may be different.
Without loss of generality, the opposite perturbed value of
X

(i)
k′,H′

k(x)
is represented as aX

(i)
k′,H′

k(x)
+ b. When k ̸= k′,

E[X̂(i)

k′,H′
k
(x)

] = pX
(i)

k′,H′
k
(x)

+ q(aX
(i)

k′,H′
k
(x)

+ b)

= (p+ aq)X
(i)

k′,H′
k
(x)

+ bq

̸= (p+ aq)min
k

X
(i)

k,Hk(x)
+ bq,

where p and q represent the probability of keeping the
original value and flipping to the opposite value, respectively.
It is challenging to construct a function h to transform the
inequality into an equality, due to the varying gap depending
on data distribution. To address this issue, the ordering matrix
is proposed, which is designed to find accurate indices of the
minimum and keep the frequency estimation unbiased.

The ordering matrix is generated at the user end, for
providing accurate indices for minimum in CMS. It is a matrix
with the same size as local sketch for each user Ui, denoted
by O(i), consisting of count orders of corresponding counters
in X(i). Firstly, we divide counters into different groups G

(i)
v

according to its count v. As a result, G(i)
v includes a set of

counters {(k,m)|X(i)
k,m = v} and its length is denoted by

|G(i)
v | = gv . Secondly, we bind each group Gv with its order

range R
(i)
v = [

∑
v′≤v gv′ ,

∑
v′≤v gv′ + gv]. Thirdly, for each

counter X
(i)
k,m in G

(i)
v , we perform random sampling without

replacement from the set of possible orders R(i)
v . Finally, O(i)

k,m

is updated with the sampled order value, denoted by r
(i)
k,m, i.e.,

O
(i)
k,m = r

(i)
k,m. As a result, the index of the minimum order

in O(i) is same as that of the index of the minimum value in
X(i), which is helpful for keeping the estimation unbiased.

Example 1. An example of ordering matrix generation is
shown in Fig. 4. To simply, assume in the original matrix
X(i), all counters are either 0 (i.e., item does not appear in this
client) or 1 (i.e., item appears in this client). When the counters
are arranged in ascending order, the orders [0, 3] correspond
to the counters with value 0, and orders [4, 8] correspond to
those with value 1. The order of counters with the same value
is shuffled, to avoid the collector finding the rule and guessing
the true value of counters; this does not affect the correctness
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Fig. 4. The process of generating the ordering matrix.

of the computation of the minimum values. Finally, the indices
of counters with their corresponding orders are sent to the
collector without the original value.

We analyze how the ordering matrix affects privacy next.

D. Privacy Analysis

Considering the collector-side protocol without the ordering
matrix, the user only sends a sampled perturbed counter X̂(i)

k,m

to the collector. When the user perturbs the original counter
X

(i)
k,m to the opposite value with a randomized mechanism M

that satisfies ϵ-LDP, the privacy is guaranteed. However, in
PSF, the user sends the perturbed counter X̂

(i)
k,m along with

the corresponding ordering matrix O(i), which may expose
individual private information to the collector. Thus, it is
important to analyze the potential influence of O(i) on privacy.

The ordering matrix O(i) can be utilized to exclude
some possible inputs for the collector, but the collector
still cannot distinguish some inputs. Assuming values of
all counters are either 1 or 0, if two positions satisfy the order
O

(i)
k,m ≤ O

(i)
k′,m′ , it is not possible for X(i)

k,m = 1 and X
(i)
k′,m′ =

0 to be correct simultaneously. This implies that the ordering
matrix provides background information about the counters
in the original sketch. From the collector’s perspective, the
information reduces some possible cases of input sketches.
Specifically, the cases where X

(i)
k,m = 1 and X

(i)
k′,m′ = 0 are

excluded, resulting in only three remaining possibilities (cf.
Fig. 5). To quantify the effect, the concept of indistinguishable
input set is introduced. Formally, let T denote the indistin-
guishable input set, which means any two inputs from T is
indistinguishable for the collector. For classical LDP protocol,
by its definition, for any two input x, x′ from the possible
input set D and output y, Pr[M(x)=y]

Pr[M(x′)=y] ≤ eϵ is satisfied.
Therefore, its indistinguishable input set T includes all values
in D. The presence of background information, such as the
ordering matrix, may reduce the size of the indistinguishable
set. However, it does not affect the fundamental principle of
LDP and the remaining inputs in the smaller indistinguishable
set still adhere to the principle of indistinguishability. Because
LDP ensures that the privacy of individual inputs is protected,
irrespective of any additional knowledge available to an adver-
sary. We show in Theorem 3 that the background information
affects the size of the indistinguishable set.
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Fig. 5. Example of the effect of background information on indistinguishable
input set.

Theorem 3: Consider a mechanism M that satisfies ϵ-
LDP, its indistinguishable input set T , and any two inputs
x, x′. When the collector receives any output y, along with
the background information I , there exists an indistinguishable
set T ′ ⊆ T satisfying the following inequality: Pr[M(x)=y]

Pr[M(x′)=y] ≤
eϵ, x, x′ ∈ T ′.

Proof: For any I , T can be divided into two parts, T+

and T−. The former represents the inputs that are consistent
with the information I , i.e., the possible inputs when I is true.
The latter includes the inputs that contradict the information I ,
that is, the impossible inputs when I is true. Based on I , the
collector can infer that the original input belongs to T+(⊆ T ).
For any two inputs x, x′ ∈ T+, x, x′ is also in T . Therefore,
following the definition of ϵ-LDP, Pr[M(x)=y]

Pr[M(x′)=y] ≤ eϵ is satisfied
and any two input x, x′ ∈ T ′ is distinguishable.

The indistinguishable input set T ′ computed by the
ordering matrix O is enough to protect the privacy of
users. In PSF, the user data are encoded in the sketch X(i),
thus, to maintain the privacy of users’ data is to protect the
sketch X(i). The collector should be prevented from obtaining
exact counts in the original sketch. Intuitively, the collector
only receives a perturbed value and its order, thus, still lacks
enough information to infer the true value of each counter. The
collector may be able to narrow down the potential sketches to
a smaller set T ′ ∈ T other than the whole set of possible input
sketches. However, the collector still cannot infer the exact
values of any counter in the original sketch. In the simplest sit-
uation where the possible value for each counter is 1 or 0 thus
only two groups for counters, G1 and G0, and g1+g0 = KM ,
there are KM+1 possible inputs in terms of the different sizes
of each group. Thus, there is no counter whose value is always
the same in different possible inputs. Sometimes, there are
some constraints in the sketching algorithm. For example, it
is impossible that g1 = 1, 2, 3, because when there is an item
occurred, for each k ∈ [1,K], ∃(k,m) ∈ G1,m ∈ [1,M ].
Nevertheless, {0}KM , {1}KM ∈ T ′ always holds. Thus, there
are still multiple possible original values for each counter.
The collector has no way to know which of the possible
values is the true value. If there are more than two possible
values for counters, the situation becomes more complicated,
creating more obstacles for inferring the original value. The
limited ordering information in the ordering matrix has no
deterministic information regarding the sketch value. As a
result, the original values of the counters cannot be inferred

and the user privacy is effectively protected.

V. FREQUENCY ESTIMATION SOLUTION: PRIVSKETCH

In this section, we describe our protocol, PrivSketch, which
derives from PSF and is designed for frequency estimation.
To showcase its practicality, we conduct a thorough analysis
in terms of the privacy and utility.

A. Protocol

The design of the encoding algorithm UT. Different from
the traditional CMS, in PrivSketch, each user is required to
maintain local records indicating whether a specific item x
appears. This modification is made to achieve the objective
of obtaining the item frequency rather than their counts. As a
result, each update performed by the encoding algorithm UT
is an logical OR operation, rather than an integer addition.
Assuming the initial value of each position Xk,m is False
(i.e., 0), there are two cases for updating. When x is the first
value hashed to Xk,m, the update is Xk,m = Xk,m ∨True =
False ∨ True = True. When other values x′ are hashed to
the same position, the update is Xk,m = Xk,m ∨ True =
True ∨ True = True. Thus, each counter in X has a value
of 1 (i.e., True) or 0 (i.e., False).

The choice of the randomized mechanism M. Since only
the sampled counter needs to be perturbed, PrivSketch directly
chooses RR as M for randomization:

X̂
(i)
k,m =


2X

(i)
k,m − 1, w.p.

eϵ

eϵ + 1

−2X(i)
k,m + 1, w.p.

1

eϵ + 1

(7)

The original value (0 or 1) of counters in X
(i)
k,m are perturbed

to 1 or −1 randomly. The details of the protocols follow:
User-side protocol (Algorithm 2). It consists of an encoder

(lines 1-4) and a perturber (lines 5-13). In the encoder, each
user first encodes the input sequence S(i) into a CMS matrix
X(i) (lines 2-3). Each encoding updates the value of the
corresponding position of items in X(i) to True (i.e., 1). Then,
the perturber computes the ordering matrix (line 5). It also
uniformly samples k and m from [1,K] and [1,M ] and per-
turbs the sampled counter X(i)

k,m using RR (as in Equation (7)).
Lastly, instead of transmitting the entire sketch matrix, only
the selected counter along its index and the ordering matrix
are communicated after the perturbation process.

Collector-side Protocol (Algorithm 3). To estimate the
frequency of the item x, the first step is to find the minimum
counter after perturbation related to the item. The index of the
minimum is computed by comparing the orders of correspond-
ing counters in the ordering matrix (line 4). Subsequently, the
calibrator utilizes the perturbed minimum value to estimate
the frequency by calibrating its perturbation error (line 9). We
present the privacy and utility proof for PrivSketch next.

B. Privacy and Utility Proof
Privacy Guarantee. We have proved that a PSF com-

bined with a ϵ−LDP perturbation mechanism M is privacy-
preserving (cf. Section IV-D). Therefore, we should prove that
the RR used in PrivSketch satisfies ϵ−LDP. In PrivSketch,
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Algorithm 2 User-side protocol in PrivSketch
Require: S(i), ϵ, n,K,M,H

1: initialize a sketch X(i) ← {0}K×M

2: for each ℓ ∈ [1, L(i)],each k ∈ [1,K] do
3: X

(i)

k,Hk(s
(i)
ℓ

)
= 1

4: end for
5: generate the ordering matrix O(i)

6: uniformly sample k and m from [1,K] and [1,M ] respectively
7: I(i) ← (k,m)
8: then, uniformly sample r from [0, 1]
9: if r < 1

eϵ+1
then

10: X̂
(i)

I(i)
= −2X(i)

I(i)
+ 1

11: else
12: X̂

(i)

I(i)
= 2X

(i)

I(i)
− 1

13: end if
14: return I(i), X̂

(i)

I(i)
, O(i)

Algorithm 3 Collector-side protocol in PrivSketch

Require: x, ϵ, n,M,H, I, X̂ ,O
1: select a set of hash functions H = {H1, H2, . . . , HK}
2: Q(x)← 0
3: for each i ∈ [1, n] do
4: kmin ← argmin

k
O

(i)

k,Hk(x)

5: if kmin = k(i) and Hkmin(x) = m(i) then
6: Q(x)← Q(x) + X̂

(i)

kmin,Hkmin
(x)

7: end if
8: end for
9: f̂(x)← KM

2
( eϵ+1
eϵ−1

Q(x)
n

+ 1)

10: return f̂(x)

Xk,m keep its value with probability eϵ

eϵ+1 and turn to the
opposite value with probability 1

eϵ+1 . Then,

Pr[M(x) = y]

Pr[M(x′) = y]
≤ maxPr[M(x) = y]

minPr[M(x′) = y]
=

eϵ

eϵ+1
1

eϵ+1

= eϵ.

The mechanism satisfies ϵ−LDP. In order to show the effect of
the sampling technique on utility, we first analyze the utility
of PrivSketch without sampling. That is, the user sends the
whole matrix X to the collector after perturbation, and thus,
each position should be protected. Privacy budget ϵ is equally
distributed to each location and the perturbation probability of
each location becomes 1

eϵ/KM+1
. Its utility is as follows:

Theorem 4: Let Q(x) denote the perturbed counts for
each value in D inferred from perturbed sketches. f̂(x) =
1
2 (

eϵ/KM+1
eϵ/KM−1

Q(x)
n + 1) is an unbiased estimation of f̃(x) =

1
n

∑n
i=1 mink X

(i)
k,Hk(x)

which is the frequency inferred from
the original count-min sketch. Furthermore, the variance of
f̂(x) is eϵ/KM

n(eϵ/KM−1)2
.

Proof: For each user Ui, the counters for the item x in
row k of perturbed sketch X̂ is denoted by X̂

(i)
k,Hk(x)

, which

value is determined by X
(i)
k,Hk(x)

(lines 9-13 in Algorithm 2).

X
(i)
k,m uses 1 and 0 to denote whether the corresponding values

appears in this client, and X
(i)
k,m is then used to compute the

frequency by the collector. For X(i)
k,Hk(x)

= 1, E[X̂(i)
k,Hk(x)

] =

2p − 1. For X
(i)
k,Hk(x)

= 0, E[X̂(i)
k,Hk(x)

] = 2q − 1. Q(x),
which represents the result by aggregating the perturbed
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Fig. 6. Sampling effect on variance: variance ratio Eq.(14)/Eq.(11) when
varying K ·M , with n = 106 and r = 1.

counters at the minimum position mink X̂
(i)
k,Hk(x)

(x), equal

to
∑n

i=1 mink X̂
(i)
k,Hk(x)

(x), satisfies:

E[Q(x)] = E[
n∑

i=1

min
k

X̂
(i)

k,Hk(x)
(x)]=2(p−q)nf̃(x)+(2q−1)n,

Var[Q(x)] = Var[

n∑
i=1

min
k

X̂
(i)

k,Hk(x)
(x)]

= 4n{(p+ q − 1)(p− q)f̃(x) + q(1− q)},

where nf̃(x) is the estimated number of users with x in their
data streams using the set of original sketch X . In our protocol,

p =
eϵ/KM

eϵ/KM + 1
, q =

1

eϵ/KM + 1
. (8)

f̂(x) =
1

2
(
eϵ/KM + 1

eϵ/KM − 1

Q(x)

n
+ 1). (9)

Thus, the expectation of f̂(x), can be shown to be equal to
f̃(x) as follows, which means the estimation is unbiased:

E[f̂(x)] = 1

2
(
eϵ/KM + 1

eϵ/KM − 1

E[Q(x)]

n
+ 1) = f̃(x). (10)

By Definition (8), p + q = 1, Var[Q(x)] = 4nq(1 − q).
Thus, the variance of f̂(x) is satisfied:

Var[f̂(x)] =
1

4n2

(eϵ/KM + 1)2

(eϵ/KM − 1)2
Var[Q(x)] =

eϵ/KM

n(eϵ/KM − 1)2
.

(11)

Sample the sketches. When the size of the sketch becomes
larger, according to Equation (8), the original input becomes
more likely to flip to other values, with a probability nearly to
1
2 , which means that the perturbed data are almost randomly
chosen. Besides, according to Equation (11), larger values of
K and M also lead to a higher variance. The reason is that
the limited privacy budget is evenly allocated to each counter,
thus, each counter is allocated less privacy budget with a
larger size sketch, so that more randomness is introduced.
Thus, the perturbed sketches become less informative, making
it challenging to estimate the frequency for the collector. To
mitigate the perturbation error and improve the efficiency of
the sketching information utilization, this section introduces
the sampling technique on the user end. In order to pro-
vide effective information within a limited privacy budget,
a common approach is sampling. During sampling, a subset
of counters from the total K · M counters are selected and
the privacy budget is distributed across the smaller subset of
counters, enabling a more effective privacy budget allocation.
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Assuming r counters are sampled, each counter consumes 1/r
of the privacy budget for perturbation. which is larger than
1/KM . However, sampling introduces new variables for the
estimation, which can be reflected in the variance as follows:

Var[f̂(x)] =
KMeϵ/r

nr(eϵ/r − 1)2
. (12)

As the number of samples increases, the variance will
increase [27]. Therefore, when r = 1, the variance is minimal.
The perturbation probability in the RR is set to: p = eϵ

eϵ+1 , q =
1

eϵ+1 . The expectation and the variance now are:

E[f̂(x)] = KM

2
(
eϵ + 1

eϵ − 1

E[Q(x)]

n
+ 1) = f̃(x), (13)

Var[f̂(x)] =
KMeϵ

n(eϵ − 1)2
. (14)

Compared to Equation (10), randomly sampling one of the
KM counters promotes the privacy budget allocated for each
position from ϵ/KM to ϵ and requires to introduce a factor
of KM to calibrate the estimation. Moreover, compared to
the protocol without the sampling technique, the variance in
Equation (14) is directly proportional to K and M , which
increases at a slower rate compared to the exponential increase
in Equation (11). As K · M increases, the advantage of the
PrivSketch sampling technique increases, as shown in Fig. 6.

The error of PrivSketch is influenced not only by the
perturbation but also by the collision error inherent in the
CMS. As K and M increase, the collision error tends to
decrease. Additionally, the collision error is also affected by
the data domain size d and its distribution [18]. This renders
the task of obtaining the optimal sketching parameters very
challenging. Though, we conduct experimental evaluations to
assess the impact of varying K and M on frequency estimation
in Section VII-B. Besides, in Section VII-A, we demonstrate
the effectiveness of the sampling technique in sketches by
performing a comparative analysis with traditional PSFO.

VI. MEAN ESTIMATION SOLUTION: PRIVSKETCH+

In this section, we present PrivSketch+ for mean estimation.
This protocol is a variant of PrivSketch and also follows PSF.

A. Protocol

The design of the encoding/decoding algorithms UT and
QT. In PrivSketch+, each user needs to record locally how
many times x appears, i.e., the count of x, similarly to the
traditional CMS. Thus, when x is hashed to Xk,m, the update
is Xk,m = Xk,m + 1. The count is an integer larger than or
equal to 0. However, for mean estimation under LDP, there is
always an assumption that the value is in [−1, 1]. Thus, We
should transform the count to [−1, 1]. Assume that the count
has an upper bound Cmax. To transform it into [−1, 1], the first
step is to prune the count exceeding the bound Cmax. Then,
the count in the counter Xk,m should be projected to [−1, 1].
Denote the projection using f : [0, Cmax] → [−1, 1], where
f(Xk,m) = 2 × Xk,m

Cmax
− 1. Correspondingly, in the decoding

algorithm QT, the collector needs to use the inverse operation
(X̂k,m + 1) · Cmax

2 to restore the collected perturbed counts
X̂k,m to the original range.

Algorithm 4 User-side protocol in PrivSketch+
Require: S(i), ϵ, n,K,M,H, Cmax

1: initialize a sketch X(i) ← {0}K×M

2: for each ℓ ∈ [1, L(i)],each k ∈ [1,K] do
3: X

(i)

k,Hk(s
(i)
ℓ

)
= X

(i)

k,Hk(s
(i)
ℓ

)
+ 1

4: end for
5: generate the ordering matrix O(i)

6: uniformly sample k and m from [1,K] and [1,M ] respectively
7: I(i) ← (k,m)

8: if X(i)

I(i)
> Cmax then

9: X
(i)

I(i)
= Cmax

10: end if

11: X
(i)

I(i)
=

2X
(i)

I(i)

Cmax
− 1

12: C = eϵ+eϵ/2

eϵ−eϵ/2

13: l = C+1
2

XI(i) −
C−1
2

, r = l + C − 1
14: then, uniformly sample r from [0, 1]

15: if r < eϵ/2

eϵ/2+1
then

16: uniformly sample a value from [l, r] as X̂
(i)

I(i)

17: else
18: uniformly sample a value from [−C, l] ∪ [r, C] as X̂

(i)

I(i)

19: end if
20: return I(i), X̂

(i)

I(i)
, O(i)

Algorithm 5 Collector-side protocol in PrivSketch+

Require: x, ϵ, n,M,H, I, X̂ ,O, Cmax

1: select a set of hash functions H = {H1, H2, . . . , HK}
2: Q(x)← 0
3: for each i ∈ [1, n] do
4: kmin ← argmin

k
O

(i)

k,Hk(x)

5: if kmin = k(i) and Hkmin(x) = m(i) then
6: Q(x)← Q(x) + (X̂

(i)

kmin,Hkmin
(x) + 1) · Cmax/2

7: end if
8: end for
9: v̂(x)← KM

n
Q(x)

10: return v̂(x)

The choice of the randomized mechanism M. PrivS-
ketch+ utilizes the advanced mean estimation protocol PM (cf.
Equation (2)) to perturb and estimate the mean of the counts.

In the following paragraphs, we detail the protocols.
User-side protocol (Algorithm 4). Similar to PrivSketch,

the user-side protocol consists of an encoder (lines 1-4) and
a perturber (lines 5-19). However, this protocol is different in
the following three aspects: (i) During encoding, PrivSketch+
utilizes the traditional CMS algorithm (cf. Section II-B), that
is, when encoding each item s

(i)
l in the sequence S(i), the

count of the corresponding position Hk(s
(i)
l ) for each hash

function k in the sketch X(i) is increased by 1 (line 3). (ii)
After the encoding, the perturber normalizes the counts into
the range [−1, 1]. To reduce the calculations, only sampled
counters X

(i)
k,m are processed (lines 8-11). Note Cmax is a

bound that most of the counts will not exceed. Thus, not
all counts are necessarily less than Cmax, and the exceeded
counts need to be pruned (lines 8-10). (iii) During perturbation,
PrivSketch+ uses PM (cf. Section II-A) instead of RR. Thus,
the perturbation value X̂k,m randomly comes from the range
[−C,C] (rather than being the opposite value of the original
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one with a certain probability).
Collector-side protocol (Algorithm 5). Same as PrivS-

ketch, the collector first obtains the minimum index based on
the ordering matrix O, then updates the counts of items with
the minimum value located at (k,m), and finally calibrates
the counts. Note when aggregating the counts, the collector
should restore them from [−1, 1] to its original range (line 6),
which is a reverse operation of the projection in encoding.

B. Privacy and Utility Proof
Privacy Guarantee. Consider the worst case of the in-

distinguishability of two inputs, where the difference of the
probability of two different inputs x and x′ perturbed to
the same value y is maximized. In the worst case, y ∈
[l(x), r(x)] but y /∈ [l(x′), r(x′)]. For y ∈ [l(x), r(x)],
y is uniformly sampled from [l(x), r(x)] with perturbation
probability eϵ/2

eϵ/2+1
and sampling probability 1

r(x)−l(x) . For
y /∈ [l(x′), r(x′)], y is uniformly sampled from [−C, l(x′)) ∪
(r(x′), C] with perturbation probability 1

eϵ/2+1
and sampling

probability 1
C−r(x′)+l(x′)−(−C) . Then, the worst case is:

maxPr[M(x) = y]

minPr[M(x′) = y]
=

eϵ/2

eϵ/2+1
· 1
r(x)−l(x)

1

eϵ/2+1
· 1
C−r(x)+l(x)−(−C)

= eϵ, (15)

where C, l(x), r(x) refer to Equation (2). Thus, we can
conclude that for any inputs x and x′, Pr[M(x)=y]

Pr[M(x′)=y] ≤ eϵ.
Theorem 5: Let Q(x) denote the perturbed counters for

each value in D. v̂(x) = KM ·Q(x) is an unbiased estimation
of ṽ(x) = Cmax

2n

∑n
i=1(mink X

(i)
k,Hk(x)

+1), which is the mean
inferred from the original count-min sketch. Furthermore, the
worst case of variance of v̂(x) is 4KMeϵ/2

3(eϵ/2−1)2
.

Proof: In PrivSketch+, each counter X
(i)
k,m is perturbed

using PM, which satisfies ϵ−LDP and achieves unbiased
estimation. Thus, E[X̂

(i)
k,m] = X

(i)
k,m. Since the ordering matrix

guarantees that the index of the minimum value remains
unchanged, E[min X̂

(i)
k,Hk(x)

] = minX
(i)
k,Hk(x)

. Thus, when
aggregating the perturbed counter for x:

E[Q(x)] =
1

KM
E[

1

n

n∑
i=1

(min
k

X̂
(i)

k,Hk(x)
+ 1) · Cmax/2]

=
Cmax

2nKM

n∑
i=1

(E[min
k

X̂
(i)

k,Hk(x)
] + 1)

=
Cmax

2nKM

n∑
i=1

(min
k

X
(i)

k,Hk(x)
+ 1) =

ṽ(x)

KM
,

where the sampling technique results in the aggregated count
being only 1

KM of the mean ṽ(x) estimated by the original
sketches. For v̂(x) = KM · Q(x), a factor KM calibrates
the bias to obtained an unbiased mean estimation of Q(x).
Moreover, Var[X̂(i)

k,Hk(x)
] = 1

eϵ/2−1
(X

(i)
k,Hk(x)

)2 + eϵ/2+3
3(eϵ/2−1)2

.

Due to X
(i)
k,Hk(x)

∈ [−1, 1], the worst case of variance is
4eϵ/2

3(eϵ/2−1)2
and the variance of ṽ(x) is:

Var[ṽ(x)] =
KMeϵ/2

3n2(eϵ/2 − 1)2
.

TABLE II
DATASETS CHARACTERISTICS

Dataset n d max min P90

Kosarak 990002 41270 2498 1 15
AOL 521693 1632788 61932 1 62

Dataset1 100000 100000 117 1 78
Dataset2 10000 100000 123 1 80
Dataset3 1000000 100000 134 1 84
Dataset4 100000 20000 112 1 73
Dataset5 100000 40000 107 1 72
Dataset6 100000 60000 110 1 74
Dataset7 100000 80000 109 1 75

VII. EXPERIMENTAL EVALUATION

In this section, we conduct a comprehensive evaluation of
the utility and running time of PrivSketch and PrivSketch+
on both synthetic and real datasets. We also analyze the
impact of key parameters on their performance. To provide
a thorough evaluation, we compare PrivSketch to the state-of-
the-art PCMS-Mean [10], and PSFO [28] based on OLH [29]
(denoted as PS-OLH) for frequency estimation. Additionally,
we compare PrivSketch with SVIM [28], a two-phase heavy
hitter discovery protocol, for identifying frequent items. We
compare PrivSketch+ with the advanced mean estimation
protocols PM [14] and HM [14]. We also compare PrivSketch+
with other sketch-based techniques combined with sampling,
i.e., PM-PCMS-Mean extended by PCMS-Mean [10], which
utilizes the same mean estimation protocol PM as PrivSketch+
to show the effectiveness of min estimation. Note that for all
mean estimation solutions, a sampling algorithm is used.
Environment. We implement all LDP protocols in Python and
conduct experiments on a server with 2 Intel Xeon 3206R
Processors and 32G RAM running Centos. We repeat each
experiment 10 times and report the average results
Datasets. We conduct experiments on 7 synthetic datasets
and 2 real datasets with varying distributions and parameters.
We adopt real datasets, Kosarak and AOL, which are widely
employed in differential privacy studies [13], [14], to evaluate
the effectiveness and utility of our algorithm. Furthermore,
the inclusion of synthetic datasets enable us to figure out the
algorithm’s behavior under different parameters, facilitating a
comprehensive evaluation. Table II shows the dataset details,
including the number of users, the size of domains that items
belong to, and the min, max, and top 90 percent of the users’
input size.
• Synthetic Datasets: We generate two groups of synthetic
datasets following Zipf distribution that the real data stream
often conforms to. For the first group, we fix the domain size
d = 105 and vary the number of users n = 104, n = 105

and n = 106. For the other group, we fix the number of users
n = 105 and range the domain size d from 20, 000 to 100, 000
in increments of 20, 000.
• Kosarak [30]: This dataset contains click-stream data from
a Hungarian online news portal, involving nearly 1M users and
40K items. Each line in the dataset includes a set of integers
representing the clicked items an anonymized user accessed.
We treat these values as a sequence, and the items appearing
in all sequences constitute the large domain.
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Fig. 7. Two naive solutions.
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Fig. 8. Experimental results for frequency estimations.

• AOL [31]: This dataset contains search queries of users on
AOL between March 1 and May 31, 2016, with corresponding
URLs clicked by them. After removing users with no clicks,
the dataset includes more than 500K users with 1.6 million
distinct URLs.
Parameters. We set the following default sketching parame-
ters for all sketches in our experiments. The number of hash
functions K in the sketch is set to 4, and each hash function’s
hash domain size M is set to 128. The default privacy budget
ϵ is 3, which is within the privacy budget range used in the
experiments of existing LDP research [15], [26], [32].
Evaluation Measures. We use the following measures, in-
cluding running time.
• Mean Squared Error (MSE). We evaluate the accuracy
of frequency and mean estimation using MSE. For frequency
estimation, the MSE is 1

d

∑
x∈D(f̂(x) − f(x))2, where f(x)

is x’s true frequency. For frequency estimation, the MSE is
1
d

∑
x∈D(v̂(x)− v(x))2, where v(x) is x’s true mean value.

• Variance (Var). The Var measures the estimation error of the
top-k frequency items: 1

|Ce∩Ct|
∑

x∈Ce∩Ct
(nf̂(x)− nf(x))2.

• Normalized Cumulative Rank (NCR). We use NCR to
measure the estimation accuracy of frequent items. NCR mea-
sures how many top-k items are identified by the protocol with
a quality function q(.), i.e.,

∑
x∈Ce

q(x)/
∑

x′∈Ct
q(x′), Ct

and Ce represents the true top-k items and the estimated top-
k items respectively. For x ∈ Ct with a rank i, q(x) = k+1−i.
For x /∈ Ct, q(x) = 0.

A. Comparison with Advanced Protocols

Experiments on Frequency Estimation: We compare our
protocol to two advanced solutions: (i) a sketch-based solution,
Multi-PCMS-Mean, which is an extended version of PCMS-
Mean [10] for multi-item collection. Section III discussed
two naive solutions. However, the utility of the multi-time
execution with one-item encoding is always worse than the
one-time execution with multi-item encoding, as shown in
Fig. 7, especially under a small privacy budget. Thus, to
compare with the existing protocols in a meaningful way
when measuring the MSE, we extend the existing PCMS-
Mean to one-time execution with multi-item encoding. (ii)
a non-sketch-based solution, PS-OLH, which is an advanced
PSFO [28]. Padding and sampling is a popular method to
ensure that each user contributes the same number of items.
Based on this method and randomized mechanisms, PSFO [28]
defines a frequency oracle. When the domain size is large,
i.e., d ≥ 3eϵ + 2, the optimal local hash (OLH) [28] is the

best randomized mechanism for frequency estimation [29].
Therefore, we combine Padding and Sampling with OLH,
denoted by PS-OLH. Note the privacy budget is only used to
estimate frequency. We assume the distribution of user input
length is known and the padding length l is set to the 90th
percentile of the user input [15] (avoiding using the privacy
budget for estimating l).

We evaluate the MSE of frequency estimation under differ-
ent privacy budgets, varying from 0.5 to 16, on synthetic and
real datasets. The results (cf. Fig. 8) show the better utility
of PrivSketch than the other two competitors, especially when
the privacy budget is small. This finding suggests the stronger
privacy protection ability of PrivSketch, and its capacity to
encode more information under a limited privacy budget. To
prove the practicality of PrivSketch, we also conduct exper-
iments on two real datasets, Kosorak and AOL. We observe
that PrivSketch is always superior, and each LDP protocol
performs similarly on the real and synthetic datasets. However,
compared to synthetic datasets, a lower MSE is achieved on
Kosorak and AOL. As shown in Fig. 10, we analyze the
distribution of different datasets, including Kosorak, AOL,
and synthetic Dataset1. The data distribution in Kosorak and
AOL is more skewed than in synthetic datasets, which favors
sketching techniques, especially the Count-Min Sketch.

Experiments on Frequency Item Estimation: Since fre-
quency estimation is often used to find frequent items, we
evaluate PrivSketch’s performance in this task. We compare
PrivSketch with SVIM [28], an advanced multi-phase protocol
following LDPMiner [15] for large-domain data collection.
As shown in Fig. 9, for top-k frequency estimation, the error
of PrivSketch is lower than SVIM, especially for larger k.
In frequent item identification, PrivSketch performs better, or
very close to SVIM. The above results are expected, since the
primary focus of PrivSketch is on estimating the frequency of
items, instead of identifying frequent items.

Experiments on Mean Estimation: We compare the errors
of mean estimation of PrivSketch+ to two advanced solutions,
PM and HM, under privacy budgets varying from 0.5 to 16.
Fig. 11 shows on synthetic datasets, PrivSketch+ always per-
forms better than PM and HM, especially under small privacy
budgets. We observe similar performance on the real dataset
AOL. These results imply that our approach, the solution of
compressing data from large domains into a sketch and then
sampling, has better accuracy than direct sampling (PM and
HM). In the PM and HM, only the count of the selected item
is sampled. In the PrivSketch+, the sampled information is
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Fig. 9. VAR and NCR when varying parameter k.
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Fig. 10. Data distributions.
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Fig. 11. Experimental results for mean estimations.

from a selected position in the sketch, which includes counts
related to multiple items. Thus, the latter contains more useful
information and results in higher accuracy.

B. Experiments with Different Parameters

In this section, we perform a comparative analysis of PrivS-
ketch and PrivSketch+ against other sketch-based solutions,
to present the effect of our design under different parameters.
For frequency estimation, we compare not only PrivSketch
to the extension of PCMS-Mean but also its min-estimation
variant (referred to as Multi-PCMS-Min). Additionally, a
middle version of PrivSketch without sampling (referred to
as PrivSketch-noSmp) is also compared. These comparisons
aim to demonstrate the superior utility of min estimation and
the effectiveness of our decode-first and sampling design.
For mean estimation, we compare PrivSketch+ to a simpler
design called PM-PCMS-Mean. This alternative design uti-
lizes sampling but lacks the min-estimation and the decode-
first design. By making this comparison, we can assess the
advantages and utility of the min-estimation and decode-first
design incorporated in PrivSketch+.

Utility with different number of users. In this experiment,
we evaluate the estimation errors with increasing privacy
budget under different numbers of users, using Dataset2 with
104 users and Dataset3 with 106 users. It should be noted
the privacy budget range we set in the experiment is [2, 128],
which has far exceeded the budget used in practice 2, which
is to showcase the effect of our designs.

For frequency estimation, Fig. 12 shows the superior utility
of PrivSketch, which is not affected by n (similar to Multi-
PCMS-Mean). Without considering the constraints of the
privacy budget, PrivSketch with no sampling is also superior
to the other two naive LDP protocols. This demonstrates

2Previous work [14], [26], [29] has for the most part used privacy budgets
smaller than 5.

our decode-first workflow and the ordering matrix contributes
to mitigating collision errors and improving the accuracy of
minimum estimation. However, PrivSketch-noSmp, like the
Multi-PCMS-Min algorithm, has a large error under a small
privacy budget, especially when n is also small. With the
increase of n, the convergence rates of PrivSketch-noSmp are
accelerated. As a result, it performs significantly better than
the comparison algorithm when ϵ > 4 with n = 106. As the
privacy budget increases, different LDP protocols converge
to a stable MSE, where PrivSketch ≈ PrivSketch-noSmp
> Multi-PCMS-Min > Multi-PCMS-Mean. In practice, the
privacy budget is usually less than 5. Under this constraint,
except for PrivSketch, the other three protocols have too large
errors to be used. For PrivSketch, the utility is guaranteed even
if there are only 104 users.

For mean estimation, PrivSketch+ performs the best in most
cases. The domain compression effect of sketching for mean
estimation is also demonstrated. As shown in Fig. 13, the two
sketch-based solutions, PrivSketch+ and PM-PCMS-Mean, are
always better than the two non-sketch-based solutions, PM and
HM. However, PrivSketch+ is sometimes slightly worse than
PM-PCMS-Mean when the privacy budget is small. When n
increases, this lag disappears. This is because of the error
introduced by sampling. In PM-PCMS-Mean, the sampled
count Xk,m provides valid information for estimated counts of
all items x ∈ D and Hk(x) = m. In PrivSketch+, the sampled
count only supports valid information for an item if and only if
the item satisfies more stringent requirements: it should hold
that Hk(x) = m, and that argmin

k′
Xk′,H′

k(x)
= k. That is,

if the counter sampled by PrivSketch+ is not the minimum
value of some items that are hashed to that position, it does
not provide any useful information for the mean estimation
of these items. Therefore, on a dataset with the same d and
n, the amount of data collected by PrivSketch+ to support a
specific item x is smaller than that of PM-Mean-PCMS, and
the perturbation variance is larger. As n increases, i.e., on a
dataset with n = 106, the variance of PrivSketch+ becomes
smaller, and the effect of PrivSketch+ shows its advantages,
performing always better than PM-PCMS-Mean.

Impact of the parameters of the sketch. In the sketching
technique, the original data will be encoded into a K × M
matrix using K hash functions of size M . K and M are key
parameters that affect the accuracy of the sketching technique.
In Fig. 14, we evaluate the effects of these two parameters
using a dataset with parameters n = 105, d = 105 under
ϵ = 3. Fig. 14(a) shows the effect of K by fixing K = 4 and
varying M ∈ {4, 8, 16, 32, . . . , 1024}. The results demonstrate
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(b) n = 106

Fig. 12. MSE of frequency estimation with different n.
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(b) n = 106

Fig. 13. MSE of mean estimation with different n.

that PrivSketch consistently exhibits superior utility compared
to the other three protocols across different values of M .
As expected, increasing the size of the hash vector (i.e.,
M ) can reduce the estimation error. However, an interesting
observation is that beyond a certain point, increasing M does
not continue to decrease the error but actually leads to an
increase. This can be attributed to the impact of M on two
types of errors in the LDP protocol based on sketching tech-
niques. For the Multi-PCMS-Mean, Multi-PCMS-Min, and
PrivSketch-noSmp, M affects both the collision and perturba-
tion probability. When M increases, the collision probability
decreases, but the perturbation probability increases. Similarly,
for PrivSketch, M influences both the sampling and collision
errors. Therefore, an optimal M exists that minimizes the
MSE, as shown in the figure. We also vary the number of
hash functions K ∈ {2, 4, 8, 16, 32, . . . , 256} and fix the hash
vector size M to 32 to conduct experiments for evaluating
the influence of K. The MSE is plotted in Fig. 14(b). We
observed a similar result to the previous experiment, which
shows that the performance of PrivSketch is the best. However,
different LDP protocols are affected differently by changes in
K. The effect of K on Multi-PCMS-Min, PrivSketch-noSmp
and PrivSketch protocols are the same as M , which impacts
both errors caused by collision and perturbation or sampling.
For the Multi-PCMS-Mean protocol, although each user only
chooses one of the K hash functions to encode data, the effect
is eliminated by summing their corresponding K counters
during calibration. Thus, changes of K do not affect the MSE.

Impact of the size of the domain. We perform the
experiment on the second group of synthetic datasets with the
following settings: K,M and ϵ are set to their default values, n
is fixed at 105, and the domain size d is varied. The results are
presented in Fig. 15, showing that the four protocols exhibit
only a slight change in MSE as d increases. Theoretically,
when the domain size increases, more distinct items are intro-

duced, resulting in a greater probability of multiple items being
hashed to the same counter. The collision probability increases,
consequently leading to a larger estimation error. However,
the impact of domain size variation on the performance of the
protocols can be relatively small, considering the sparse nature
of the items held by each user and the limited changes in the
distribution of the number of items per user. This confirms the
effectiveness of the sketching technique as a domain reduction
and encoding method for large-domain data collection.

Moreover, in Fig. 15(b), we also evaluate the impact of
varying d for solutions that directly sample, i.e., PM and HM.
We can see that PrivSketch+ always has an advantage for mean
estimation. Similar to frequency estimation, a change in the
domain size d does not affect the accuracy of the estimates
of the sketch-based solutions, PrivSketch+ and PM-PCMS-
Mean. Yet, for non-sketch-based solutions, i.e. PM and HM, an
increase in d results in an increase of MSE, which translates
to worse utility. This is a direct consequence of sampling: each
user samples one item from the domain of size d, thus, when n
is fixed and d increases, the amount of information collected
about each item in the domain reduces. Thus, the variance
becomes larger and the estimation less inaccurate.

C. Evaluation of running time

Compared with the traditional protocols, PrivSketch em-
ploys the ordering matrix, which introduces additional com-
putations. However, Fig. 16 shows PrivSketch still maintains a
user-side running time of less than 0.01s, despite performing
the calculation of the ordering matrix. Experimental results
also show that PrivSketch has a significantly faster execution
time compared to PS-OLH and SVIM, approximately 100
times faster. However, PrivSketch is slower than Multi-PCMS-
Mean, which achieves high speed at the cost of larger MSEs
(in Fig. 8). PS-OLH, SVIM and PrivSketch are worse than
the other sketch-based solutions in terms of running time.
Because these three solutions need to restore the estimated
items to the original domain for each user on the collector
side, resulting in a complexity of O(nd). Yet, as shown in
Fig. 8, the MSEs of sketch-based solutions are worse, resulting
in inaccurate estimations. The long running time of PS-OLH,
SVIM, and PrivSketch is the sacrificed time of reducing
domain cardinality to gain high utility. Compared with PS-
OLH and SVIM, which perform best under a small privacy
budget except for PrivSketch, the running time of PrivSketch
is about 100 times faster. This is because each user employs
local hash functions in PS-OLH, resulting in n times hash
function calculations on the collector side. In PrivSketch, each
user shares the same hash functions, which are only calculated
once. We omit experimental results for PS-OLH and SVIM
over AOL, because they need more than 10 days to compute,
making them cumbersome to use in practice.

The running time of PrivSketch+ is shown in Table III.
The client time is about 0.01s. The server time is similar to
PrivSketch and is related to the data set size n and domain
size d. Even though PrivSketch+ is slower than PM and HM,
we note that (similar to the PS-OLH and SVIM solutions
for frequency estimation) PrivSketch+ trades running time
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Fig. 14. MSE of frequency estimation with different K, M .
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Fig. 15. MSE with different d
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Fig. 16. Comparison of running times.

TABLE III
RUNNING TIME FOR MEAN ESTIMATION

Dataset Solution Client Time [s] Server Time [s]

Synthetic

PM 0.00009 0.23
HM 0.00008 0.20

PM-PCMS-Mean 0.00048 2.14
PrivSketch+ 0.00218 509.13

AOL

PM 0.01902 6.25
HM 0.01045 3.69

PM-PCMS-Mean 0.00182 28.719
PrivSketch+ 0.01308 52039.91

efficiency for much better accuracy (up to ∼4 orders of
magnitude more accurate than PM and HM; cf. Fig. 11).

VIII. RELATED WORK

Lots of studies have explored LDP protocols for different
data types (i.e., numerical data, categorial data, key-value data,
itemsets, etc.) and different computing tasks (i.e., frequency
estimation, mean estimation, heavy hitter discovery, etc.). In
this section, we present a review of representative LDP works
that are closely related to our work.

Set-valued Data Collection. Addressing the challenge of
varying set sizes among users is crucial when perform-
ing frequency estimation on set-valued data. Padding and
Sampling [15] is a commonly employed technique to unify
the length of sets, as seen in approaches like PSFO [28],
PrivSet [16]. Although the wheel mechanism proposed by
Wang [17] aims to reduce computational overhead, this work
does not specifically focus on the challenges in large domains

where the efficiency of data structures becomes crucial. Works
on LDP under the large domain, such as LDPMiner [15],
SVIM [28], TreeList [33], PEM [32], have concentrated on
mining the items that appear frequently, i.e, heavy hitters.
These methods take advantage of a multi-phase approach
to overcome the challenges posed by the vast domain size.
Initially, a portion of the privacy budget is allocated to discover
frequent candidates, i.e., potential heavy-hitters. Subsequently,
the remaining privacy budget is utilized to refine the estimation
process on the identified candidates, achieving accurate esti-
mation. However, data streams typically arrive in a continuous
manner, making it impractical to perform an initial phase to
discover frequent candidates before estimation.

Frequency estimation with Hash-Encoding Technique.
To support large-scale private analytics, hash-based data rep-
resentations (such as the bloom filters and sketches) are
commonly used. Previous works [34], [35] employ sketches
to store the heavy hitters in the centralized DP setting.
Similarly, Count-Min Sketch is employed in [36] to compute
the population distribution of different regions. Without a
trusted collector, some studies represent data streams using
local sketches, and utilize privacy-enhancement techniques,
such as homomorphic encryption and multi-party computation
protocols, to aggregate local sketches [37]–[39].

Under LDP settings, RAPPOR [11] adopts Bloom filters
as a means to encode data and reduce the data domain.
However, Bloom filters in RAPPOR necessitate expensive
computations for accurate estimation, such as LASSO re-
gression. Similarly, local hash functions in OLH [29] are
employed for compressing data, but involve expensive hash
operations. Count-Mean Sketch [10] was proposed as a simpler
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estimation solution for estimating the popularity of emojis in
iOS. Subsequent works [40], [41] have enhanced its utility by
transmitting multiple sketches per user, albeit at the cost of ad-
ditional communication overhead. When discovering the heavy
hitters, Hadamard transform is introduced in Count-Median
Sketch [33]. In [26], a comprehensive analysis and comparison
of sketch-based LDP protocols are conducted. These protocols
utilize sketching algorithms directly for domain reduction
during the one-item collection, without considering the extra
collision errors of sketches under LDP. In a recent study [42],
hash functions were utilized to compute statistics of the k-
sparse vector. However, the approach made an assumption
regarding the number of items generated by each user.

Mean Estimation for multi-dimensional data. Initially,
the Laplace mechanism for mean estimation in centralized
DP [19] was extended for LDP [43], where the perturbed data
in such solutions are unbounded, and the variance increases
with the data domain size d. Duchi et al. [23] propose to bound
the perturbed data within a limited range, so as to estimate
the mean for multi-dimensional data. For d−dimensional
input, the solution utilizes the random response mechanism
to perturb data in each dimension separately, and outputs a
d−dimensional perturbation vector. Harmony [24] simplified
this mechanism by randomly sampling one dimension from a
d−dimensional vector for perturbation. It maintains the same
error bound as Duchi et al.’s solution, but needs less com-
munication. Subsequently, Wang et al. [14] proposed the PM
mechanism to reduce the variance of the Harmony approach.
However, PM is designed for collections where the size of data
items produced by each user is merely one. Wang et al. also
proposed two improved mechanisms: HM that combines the
advantages of Duchi et al.’s solution, and a variant for multi-
dimensional data processing. Even though these solutions sim-
ply use sampling to collect multi-dimensional data, the utility
is not high for very large domains. A recent study proposed
the Square Wave (SW) mechanism [44] that improves PM
by combining it with expectation maximization; though, this
mechanism aims at estimating the data distribution, not the
mean, which is the problem we address in our work.

Variants of LDP. To enhance the utility of LDP, numerous
research efforts have been dedicated to optimizing the vari-
ants of LDP. One approach involves incorporating additional
trust mechanisms into LDP. For example, some studies [45],
[46] propose the shuffling mechanism to further randomize
the reports submitted by users. And some works [47] com-
bines the strengths of centralized DP and local DP. Another
approach (i.e., [48], [49]) relaxes the privacy constraint
imposed by LDP by introducing an additional parameter,
such as a distance metric between inputs inspired by the
geo-indistinguishability [50]. Additionally, other approaches,
such as personalized privacy demand [51], [52], and distinct
sensitivity of the input data [53], [54]. However, these works
do not utilize the background information to enhance utility
as we do in this paper.

IX. CONCLUSIONS

This paper studies the frequency and mean estimation
problems under local differential privacy. We propose PSF, a

privacy-preserving streaming data collection framework based
on sketches. This framework adopts a decode-first procedure,
and introduces the ordering matrix, which does not expose
the original value of any counter in the sketch. For frequency
and mean estimation, we propose two protocols, PrivSketch
and PrivSketch+, based on PSF. We experimentally verify the
effectiveness of our two proposed protocols: they outperform
existing LDP protocols by 1-4 orders of magnitude and execute
up to ∼100x faster.

In future work, we plan to extend our protocol to ad-
dress more statistical problems in data streams. Furthermore,
we plan to explore privacy-preserving methods similar to
PrivSketch that make use of LDP combined with background
knowledge in more complex scenarios.
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