
DPiSAX: Massively Distributed Partitioned iSAX
Djamel-Edine Yagoubi1,∗

Djamel-Edine.Yagoubi@inria.fr

Reza Akbarinia1
1Inria & LIRMM, Montpellier, France

Reza.Akbarinia@inria.fr

Florent Masseglia1

Florent.Masseglia@inria.fr

Themis Palpanas
Paris Descartes University

themis@mi.parisdescartes.fr

Abstract—Indexing is crucial for many data mining tasks
that rely on efficient and effective similarity query processing.
Consequently, indexing large volumes of time series, along with
high performance similarity query processing, have became
topics of high interest. For many applications across diverse
domains though, the amount of data to be processed might be
intractable for a single machine, making existing centralized
indexing solutions inefficient. We propose a parallel indexing
solution that gracefully scales to billions of time series, and a
parallel query processing strategy that, given a batch of queries,
efficiently exploits the index. Our experiments, on both synthetic
and real world data, illustrate that our index creation algorithm
works on 1 billion time series in less than 2 hours , while the
state of the art centralized algorithms need more than 5 days.
Also, our distributed querying algorithm is able to efficiently
process millions of queries over collections of billions of time
series, thanks to an effective load balancing mechanism.

I. INTRODUCTION

Nowadays, individuals are able to monitor various indicators
for their personal activities (e.g., through smart-meters or
smart-plugs for electricity or water consumption), or profes-
sional activities (e.g., through the sensors installed on plants
by farmers). Sensors technology is also improving over time
and the number of sensors is increasing, e.g., in finance and
seismic studies. This results in the production of large and
complex data, usually in the form of time series (or TS in
short) [14], [13], [12], that challenge knowledge discovery.
With such complex and massive sets of time series, fast and
accurate similarity search is a key to perform many data
mining tasks like Shapelets, Motifs Discovery, Classification
or Clustering [14].

In order to improve the performance of such similarity
queries, indexing is one of the most popular techniques [6],
which has been successfully used in a variety of settings and
applications [7], [16], [3], [17], [5], [20]. Although recent
studies have shown that in certain cases sequential scans
can be very efficient [14], [18], such techniques are only
advantageous when the database consists of a single, long
time series, and query answers are small subsequences of
this long time series. Such approaches, however, are not
beneficial in the general case of querying a mixed database
of many small time series [21] (e.g., in neuroscience, or
manufacturing applications [12]), which is the focus of this

∗The research leading to these results has received funding from the
European Union’s Horizon 2020 - The EU Framework Programme for
Research and Innovation 2014-2020, under grant agreement No. 732051.

This work has been performed in the context of the Computational Biology
Institute (www.ibc-montpellier.fr)

b
bbb b

b b

b
b b bb

b b b b

b
bbb

b b

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

(a) Straightforward implementation: the batch
of queries is duplicated on all the comput-
ing nodes.

b
bbb b

b b

b

b b bb

b b b b

b

b b b

bb

Q5

Q3
Q4

Q1

Q2

Q1
Q2

Q3
Q4

Q5

(b) Ideal distribution of time series in the
index nodes: each query is sent only to the
relevant partition.

Fig. 1: Straightforward Vs. partitioned strategies for TS indexing
and querying. Load balancing is a major lever.

study. Therefore, indexing is required in order to efficiently
support data exploration tasks, which involve ad-hoc queries.

In this work, we focus on the problem of similarity search
in such massive sets of time series by means of scalable
index construction and use. Unfortunately, making an index
over billions of time series by using traditional centralized
approached is highly time consuming. Moreover, a naive
construction of the index on the parallel environment may
lead to poor querying performances. This is illustrated in
Figure 1 where the time series dataset is naively split on the W
distributed nodes (Figure 1a). In this case, a batch of queries
B has to be duplicated and sequentially processed on each
node. By means of a dedicated strategy where each query in
B could be oriented to the right partition (i.e., the partition that
must correspond to the query) the querying work load can be
significantly reduced (Figure 1b shows an ideal case where
B is split in W subsets and really processed in parallel). Our
goal is to reach such an ideal distribution of index construction
and query processing in massively distributed environments.

We propose a parallel solution to construct the state of
the art iSAX-based index [5] over billions of time series by
making the most of the parallel environment by carefully
distributing the work load. Our solution takes advantage of

the computing power of distributed systems by using parallel
frameworks such as MapReduce or Spark [19]. Our contribu-
tions are as follows:

• We propose a parallel index construction algorithm that
takes advantage of distributed environments to efficiently
build iSAX-based indices over very large volumes of time
series. We implemented our index construction and query
processing algorithm, and evaluated their performance
over large volumes of data (up to 4 billion time series
of length 256, for a total volume of 6 Terabytes). Our
experiments illustrate the performance of our algorithm
with an indexing time of less than 2 hours for more than
1 billion time series, while the state of the art centralized
algorithm needs more than 5 days.

• We also propose a parallel query processing algorithm
that, given a query, exploits the available processors of
the distributed system to answer the query in parallel
by using the constructed parallel index. As illustrated by
our experiments, and owing to our distributed querying
strategy, our approach is able to process 10M queries
in less than 140 seconds, while the state of the art
centralized algorithm needs almost 2300 seconds.

The rest of the paper is organized as follows. In Section II,
we define the problem we address in the paper and present
the related background. In Section III, we describe the details
of our parallel index construction and query processing al-
gorithm. In Section IV, we present a detailed experimental
evaluation to verify the effectiveness of our approach. In
Section V, we discuss the related work. We conclude in VI.

II. PROBLEM DEFINITION AND BACKGROUND

A time series X is a sequence of values X = {x1, ..., xn}.
We assume that every time series has a value at every
timestamp t = 1, 2, ..., n. The length of X is denoted by |X|.
Figure 2a shows a time series of length 16, which will be used
as running example throughout this paper.

A. iSAX Representation

Given two time series X = {x1, ..., xn} and Y =
{y1, ..., ym} such that n = m, the Euclidean distance between

X and Y is defined as [7]: ED(X,Y) =
√∑i=1

n (xi − yi)2.
The Euclidean distance is one of the most straightforward
similarity measurement methods used in time series analysis.
In this work, we use it as the distance measure.

For very large time series databases, it is important to
estimate the distance between two time series very quickly.
There are several techniques, providing lower bounds by
segmenting time series. Here, we use a popular method,
called indexable Symbolic Aggregate approXimation (iSAX)
representation [15], [16]. The iSAX representation will be used
to represent time series in our index.

The iSAX representation extends the SAX representation
[11]. This latter representation is based on the PAA represen-
tation [10] which allows for dimensionality reduction while
providing the important lower bounding property as we will

b
b b

b

b b b b b

b

b
b b b

b b b

−3

−2

−1

0

1

2

3

4

5

0 4 8 12 16

A time series Ts

(a) A time series X of
length 16

−3

−2

−1

0

1

2

3

4

5

0 4 8 12 16

(b) A PAA representation of X,
with 4 segments

−3

−2

−1

0

1

2

3

4

5

0 4 8 12 16

11

10
01

00

(c) A SAX representation of X,
with 4 segments and cardi-
nality 4, [11, 10, 01, 01].

−3

−2

−1

0

1

2

3

4

5

0 4 8 12 16

1

0

0

1

0

(d) An iSAX representation
of X, with 4 segments
and different cardinalities
[12, 12, 014, 02].

Fig. 2: A time series X is discretized by obtaining a PAA represen-
tation and then using predetermined break-points to map the
PAA coefficients into SAX symbols

show later. The idea of PAA is to have a fixed segment size,
and minimize dimensionality by using the mean values on each
segment. Example 1 gives an illustration of PAA.

Example 1: Figure 2b shows the PAA representation of X ,
the time series of Figure 2a. The representation is composed
of w = |X|/l values, where l is the segment size. For each
segment, the set of values is replaced with their mean. The
length of the final representation w is the number of segments
(and, usually, w << |X|).

The SAX representation takes as input the reduced time
series obtained using PAA. It discretizes this representation
into a predefined set of symbols, with a given cardinality,
where a symbol is a binary number. Example 2 gives an
illustration of the SAX representation.

Example 2: In Figure 2c, we have converted the time
series X to SAX representation with size 4, and cardinality 4
using the PAA representation shown in Figure 2b. We denote
SAX(X) = [11, 10, 01, 01].

The iSAX representation uses a variable cardinality for each
symbol of SAX representation, each symbol is accompanied
by a number that denotes its cardinality. We defined the iSAX
representation of time series X as iSAX(X) and we call it
the iSAX word of the time series X . For example, the iSAX
word shown in Figure 2d can be written as iSAX(X) = [12,
12, 014, 02].

Using a variable cardinality allows the iSAX representation
to be indexable. We can build a tree index as follows. Given
a cardinality b, an iSAX word length w and leaf capacity th,

we produce a set of bw children for the root node, insert the
time series to their corresponding leaf, and gradually split the
leaves by increasing the cardinality by one character if the
number of time series in a leaf node rises above the given
threshold th.

Note that previous studies have shown that the iSAX index
is robust with respect to the choice of parameters (word length,
cardinality, leaf threshold) [16], [5], [21]. Moreover, it can also
be used to answer queries with the Dynamic Time Warping
(DTW) distance, through the use of the corresponding lower
bounding envelope [9].

B. Similarity Queries

The problem of similarity queries is one of the main
problems in time series analysis and mining. In information
retrieval, finding the k nearest neighbors (k-NN) of a query
is a fundamental problem. In this section, we define k nearest
neighbors based queries.

Definition 1: (APPROXIMATE k NEAREST NEIGHBORS)
Given a set of time series D, a query time series Q, and ε > 0.
We say that R = AppkNN(Q,D) is the approximate k nearest
neighbors of Q from D, if ED(a,Q) ≤ (1 + ε)ED(b,Q).
Where a is the kth nearest neighbor from R and b is the true
kth nearest neighbor.

C. Spark

For implementing our parallel algorithm we use Spark
[19], which is a parallel programming framework aiming to
efficiently process large datasets. This programming model
can perform analytics with in-memory techniques to overcome
disk bottlenecks. Unlike traditional in-memory systems, the
main feature of Spark is its distributed memory abstraction,
called resilient distributed datasets (RDD), that is an efficient
and fault-tolerant abstraction for distributing data in a cluster.
With RDD, the data can be easily persisted in main memory
as well as on the hard drive. Spark is designed to support the
execution of iterative algorithms.

D. Problem Definition

The problem we address is as follows. Given a (potentially
huge) set of time series, find the results of approximate k-NN
queries as presented in definition 1, by means of an index and
query processing performed in parallel.

III. DISTRIBUTED PARTITIONED ISAX

In this section, we present a novel parallel partitioned index
construction algorithm, called DPiSAX, along with very fast
parallel query processing techniques.

Our approach is based on a sampling phase that allows an-
ticipating the distribution of time series among the computing
nodes. Such anticipation is mandatory for an efficient query
processing, since it will allow, later on, to decide what partition
contains the time series that actually correspond to the query.
To do so, we first extract a sample from the time series dataset,
and analyze it in order to decide how to distribute the time
series in the splits, according to their iSAX representation.

TABLE I: A sample S of 8 time series converted to iSAX represen-
tations with iSAX words of length 2

Time series iSAX words Time series iSAX words
TS1 {01, 00} TS5 {00, 10}
TS2 {00, 01} TS6 {01, 11}
TS3 {01, 01} TS7 {10, 00}
TS4 {00, 00} TS8 {10, 01}

A. Sampling

In Distributed Partitioned iSAX, our index construction
combines two main phases which are executed one after the
other. First, the algorithm starts by sampling the time series
dataset and creates a partitioning table. Then, the time series
are partitioned into groups using the partitioning table. Finally,
each group is processed to create an iSAX index for each
partition.

More formally, our sampling is done as follows. Given
a number of partitions P and a time series dataset D, the
algorithm takes S sample time series of size L from D
using stratified sampling, and distributes them among the W
available workers. Each worker takes S/W time series and
emits its iSAX words SWs = {iSAX(tsi), i = 1, ..., L}.
The master collects all the workers’ iSAX words and performs
the partitioning algorithm accordingly. In the following, we
describe the partitioning method that enable separating the
dataset into non-overlapping subsets based on iSAX repre-
sentations.

B. Partitioning Algorithm

Here, our partitioning paradigm considers the splitting
power of each bit in the iSAX symbols, before actually
splitting the partition. As in the basic approach, the biggest
partition is considered for splitting at each step of the parti-
tioning process. The main difference is that we don’t use the
first bit of the nth symbol for splitting the partition. Instead,
we look for all bits (whatever the symbol) with the highest
probability to equally distribute the time series of the partition
among the two new sub-partitions that will be created. To this
effect, we compute for each segment the µ±σ interval, where
µ is the mean and σ is the standard deviation, and we examine
for each segment if the break-point of the additional bit (i.e.,
the bit used to generate the two new partitions) lies within the
interval µ ± σ. From the segments for which this is true, we
choose the one having µ closer to the break-point.

In order to illustrate this, let us consider the blue boxes of
the diagrams in Figure 3b. We choose the biggest blue box that
ensures the best splitting by considering the next break-point.

Example 3: Let’s consider Table I, where we use iSAX
words of length two to represent the time series of a sample S.
Suppose that we need to generate four partitions. To generate
four partitions, we compute the µ ± σ interval for the first
segment and the second segment, and choose the first bit of
the second segment to define two partitions. The first partition
contains all the time series having their second segment in
iSAX word starting with 0, and the second partition contains
the time series having their second segment in iSAX word

1

0

101

bb

b b

b bb

b

bb

TS1 TS3

TS4 TS2

TS5

TS6

TS7
TS8

00

(a) Partitioning according
to DPiSAX.

0 1 1 100 01 01 01

N3 N4

Root

N8 N9N10 N11 N12 N13

00 00 01 00
1 00 1 01

RootRoot Root

– 1 1 00 000 01

(b) DPiSAX indexes after partitioning and indexing. The partitioning principle of DPiSAX allows
better balance.

Fig. 3: The result of the partitioning algorithm on sample S (from Table I) into four partitions.

starting with 1. We obtain two partitions: ”0” and ”1”. The
biggest partition is ”0” (i.e., the one containing time series
TS1 to TS4, TS7 and TS8). We compute the µ± σ interval
for all segment over all the time series in this partition. Then,
the partition is split again, according to the first bit of the first
symbol. We now have the following partitions: from the first
step, partition ”1”, and from the second step, partitions ”00”,
and ”10”. Now, partition ”00” is the biggest one. This partition
is split for the third time, according to the second bit of the
first symbol and we obtain four partitions. Figure 3a shows the
obtained partitions and Figure 3b shows the indexes obtained
with these partitions.

C. Index Construction

DPiSAX, our parallel index construction, sequentially splits
the dataset for distribution into partitions. Then each worker
builds an independent iSAX index on its partition, with the
iSAX representations having the highest possible cardinalities.
Representing each time series with iSAX words of high
cardinalities allows us to decide later what cardinality is really
needed, by navigating ”on the fly” between cardinalities. The
word of lower cardinality being obtained by removing the
trailing bits of each symbol in the word of higher cardinality.
The output of this phase, with a cluster of W nodes, is a set
of W iSAX indexes built on each split.

D. Query Processing

Given a collection of queries Q, in the form of time series,
and the index constructed in the previous section for a database
D, we consider the problem of finding time series that are
similar to Q in D, as presented in definition 1. (Due to lack
of space, we omit the discussion of exact query answering to
future work.)

Given a batch B of queries, the master node identify
the right partition where the index is stored and send the
corresponding query by using its iSAX words. Then, we send
each query to the partition that has the same iSAX word
as the query. Each worker uses its local index to retrieve
time series that correspond to each query Q ∈ B, according
to the approximate k-NN criteria. On each local index, the
approximate search is done by traversing the local index to
the terminal node that has the same iSAX representation as
the query. The target terminal node contains at least one and at
most th iSAX words, where th is the leaf threshold. A main

TABLE II: Default parameters

Parameters Value Parameters Value
iSAX word length 8 Leaf capacity 1,000
Basic cardinality 2 Number of machines 32
Maximum cardinality 512 Sampling fraction 10%

memory sequential scan over these iSAX words is performed
in order to obtain the k nearest neighbors using the Euclidean
distance.

IV. PERFORMANCE EVALUATION

In this section, we report experimental results that show
the quality and the performance of DPiSAX for indexing time
series.

The parallel experimental evaluation was conducted on a
cluster of 32 machines, each operated by Linux, with 64
Gigabytes of main memory, Intel Xeon CPU with 8 cores and
250 Gigabytes hard disk. The iSAX2+ approach was executed
on a single machine with the same characteristics.

We compare our solution to two state of the art baselines:
the most efficient centralized version of iSAX index (i.e.,
iSAX2+ [5]), and Parallel Linear Search (PLS), which is a
parallel version of the UCR Suite fast sequential search (with
all applicable optimizations in our context: no computation of
square root, and early abandoning) [14].

Our experiments are divided into two sections. In Section
IV-B, we measure the index construction times with different
parameters. In Section IV-C, we focus on the query perfor-
mance of our approach.

Reproductibility: we implemented our approach on top of
Apache-Spark [19], using the Java programming language.
The iSAX2+ index is also implemented with Java. Our
code is available at http://djameledine-yagoubi.info/projects/
DPiSAX/.

A. Datasets and Settings

We carried out our experiments on two real world and
synthetic datasets, up to 6 Terabytes and 4 billion series. The
first real world data represents seismic time series collected
from the IRIS Seismic Data Access repository [1]. After
preprocessing, it contains 40 millions time series of 256
values, for a total size of 150Gb. The second real world data is
the TexMex corpus [8]. It contains 1 Billion time series (SIFT
feature vectors) of 128 points each (derived from 1 Billion

http://djameledine-yagoubi.info/projects/DPiSAX/
http://djameledine-yagoubi.info/projects/DPiSAX/

images). Our synthetic datasets are generated using a Random
Walk principle, each data series consisting of 256 points. At
each time point the generator draws a random number from a
Gaussian distribution N(0,1), then adds the value of the last
number to the new number. This type of generator has been
widely used in the past. [2], [7], [3], [15], [4], [5], [20]. Table II
shows the default parameters (unless otherwise specified in the
text) used for each approach. The iSAX word length, PAA
size, leaf capacity, basic cardinality, and maximum cardinality
were chosen to be optimal for iSAX, which previous works
[15], [16], [4], [5], [20] have shown to work well across data
with very different characteristics.

B. Index Construction Time

In this section, we measure the index construction time
in DPiSAX and compare it to the construction time of the
iSAX2+ index.

Figure 4 reports the index construction times for all ap-
proaches on our Random Walk dataset. The index construc-
tion time increases with the number of time series for all
approaches. This time is much lower in the case of DPiSAX,
than that of the centralized iSAX2+. On 32 machines, and for
a dataset of one billion time series, DPiSAX builds the index
in 65 minutes , while the iSAX2+ index is built in more than
5 days on a single node.

 10

 100

 1000

 10000

200M 400M 600M 800M 1B

 C
o
n
s
tr

u
c
ti
o
n
 t
im

e
 (

M
in

u
te

s
)

Number of Time Series

DPiSAX
iSAX2+

Fig. 4: Logarithmic scale. Construction time as a function of dataset
size. DPiSAX is run on a cluster of 32 nodes. iSAX2+ is run
on a single node. With 1 billion Random Walk TS, iSAX2+
needs 5 days and our distributed algorithm needs less than
2 hours.

Figure 5 illustrates the parallel speed-up of our approach
on the Random Walk dataset. The results show a near optimal
gain for DPiSAX.

Figure 6 reports the performance gains of our parallel
approach when compared to the centralized version of iSAX2+
on our synthetic and real datasets. The results show that
DPiSAX is 40-120 times faster than iSAX2+. We observe that
the performance gain depends on the dataset size in relation
to the number of Spark nodes used in the deployment. Note
that the time Spark needs to deploy on 32 nodes is accounted
for in our measurements. Thus, given the very short time
needed to construct the DPiSAX index on the seismic dataset
(420 seconds), the proportion of the time taken by the Spark

 0

 50

 100

 150

 200

 8 16 24 32 40

 C
o
n
s
tr

u
c
ti
o
n
 t
im

e
 (

M
in

u
te

s
)

Number of Nodes

DPiSAX

Fig. 5: Construction time as a function of cluster size. DPiSAX has
a near optimal parallel speed-up. With 1 billion TS from the
Random Walk dataset.

20X

40X

60X

80X

100X

120X

Vs. iSAX2+

over Seismic

Vs. iSAX2+

over RW

Vs. iSAX2+

over TexMex

P
e
rf

o
rm

a
n
c
e
 G

a
in

DPiSAX

Fig. 6: Performance gain on iSAX2+ in construction time, over
seismic (40 millions TS), Random Walk (RW, 1 billion TS)
and TexMex (1 billion TS), with a cluster of 32 nodes.

deployment, when compared to index construction, is higher
than for the much larger Random Walk dataset.

C. Query Performance

We evaluate the querying performance of our algorithm, and
compare it to that of iSAX2+. We use our synthetic data, and
generate Random Walk queries with the same distribution as
described in Section IV-A.

Figure 7 compares the cumulative query answering time
of our parallel approach to that of iSAX2+, for answering
approximate k nearest neighbors queries with a varying size of

 0

 500

 1000

 1500

 2000

 2500

 3000

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

C
u
m

u
la

ti
v
e
 T

im
e
 (

S
e
c
o
n
d
)

Number of Queries

DPiSAX
iSAX2+

Fig. 7: Cumulative query answering time (Approximate 10-NN).
DPiSAX on a cluster of 32 nodes, iSAX2+ on a single node.

query batch. We observe that the time performance of DPiSAX
is better than that of the iSAX2+ by a factor of up to 16. Note
that the total time to answer 10 millions queries is 2270 sec
for iSAX2+ and only 138 sec for DPiSAX.

V. RELATED WORK

In the context of time series data mining, several techniques
have been developed and applied to time series data, e.g.,
clustering, classification, outlier detection, pattern identifica-
tion, motif discovery, and others. The idea of indexing time
series is relevant to all these techniques. Note that, even though
several databases have been developed for the management
of time series (such as Informix Time Series1, InfluxDB2,
OpenTSDB3, and DalmatinerDB4 based on RIAK), they do
not include similarity search indexes, focusing on (temporal)
SQL-like query workloads. Thus, they cannot efficiently sup-
port similarity search queries, which is the focus of our study.

In order to speed up similarity search, different works have
studied the problem of indexing time series datasets, such as
Indexable Symbolic Aggregate approXimation (iSAX) [15],
[16], iSAX 2.0 [4], [5], iSAX2+ [5], Adaptive Data Se-
ries Index (ADS Index) [20] and Dynamic Splitting Tree
(DSTree) [17]. The iSAX index family (iSAX 2.0, iSAX2+,
ADS Index) is based on SAX representation [11] of time
series, which is a symbolic representation for time series that
segments all time series into equi-length segments and sym-
bolizes the mean value of each segment. As an index structure
specifically designed for ultra-large collections of time series,
iSAX 2.0 proposes a new mechanism and also algorithms
for efficient bulk loading and node splitting policy, wich is
not supported by iSAX index. In [5], the authors propose
two extensions of iSAX 2.0, namely iSAX 2.0 Clustered and
iSAX2+. These extensions focus on the efficient handling of
the raw time series data during the bulk loading process, by
using a technique that uses main memory buffers to group and
route similar time series together down the tree, performing the
insertion in a lazy manner. In addition to that, DSTree based
on extension of APCA representation, called EAPCA [17]
segments time series into variable length segment. Unlike
iSAX which only supports horizontal splitting, and only the
mean values can be used in splitting, the DSTree uses multiple
splitting strategies. All these indexes have been developed for
a centralized environment, and cannot scale up to very high
volumes of time series.

In this paper, we propose a parallel solution that takes ad-
vantage of distributed environments to efficiently build iSAX-
based indices over billions of time series, and to query them
in parallel with very small running times. To the best of our
knowledge, this is the first paper that proposes such a solution.

1https://www.ibm.com/developerworks/topics/timeseries
2https://influxdata.com/
3http://opentsdb.net/
4https://dalmatiner.io/

VI. CONCLUSIONS

We proposed DPiSAX, a novel and efficient parallel solution
to index and query billions of time series. We evaluated
the performance of our solution over large volumes of real
world and synthetic datasets (up to 4 billion time series, for
a total volume of 6TBs). The experimental results illustrate
the excellent performance of DPiSAX (e.g., an indexing time
of less than 2 hours for more than one billion time series,
while the state of the art centralized algorithm needs several
days). The results also show that the distributed querying
algorithm of DPiSAX is able to process millions of similarity
queries over collections of billions of time series with very fast
execution times (e.g., 140s for 10M queries), thanks to our load
balancing mechanism. Overall, the experimental results show
that by using our parallel technique, the indexing and mining
of very large volumes of time series can now be done in very
small execution times, which are impossible to achieve using
traditional centralized approaches.

REFERENCES

[1] Iris, seismic data access. http://ds.iris.edu/data/access/.
[2] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search

in sequence databases. In Int. Conf.on FODO, 1993.
[3] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl. The

ts-tree: Efficient time series search and retrieval. In EDBT, 2008.
[4] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. isax 2.0: Indexing

and mining one billion time series. In ICDM Conf., pages 58–67, 2010.
[5] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J. Keogh.

Beyond one billion time series: indexing and mining very large time
series collections with i SAX2+. Knowl. Inf. Syst., 2014.

[6] Philippe Esling and Carlos Agon. Time-series data mining. ACM
Comput. Surv., 45(1):12:1–12:34, December 2012.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. SigRec, 23(2):419–429, 1994.

[8] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one
billion vectors: re-rank with source coding. In ICASSP , 2011.

[9] Eamonn J. Keogh. Exact indexing of dynamic time warping. In VLDB,
2002.

[10] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation
of time series, with implications for streaming algorithms. In SIGMOD,
2003.

[11] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: A novel
symbolic representation of time series. Data Min. Knowl. Discov., 2007.

[12] Themis Palpanas. Data series management: The road to big sequence
analytics. SIGMOD Record, 44(2):47–52, 2015.

[13] Themis Palpanas. Big sequence management: A glimpse of the past,
the present, and the future. In SOFSEM, 2016.

[14] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh. Searching and mining trillions of
time series subsequences under dynamic time warping. In KDD, 2012.

[15] J. Shieh and E. Keogh. isax: Indexing and mining terabyte sized time
series. In KDD Conf., pages 623–631, 2008.

[16] J. Shieh and E. Keogh. isax: Disk-aware mining and indexing of massive
time series datasets. DMKD, 19(1):24–57, 2009.

[17] Yang W., Peng W., Jian P., Wei W., and Sheng H. A data-adaptive
and dynamic segmentation index for whole matching on time series.
PVLDB, 2013.

[18] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H.A. Dau, D.F.
Silva, A. Mueen, and E.J. Keogh. Matrix profile I: all pairs similarity
joins for time series: A unifying view that includes motifs, discords and
shapelets. In ICDM, 2016.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In HotCloud, 2010.

[20] K Zoumpatianos, S Idreos, and T Palpanas. Indexing for interactive
exploration of big data series. In SIGMOD Conf., 2014.

[21] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. ADS: the
adaptive data series index. VLDB J., 25(6):843–866, 2016.

