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Abstract—Similarity search is a fundamental operation for
analyzing data series (DS), which are ordered sequences of
real values. To enhance efficiency, summarization techniques
are employed that reduce the dimensionality of DS. SAX-based
approaches are the state-of-the-art for exact similarity queries,
but their performance degrades for high-frequency signals, such
as noisy data, or for high-frequency DS. In this work, we
present the SymbOlic Fourier Approximation index (SOFA),
which implements fast, exact similarity queries. SOFA is based
on two building blocks: a tree index (inspired by MESSI) and
the SFA symbolic summarization. It makes use of a learned
summarization method called Symbolic Fourier Approximation
(SFA), which is based on the Fourier transform and utilizes a
data-adaptive quantization of the frequency domain. To better
capture relevant information in high-frequency signals, SFA
selects the Fourier coefficients by highest variance, resulting in
a larger value range, thus larger quantization bins. The tree
index solution employed by SOFA makes use of the GEMINI-
approach to answer exact similarity search queries using lower
bounding distance measures, and an efficient SIMD implemen-
tation. We further propose a novel benchmark comprising 17
diverse datasets, encompassing 1 billion DS. Our experimental
results demonstrate that SOFA outperforms existing methods on
exact similarity queries: it is up to 10 times faster than a parallel
sequential scan, 3-4 times faster than FAISS, and 2 times faster
on average than MESSI. For high-frequency datasets, we observe
a remarkable 38-fold performance improvement.

Index Terms—Data Series, Time Series, Similarity Search,
Exact, Euclidean Distance.

I. INTRODUCTION

The advancements and deployments of modern sensors have
led to the generation, collection, and analysis of massive
datasets of data series (DS) in nearly every scientific field [1],
[2]. A DS is an ordered sequence of real values. The most
common type of DS is the time series, which is ordered in
time. Other frequent orders are wave lengths, angles, pixel
offsets, or locations [3].

Important analysis problems for DS are querying [4], clas-
sification [5], clustering [6], anomaly detection [7], which all
require special algorithms that take the sequential nature of
the values into account. At the heart of these techniques is
similarity search [4], [8]–[10], which aims to identify the series
in a dataset that is closest to a given query series based on a
distance measure, such as the widely used Euclidean distance

(ED). Similarity search can be split into two main categories:
exact search and approximate search [4]. In this work, we
focus on exact similarity search using ED.

Indexing is a widely used technique to accelerate similar-
ity searches. Most indices for DS similarity search utilize
summarized representations of the DS to map them into
lower-dimensional spaces. Symbolic Aggregate approXima-
tion (SAX) [11] is among the most popular techniques [8].
SAX works by computing mean values over segments and
then quantizing these values to form a SAX word. Its quanti-
zation employs a fixed alphabet of symbols, and the Normal
Distribution is divided into equal-depth bins to derive these
symbols. Consequently, SAX assumes that the series of a
dataset are Normally distributed. The distance between two
SAX words from DS A and B provides a lower bound to
the ED between A and B, allowing for exact indexing using
the GEMINI framework [12], [13], which will be explained in
Section II-A. The tighter the lower bound to the ED, the better
the indexing performance, leading to reduced retrieval times.
Although SAX’s simplicity is sufficient for many scenarios,
its rigid quantization scheme results in decreased performance
when dealing with high-frequency data.

Figure 1 illustrates some cases where the SAX transforma-
tion is failing on our benchmark datasets (Section V). The
original signal is illustrated in gray, and the mean values over
16 segments in orange. For high-frequency signals, using mean
values (orange) fails to capture the signal’s semantics, resulting
in a flat line summarization (Figure 1 TOP). Additionally, the
actual data distribution is often non-Gaussian, leading to poor
lower bounding distances (LBDs) and degraded indexing per-
formance (Figure 1 BOTTOM). Please note that Figure 1 (top)
showcases a single high-frequency series from each dataset
where SAX fails, providing a simplified perspective, as each
dataset comprises multiple series with varying frequencies.
Overall, our datasets cover a wide range of frequencies (Fig-
ure 14), with OBS and ISC-EHB having lowest frequencies.

We introduce the SOFA (SymbOlic Fourier Approximation)
index, built on two core components: the Symbolic Fourier
Approximation (SFA) [14] and a tree index based on MESSI,
adapted to our approach. SOFA leverages SFA for efficient
and accurate similarity search in large datasets, addressing
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Fig. 1. TOP: PAA with 16 values (orange) fails to approximate a data series (in gray) with high frequency, resulting in a flat line. Meanwhile FFT with 16
values (in blue) closely mimics the data. BOTTOM: Distribution of values for each dataset. SAX is built upon the assumption that the data follows Normal
N(0,1) distribution (dotted in green). This is neither the case case for the PAA approximations nor the raw data.

challenges associated with high-frequency data. SFA trans-
forms a DS into the frequency domain and applies a learned
quantization of the Fourier coefficients. This quantization is
derived from the frequency distribution of all series within a
dataset, ensuring that the representation adapts to the dataset’s
characteristics, rather than a single series. Figure 1 highlights
SFA’s ability to approximate high-frequency series. The SFA
approximation using the 8 dominant Fourier coefficients (8
real & 8 imag values), learned from the dataset, is depicted
in blue. As evident from the figure, SFA provides a closer
approximation to the actual DS compared to SAX, especially
for signals with high variability.

The MESSI index [15], [16] represents the state-of-the-art
in-memory DS index. It makes use of the GEMINI-approach
to answer exact similarity search queries. It was specifically
developed for concurrent multi-threaded environments, mod-
ern hardware (SIMD), and for in-memory DS management.
Our contributions can be summarized as follows:

1) We propose utilizing the learned symbolic summarization
technique, Symbolic Fourier Approximation (SFA), for
efficient DS similarity search. SFA demonstrates superior
capability in capturing the latent semantics of high-
frequency DS (Section V-C).

2) We introduce SOFA, an advanced indexing structure that
synergistically combines SFA with a parallel tree index
adapted from MESSI, a state-of-the-art DS index opti-
mized for modern hardware architectures (Section IV).

3) In Section IV-G, we present an efficient SIMD-based im-
plementation of the SFA lower-bounding distance, which
solves conditional branching and lower bounding.

4) We present the most extensive benchmark to date for
similarity search, encompassing 17 diverse datasets. It
totals ∼ 1 TB of data, comprising 1,017,586,504 (1
billion) DS (Table I).

5) Our extensive experimental evaluation (Section V)
demonstrates that SOFA consistently outperforms exist-
ing methods. It is up to 38 times faster than MESSI [15],
and on average 2.5 times faster. It is up to 10 times faster

than the a parallel sequential scan [17], and 3− 4 times
faster than FAISS [18].

The remainder of this paper is structures as follows: In
Section II we review the background on similarity search.
Section III discussed the related work. Section IV introduces
the SOFA framework based on the MESSI index IV-A, and
the SFA summarization technique IV-C. Section V presents
our experimental results and Section VI concludes.

II. BACKGROUND AND DEFINITIONS

We define DS and the z-normalized Euclidean distance (z-
ED), which we will use throughout this work.

Definition 1: Data Series (DS): A data series A =
(p1, . . . , pn) is an ordered sequence of n points, where each
point pi = (ti, ai) consists of a real value ai ∈ R and a
position ti ∈ N.

In the subsequent discussion, we will disregard the positions
and focus solely on the values. The order of values differentiate
DS from vector data, such as embeddings learned from images
or text. DS typically show low frequency, which allows for
efficient summarization techniques to be applied. The later
type of data is characterized by high variance in high fre-
quency, which makes summarization more challenging. In the
context of similarity search, the similarity of two subsequences
is measured using the z-normalized ED.

Definition 2: z-normalized Euclidean distance (z-ED):
Given two univariate DS A = (a1, . . . , al) with mean µA

and standard-deviation σA and B = (b1, . . . , bl) with µB and
σB , both of length l, their (squared) z-ED is defined as:

d(A,B) =

√√√√ l∑
t=1

(
at − µA

σA
− bt − µB

σB

)2

Given a query series Sq of length n, a collection S of size N
consisting of DS of length n, similarity search aims to identify
the nearest neighbor series Sc ∈ S for which the distance to
Sq is the smallest: ∀So ∈ S, So ̸= Sc : d(Sc, Sq) ≤ d(So, Sc)

Similarity search can be accelerated using summarization
techniques, which map DS into lower-dimensional space.



Definition 3: A summarization is a mapping E : Rn → Rl

that transforms a DS S of length n into a lower-dimensional
series of length l, where l ≪ n.

The lower bounding distance is a crucial property for
similarity search, as it enables the exact retrieval of the
nearest neighbors in a reduced l-dimensional space using the
GEMINI-framework.

Definition 4: A lower bounding distance (LBD) d′(·, ·) for
a distance measure d(·, ·) is a measure that satisfies the lower
bounding property for DS A and B:

d′(A′, B′) ≤ d(A,B)

In this context, A′ = E(A) and B′ = E(B) represent
the summarizations of A B, respectively. (z-normalized) Eu-
clidean LBD s have been defined for summarization techniques
including iSAX [8], PAA [19], SFA [14], or DFT [20].

A. Exact Similarity Search using GEMINI

Indexing high-dimensional DS is a considerable challenge
due to the Curse of Dimensionality [21]. As the dimensionality
of the search space increases, the number of DS that must be
examined typically grows exponentially. Consequently, exe-
cuting an exact similarity query using spatial access methods
(SAMs) can take longer than performing a sequential scan of
all data [22], [23]. SAMs traditionally become ineffective at
dimensionalities ranging from n = 10 to 20 dimensions [12].

Research in [12], [13] was the first to introduce the concept
of dimensionality reduction of DS (summarization) prior to
indexing. This approach, known as GEMINI, demonstrated
that by using a lower-bounding distance measure on the sum-
marization, queries in the reduced-dimensional search space
return a super-set of the exact result as in the original search
space. These false alarms are then pruned using the actual
distance measure.

The rationale behind GEMINI is to compute the lower-
bounding distances for each DS A relative to the query Q.
The exact distance between A and Q is only calculated
if the lower-bounding distance exceeds the current best-so-
far exact distance computation. By providing a LBD, the
Curse of Dimensionality is mitigated, reducing the effective
dimensionality to 10− 20 dimensions of the summarization.

Since the introduction of GEMINI, numerous summariza-
tion techniques with lower bounding techniques have been
proposed, which can be categorized into real-valued and
discrete-valued (symbolic) methods. Research on symbolic
series is scarce. Symbolic methods combine dimensionality
reduction with quantizing. SAX [24] has established itself as
the de-facto standard for exact similarity search on DS.

B. Distance calculations using SIMD

Single Instruction, Multiple Data (SIMD) is a parallel
computing architecture that performs the same operation si-
multaneously on multiple data points, efficiently utilizing
data-level parallelism [25]. By fetching instructions once and
executing them in parallel, SIMD reduces latency and achieves
speedups of up to 16x with modern CPUs supporting vector

widths of up to 512 bits. In data series, SIMD has been used
for Euclidean distance calculations [26] and integrated into
indexing techniques like ParIS+ and MESSI to optimize lower-
bound distance computations, improving similarity search per-
formance [15], [27], [28].

III. RELATED WORK

Since the introduction of the GEMINI framework [12] for
exact similarity search on DS using lower bounding, a vast
array of summarization techniques has emerged. The majority
of research in this domain has focused on numeric techniques,
which can be broadly categorized as follows: Piecewise Ag-
gregate Approximation (PAA) [19] uses mean values over
fixed-length segments. Adaptive Piecewise Constant Approx-
imation (APCA) [29] employs mean values over adaptive
segments. Piecewise Linear Approximation (PLA) [30] uses
line segments to represent DS. Chebyshev Polynomials [31]
are another method for DS summarization. The Fourier Trans-
form [12], [20] utilizes the frequency domain representation.
Wavelets [32] are also used for DS summarization. Despite
advancements in lower bounding strategies, there remains
a notable gap in research focused on leveraging numerical
techniques for indexing massive datasets. This is partly due
to the substantial memory requirements of these methods,
but also as these show no clear improvement over symbolic
representations. In their study, [14] compared several tech-
niques based on pruning power, namely, APCA, PAA, PLA,
CHEBY, and DFT. They conclude that none outperformed
DFT. Moreover, SFA consistently matched or exceeded the
performance of all but DFT across nearly all scenarios. SFA
is outperformed by DFT due to SFA’s additional quantization
step applied on top of DFT. The results that there is no
significant difference were independently confirmed by [11].

SAX [11] is a symbolic summarization technique that is
commonly used for DS similarity search, as it has a much
lower memory footprint requiring only a few bits (rather
than a double/8 byte), and allows for lower bounding the
ED, which is essential in finding the exact nearest neigh-
bors [12]. The iSAX-family of indices is large [8], includ-
ing iSAX [33], iSAX2.0 and iSAX2+ [34], ParIS+ [27],
MESSI [16], ULISSE [35], Hercules [36], DET-LSH [37], and
LeaFi [38]. MESSI [16] achieves SotA performance for in-
memory DS similarity search in a single machine. Moreover,
since all SAX-based indices [8] use the same summarization
technique, they will all benefit from the improvements intro-
duced here.

The research on symbolic transformations, which show
that their proposed distance lower bounds the ED can be
divided into SAX-based [8], [39]–[43] and SFA-based [14],
[44]. SFA [14] is a data-adaptive transformation based on
the frequency domain. It is most common in dictionary-
based classification approaches [5], [45], [46]. An index was
proposed based on SFA, named the SFA trie [14], inspired
by building a prefix tree on the SFA word. However, it
showed to be non-competitive to the SotA [4]. SFFA [44]
extends on SFA using the Fractional Fourier transform, and a



supervised feature selection mechanism. We cannot use SFFA
directly, as our data has no labels. ASAX [43] introduces
fixed variable-length segments, which remain constant across
series. SAX-CP [39] extracts variable-length segments using
change points. Many SAX-based variants add trend features,
increasing the total number of features. For example, SAX-
TD [47], SAX-CP [39], TFSAX [40], TSAX [48], SAX-
VFD [42], and IEPF-TSR [41] require 2w + 1, 2w, 2w,
3w, 4w, and 3w features, respectively, for w segments. It
remains unknown if these approaches outperform SAX when
the number of features is kept constant by reducing the number
of mean values proportionally [49]. Our requests for code
to the corresponding authors of five papers published after
2019, received no response. Thus, we re-implemented SAX-
TD [47] and ASAX [43] for the experiments. Surprisingly,
both performed significantly worse than iSAX.

While other distance measures may be suitable in specific
contexts, our focus is on Euclidean Distance (ED). Elastic
distances, for instance, can be advantageous when working
with limited data, such as in classification [5], [50] or clus-
tering tasks [6]. However, [51] demonstrated that the error
rate of ED is approaching that of Dynamic Time Warping
(DTW) as the dataset size increases, rendering the difference
negligible with a few thousand objects. Consequently, large-
scale dataset indexing often favors ED due to its computational
efficiency [8]. The Scalable Compound Infrastructure [52]
introduces the concept of shift-insensitive SAX histograms to
more effectively handle DS with gaps. It also incorporates
(sub-)vector quantization for improved representation. Unlike
both iSAX and SOFA, however, the resulting representation
does not provide a lower bound for the Euclidean Distance
(ED).

A similar, yet different area of research is on vector
datasets [53]. Other than DS, vector data has no ordering. I.e.
the values may be re-ordered in any arbitrary order. This can
result in very high variance in high frequencies, which makes
the application of summarization techniques hard. Thus, most
research in vector data focuses on approximate retrieval [54].
FAISS [18] is a SotA approach for exact similarity search
on vector datasets. In this work, we compare to the FAISS
approach. Approximate similarity search [18] may not always
yield exact results, but results that are very close. MASS [55]
and the UCR suite [3] were originally designed for subse-
quence search, targeting the problem of finding the lowest
distance subsequence in a long DS. Our paper, however,
focuses on whole-series matching. MASS is less effective and
up to 5 times slower than the UCR suite for this task (see Fig 3
in [56]). Thus, we did not include MASS in our experiments,
but compare to the UCR suite.

Distributed systems have been developed to accelerate DS
similarity retrieval. TARDIS [9] is an iSAX-based distributed
index combining a centralized global index with local indices
on cluster worker nodes, using word-level variable cardinality
and K-ary trees (sigTree) for local indexing. It supports exact
and approximate k-NN queries, and SOFA’s improvements
could be applied to it. CLIMBER [57] employs a novel feature

extraction mechanism, recursively selecting random pivots
to create a recursive Voronoi partition. Its two-level hybrid
index, CLIMBER-INX, organizes data into groups using trie-
based partitioning. PARROT [58] is a correlation-based frame-
work for approximate similarity search, identifying patterns
and exceptions within partitions. Its two-layer index includes
a centralized global index (PARROT-G) and local indices
(PARROT-L) for significant P-patterns in each partition.

IV. SOFA - FAST, EXACT SIM. SEARCH

SOFA (SymbOlic Fourier Approximation) is based on two
building blocks: a tree index adapted from MESSI and the
SFA symbolic summarization. In the following section, we
first introduce MESSI for answering exact queries using the
GEMINI approach for exact similarity search. From Sec-
tion IV-C, we present the SAX summarization, and compare it
to SFA, and finally sketch how to implement it within MESSI
(Section IV-F).

A. MESSI

MESSI [15], [16] represents the state-of-the-art in-memory
DS indexing [8]. It was specifically designed to exploit con-
current multi-threaded environments and for in-memory DS
management for exact similarity search using the GEMINI
framework. It utilizes variable cardinalities for iSAX sum-
maries, varying the number of bits used for each segment’s
symbols, to build a hierarchical index.

B. Structure

This tree consists of three types of nodes. Root Node:
Points to multiple child nodes (up to 2w in the worst case,
where w is the number of bits), representing all possible iSAX
summaries. Inner Nodes: Each has two children and holds
an iSAX summary representing all series in its subtree. Leaf
Nodes: Store iSAX summaries of several DS and pointers
to these series. When the number of series in a leaf node
exceeds its capacity, the leaf splits into two new leaves,
becoming an inner node. This split is achieved by increasing
the cardinality of one segment’s iSAX summary to ensure a
balanced distribution of series between the new leaves [34]).
The iSAX summaries for the new leaves are then adjusted by
setting the new bit to 0 and 1, respectively.

a) Exact Similarity Search: For query answering, MESSI
first performs an Approximate Search by traversing the index
tree to find the best candidate series. Then, it computes an
approximate answer by calculating the real distance, called
Best-So-Far (BSF), between the query series and the candidate
series. The leaf with the smallest lower-bound distance to the
query is identified, and BSF is used to prune as many candidate
series as possible from the dataset during the tree parsing.

MESSI employs multiple index workers to traverse index
subtrees in parallel, using BSF to determine which subtrees
can be pruned. Each subtree is assigned to a single worker to
minimize synchronization needs. Each worker only needs to
synchronize during subtree selection. The leaves of unpruned
subtrees are placed into a fixed number of priority queues,



ordered by the lower-bound distance between the PAA of the
query and the iSAX summary of the leaf node.

The workers access these priority queues using locks. Each
index worker processes a priority queue by repeatedly calling
DeleteMin() to retrieve a leaf node. The worker checks if the
lower-bound distance between the query and the leaf exceeds
the current BSF. If it does, the leaf is pruned. Otherwise, the
worker examines the series within the leaf by computing the
lower-bound distance between the PAA of the query and the
iSAX summaries of each series. If this lower-bound distance
is less than the BSF, the worker calculates the real distance
using the raw values further. If a series with a smaller distance
than the current BSF is found, the BSF is updated.

When a worker encounters a node with a distance greater
than the BSF, it abandons the current priority queue and
selects another, as all remaining elements in the abandoned
queue have higher distances and can be pruned. This process
continues until all priority queues are processed, and the BSF
is updated accordingly. The final value of the BSF is returned
as the query result. Note that the above process is trivially
extended to return the k-NN. For further details, readers are
referred to [15], [16].

C. iSAX - A Static Symbolic Representation

The indexable SAX (iSAX) summarization technique com-
bines (a) the Piecewise Aggregate Approximation (PAA) with
(b) a fixed equal-depth binning quantization derived from the
Normal distribution N(0,1). iSAX transforms a DS into a word
as follows:

1) Segmentation: The DS is divided into l segments of
equal length n/l.

2) Aggregation: Each segment is represented by its mean
value, also referred to as Piecewise Aggregate Approx-
imation (PAA) [19]. This step acts as a low pass filter,
as high variance segments, like high-frequency segments,
dropouts or noise, of a series are smoothed.

3) Fixed Quantization: The l segment (PAA) means are
mapped to symbols using breakpoints that assume a
Normal distribution of the data.

Quantization in iSAX is build upon the assumption that
values sampled from DS follow a Normal distribution N(0, 1),
with mean 0 and std 1. iSAX ignores the actual data distri-
bution and applies equal-depth binning applied to the Normal
distribution, given the fixed-size alphabet Σ. These bins are
typically hard coded. SAX has two parameters: (a) the length
l and (b) the number of symbols |Σ|. In practice, the number
of symbols is a small number, with as few as 256 symbols,
which can be represented by 8 bits. The number 256 is
based on an 8-bit char accommodating 256 states, optimizing
space use. More symbols would require 16-bits, doubling
space, or slow bit operations, with negligible TLB efficiency
gains (see Figure 10 of [34]). The transformation of a single
series into a word takes O(n + l × |Σ|) SAX makes explicit
assumptions about the data and may lose information about
high-frequency components or fine-grained details due to the

0 25 50 75 100
125

150
Time

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Va
lu

e

Raw Time Series

0 25 50 75 100
125

150
Time

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Va
lu

e

CGEB

SAX, l=4
PAA

0 25 50 75 100
125

150
Time

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Va
lu

e

EBGF

SFA, l=4

0 25 50 75 100
125

150
Time

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Va
lu

e

CCEHHCBB

SAX, l=8
PAA

0 25 50 75 100
125

150
Time

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Va
lu

e

EBGFBADC

SFA, l=8

0 25 50 75 100
125

150
Time

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Va
lu

e

CCCDHHHDBBBB

SAX, l=12
PAA

0 25 50 75 100
125

150
Time

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Va
lu

e

EBGFBADCEFDB

SFA, l=12

Fig. 2. The figure illustrates the summarization of a DS using SAX (top)
and SFA (bottom), both employing an 8-symbol alphabet (’a’ to ’h’) with 4
to 12 values. SAX generates a staircase-like envelope around the raw signal
(shown in orange). In contrast, SFA constructs an envelope around the Fourier
transform, closely approximating the original signal.

averaging process. SAX provides a LBD to the ED called
mindist [11].

D. SFA - A Learned Symbolic Representation

The Symbolic Fourier Approximation (SFA) combines (a)
the Discrete Fourier Transform (DFT) with (b) feature selec-
tion and (c) binning of the actual distribution of the Fourier
coefficients. SFA transforms a DS into a word as follows:

1) Transformation: A DS is transformed into the frequency
domain using the DFT.

2) Feature Selection: Only a subset of l < n Fourier values
(real or imaginary part) is retained, as these capture the
main structure of the data.

3) Learned Quantization: Each Fourier value is discretized
into a symbol using equi-depth or equi-width binning
based on the actual distribution of the frequency spec-
trum, i.e., the real or imaginary values.

SFA has two parameters: (a) the length l and (b) the number
of symbols |Σ|. For SFA the same default values apply as for
SAX. SFA is not based on any assumptions, and learns bins
from the actual data distribution in Frequency domain. Yet,
it can be more computationally intensive due to the Fourier
transform with O(n log n+l×|Σ|) for each series, and binning
based on actual data distribution.

Figure 2 illustrates the differences between both approaches,
when using the same number of symbols and lengths l ∈
[4, 8, 12] each. SAX gives a staircase like approximation of a
DS, which for lower word lengths fails to capture the intrinsic
shape of the signal. SFA represents a smooth envelop around
the Fourier coefficients of the DS.

1) Transformation and Learned Quantization: The quan-
tization in SFA is learned from the distribution of the real
or imaginary Fourier values of the transformed series using a
technique called Multiple Coefficient Binning (MCB). The
goal of MCB in SFA is to minimize the loss of information
introduced by quantization. A better representation of the
original signals enhances pruning efficiency during query
execution. SFA learns l sets of quantization intervals using
MCB, one for each real or imaginary Fourier value. First, all
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Fig. 3. The figure illustrates the two summarization techniques iSAX (left)
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depth binning the Gaussian distribution. SFA transforms the DS into frequency
domain, and separately quantizes the real and imaginary values into symbols
using learned bins.

N series are transformed using the Discrete Fourier Transform
(DFT). Next, l real and imaginary Fourier values are selected
using a feature selection strategy (Section IV-D3).

2) Binning: When we separately consider the real or imag-
inary parts of Fourier coefficients, each part consists of a set of
N real-valued numbers. The distribution of these real values
is used to infer quantization bins. We choose a single (either
real or imaginary) Fourier value, and learn α = |Σ| bins.
This process is repeated for all l Fourier values. The equi-
width binning process involves the following steps (Likewise,
we may define the equi-depth binning): (a) Determine the
value range: Compute the smallest (min) and largest (max)
values among the N Fourier values of the N transformed
samples. (b) Divide into Bins: Divide the range [min,max]
into α equal-width intervals (bins). The width of each bin
is: (max−min)/α. As a result of the j-quantization, the
following bins are derived:

[βj(a− 1), βj(a)) , for j ϵ [0 . . . l) , a ϵ [1 . . . |Σ|)

We label bins by assigning the a-th symbol of alphabet Σ:

symbol(a) ≡ [βj(a− 1), βj(a)) , for j ϵ [0 . . . l) , a ϵ [1 . . . |Σ|)

When proposed, equi-depth binning was used [14]. How-
ever, to achieve a tighter lower bound to the ED, it is essential
to maximize the size of each interval. Equi-width proves to
be superior, as it generates uniformly sized bins which are
equally large, thus enhancing the accuracy of the lower bound
(see Section V-B).

Figure 3 (right) illustrates the process of transforming a
series into a word. iSAX (left) uses the same set of intervals
based on the Normal distribution for all segment means,
resulting in words, like BCED. SFA (right) first transforms
the series into real and imaginary Fourier values, selects those
with the highest variance, and learns different sets of bins for
each value. These bins are then used to transform the series
into words, like DAAC.

3) Novel Feature Selection: Commonly, for SFA the first
Fourier values are retained, which acts as a low-pass filter.
However, this approach reduces high variance components of
the DS, which leads to degenerated performance for lower
bounding. To address this limitation, we introduce a novel

variance-based Fourier value selection strategy. The rationale
behind this strategy is that maximizing the LBD requires
maximizing the width of the quantization bins (intervals).

Given a dataset of DS D, the variance of each Fourier co-
efficient, we select those l coefficients of each transformation
with highest variance:

BEST = K-ARGMAX (V AR(DFT (D) , axis = 1))

This strategy begins by computing the variance of each real
and imaginary component of the Fourier transform for the N
DS. It then selects the top l real and imaginary components
with the highest variance.

The reason a larger variance improves the LBD is that it
allows for wider quantization bins. Wider intervals capture
more variability in the data, leading to a more accurate and
informative representation, which in turn enhances the pruning
efficiency during query execution. We will show the impact of
this selection strategy in our ablation studies (Section V-C).

4) ED Lower Bounding Distance: Given the DFT repre-
sentations DFT (A) = A′ = (a′0, . . . , a

′
l−1) of DS A and

DFT (B) = B′ = (b′0, . . . , b
′
l−1) of DS B the DFT LBD to

the ED dED is defined as [59] (for l < n/2):

d2DFT (A
′, B′) = (a′0 − b′0)

2 + 2

l−1∑
i=1

(a′i − b′i)
2 ≤ d2ED(A,B)

(1)
Note that the first DFT coefficients a′0 and b′0 represents the

mean value, which is 0 for z-normalized DS, thus can be omit-
ted. The SFA Euclidean LBD between a DFT representation
DFT (B) = B′ = (b′0, . . . , b

′
l−1) and an SFA representation

SFA(a) = A′ = (a′0, . . . , a
′
l−1) is calculated by exchanging

the pairwise difference of the numerical values in Equation 1
by a disti function, which measures the distance between the
i-th symbol and the i-th numerical value [14]:

d2SFA(A
′, B′) = mind0(a

′
0, b

′
0)

2 + 2

l−1∑
i=1

mindi(a
′
i, b

′
i)

2

d2SFA(A
′, B′) ≤ d2ED(A,B)

Again, the first term is 0 in the case of z-normalized DS and
can be omitted. The distance disti between a numerical value
b′i and symbol a′i, represented by its lower and upper break-
points a′i = [βi(a− 1), βi(a)), is defined as the distance to
the lower breakpoint if b′i is smaller or the upper quantization
breakpoint if b′i is larger:

mindi(a
′
i, b

′
i) ≡


0, if b′i ϵ [βi(a− 1), βi(a))

βi(a− 1)− b′i, if b′i < βi(a− 1)

b′i − βi(a), if b′i > βi(a)
(2)

Figure 4 (right) illustrates the SFA mindi in contrast to the
iSAX lower bounding definition (left). For both the distance
between the word A′ = DDD and B′ = (b1, b2, b3) are
computed. SFA uses learned bins per Fourier value, as opposed
to the one set of fixed intervals used in iSAX.
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Algorithm 1 MCB Quantization
Require: A set X, of data series of length n, with |X| = N , the number of

coefficients l (default 16), the alphabet size a (default 256), the sampling
ratio r (default 1%)

1: Step 1: Sampling and Discrete Fourier Transform
2: Xsubsample = sample(X, r)
3: XDFT = DFT(Xsubsample)

4: Step 2: Determine l best coefficient indices by variance
5: BEST L = K-ARGMAX (V AR(XDFT , axis = 1), k = l)
6: Xbest = XDFT [:, best l]

7: Step 3: Learn l-sets of bins using binning
8: BINS = array of size (l × a)
9: for j = 1 to l do

10: BINS[J] = APPLY-BINNING(Xbest[j], a)
11: end for

12: return BINS, BEST L

E. Pseudo-Code

The pseudo-code for SFA is given in Algorithms 1 and 2.
MCB is used to learn quantization bins and the best Fourier
coefficient indices. SFA transform is used to transform a single
series using the learned bins. MCB (Algorithm 1) begins by
sub-sampling the dataset using a sampling ratio r (line 2),
with a default value of 1%. The impact of varying r is
explored in the experiments (Section V-B0g). The subsample
is then transformed using the Discrete Fourier Transform
(line 3). Subsequently, the real and imaginary Fourier values
are ranked by selecting the indices that maximize variance
across the subsample (line 5). These top Fourier values are
retained for further processing (line 6). Finally, l sets of bins,
each containing a bins, are learned using either equi-width or
equi-depth binning (lines 8–11). Please note that the real or
imaginary Fourier values are simply real numbers, thus we
may use any default implementation of equi-depth or equi-
width binning to derive bins. The algorithm returns the optimal
bin boundaries and selected Fourier coefficient indices.

The SFA transform (Algorithm 2) operates on a single DS
using the pre-learned breakpoints (using MCB) and selected
Fourier coefficient indices. First, the DFT is applied to the
series (line 2), and only the top-ranked coefficients are retained
(line 3). Finally, these coefficients are quantized based on the
learned breakpoints to generate words (line 5). Although the
alphabet size, length and binning strategy could be learned for

Algorithm 2 SFA Transform
Require: A single data series T of length n, quantization bins bins of size

(l × a), Fourier coefficient indices best l
1: Step 1: Transform T keeping only best l coefficients
2: TDFT = DFT(T )
3: Tbest = TDFT [best l]

4: Step 2: Apply quantization
5: TSFA = APPLY-QUANTIZATION(Tbest, bins)

6: return TSFA
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Fig. 5. Workflow of SOFA for exact similarity search. First, a fraction of the
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coefficients selected. Using the learned transformation, all DS are transformed
to create the index. To answer a query, the query DS is SFA transformed, and
the MESSI-based index is used to retrieve the exact 1-NN using the SFA
lower bound.

each dataset, we achieved best results by using fixed values
of α = 256, l = 16 and equi-width.

F. SOFA index

The SOFA (SymbOlic Fourier Approximation) index is based
on the MESSI index and the SFA representation. It allows for
fast and exact similarity search is illustrated in Figure 5.

The process begins by sampling a fraction (1%) of the DS to
learn the SFA summarization with alphabet size 256 (compare
Section IV-C). The sample undergoes a Fourier transformation,
followed by the learning of quantization bins from the Fourier
values (Section IV-D1). Then, 8 learned Fourier coefficients
are selected based on highest variance, which is equal to 16
imag and real float values. Utilizing the learned SFA, all DS
are transformed and indexed. To answer a query, the query
is first transformed using SFA, and then the index is used to
search exact nearest neighbors using GEMINI (Section II-A),
and the SFA lower bound (Section IV-D4).

G. SOFA LBD calculation using SIMD

Similar to MESSI, SOFA uses SIMD to accelerate both
lower-bound and real distance calculations. Algorithm 3 and
Figure 6 illustrate the process of lower bound distance (LBD)
computations between a query’s DFT coefficients and an
SFA word of an indexed series using SIMD. Using SIMD
enables parallel computation of 8 or 16 distances in a single
instruction, utilizing 256-bit or 512-bit vectors with eight 32-
bit floating-point elements each. The SIMD implementation
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addresses two key challenges: (i) optimizing branching based
on upper, lower, and zero bounds, and (ii) enabling early
termination while utilizing SIMD registers.

a) Conditional Branching: Unlike simpler branching
techniques [26], LBD computations require distinct condi-
tional branches and specific assignments for each SIMD vector
position. To compute the LBD between the DFT coefficients
of the query series and an SFA word, three conditions are
evaluated: (i) the DFT coefficient lies above the UPPER
breakpoint of the corresponding SFA representation of the
candidate series (quantization interval), (ii) below the LOWER
breakpoint, or (iii) within the SFA quantization interval, de-
noted as ZERO (compare Figure 4 and Eq. 2). All three
conditions have to be processed simultaneously across SIMD
positions, and a conditional mask extracts the correct result.

b) Early Abandoning: The Fourier coefficients in SFA
are prioritized by relevance (compare Section IV-D3), with
high-variance coefficients contributing more to the overall dis-
tance between two series. While SIMD processes calculations
in parallel batches, it cannot inherently leverage early aban-
doning after each computation. Figure 6 provides an overview
of the complete SIMD LBD computation process. Initially,
the distance between each query’s Fourier coefficient and the
SFA word’s intervals is calculated (top) using Eq. 2. The
query is then processed in chunks of 8 points (bottom). After
processing each chunk, the current distance is compared to the
BSF, and if it exceeds the BSF, the current distance is returned.
To ensure efficient branching, UPPER, LOWER, and ZERO
conditions are evaluated using bitmaps, and aggregated into the
final distance. Fully vectorizing all calculations enhances the
speed of distance computations while minimizing the overhead
of switching between vector and scalar registers, which operate
on separate hardware.

c) Pseudocode: To address early abandoning, Algo-
rithm 3 splits the coefficients into smaller chunks of up to
8 data points for 256 vector size (lines 2-14), enabling SIMD
acceleration. After processing each chunk, intermediate results
are aggregated, allowing early abandoning if the cumula-
tive sum exceeds the best-so-far distance (lines 10-12). This
approach combines the speed of SIMD with the efficiency

Algorithm 3 SIMD-Optimized Min Distance Calculation
Require: quantization bins bins, FFT coefficient representation of query data

FQ, SFA representation of candidate SC , BSF bsf .
1: Initialize vectors VF Q,VS C , VD , i = 0, DC = 0
2: for ith SIMD block size data do
3: VF Q ← FQ[i]
4: VS C ← SC [i]
5: VB U , VB L ← Gather bound (VS C , bins)
6: VD U , VD Z , VD L ← Caldist(VF Q, VB U , VB L)
7: VM U , VM Z , VM L ← Genmask(VF Q, VB U , VB L)
8: VD ← (VD LandVM L)or(VD UandVM U )
9: DC ← Sum(VD)

10: if DC exceeds bsf then
11: return DC

12: end if
13: i++
14: end for
15: return DC

of early abandoning, optimizing the balance between perfor-
mance and computational savings.

To address conditional branching, Algorithm 3 generates
three branch masks (UPPER, LOWER, and ZERO), with each
mask containing a value of 1 at positions in the SIMD vector
where the corresponding condition is met (line 7). I.e., if the
first segment of the query lies above the interval of the word
representation, the UPPER mask is set to 1 for that position.
The distance value for the UPPER branch is then selected
for that position. Using SIMD instructions (e.g., AVX, AVX2,
SSE3) [60], these masks are generated efficiently (lines 7). A
logical AND operation is applied between each branch result
and its corresponding mask, setting irrelevant branch results
to zero (lines 8). Finally, the results from all branches are
combined into a single vector, retaining only the correct values
for each position and completing the computation.

V. EXPERIMENTAL EVALUATION

In this section, we present a threefold experimental evalua-
tion on 17 real datasets, with a total of 1 billion DS or ∼ 1 TB
of data. First, we outline our competitors, setup, and datasets.

a) Competitors: We compared SOFA with MESSI,
UCR Suite-P [17], and FAISS IndexFlatL2 [18]. UCR
Suite-P is a parallel implementation of the state-of-the-art
optimized serial scan technique using SIMD. In UCR Suite-P,
each thread is allocated a segment of the in-memory DS array,
allowing all threads to concurrently and independently process
their assigned segments. The real distance calculations are
performed using SIMD, and synchronization occurs only at the
end to compile the final result. For FAISS, we used the CPU
implementation of IndexFlatL2, the exact similarity search in-
dex under L2 (ED). The design principle for MESSI and SOFA
involves sequential query processing, handling queries one
after another. This approach simulates an exploratory analysis
scenario where users generate new queries based on the results
of previous ones. FAISS, however, cannot leverage parallelism
within single query processing. Therefore, to take advantage
of FAISS’s capabilities, we process queries in mini-batches
equal to the number of available cores, which exploits the
inherent embarrassingly parallel nature of batch processing.



FAISS (IndexFlatL2) was installed with Intel MKL support,
and the number of OMP threads was configured according to
the available cores in each experiment. The code, scripts, and
notebooks for all algorithms are available online [28].

b) Setup: We used a server with 2x Intel Xeon 6254
3.1Ghz CPUs (18 cores each, and 36 cores in total) and
756GB RAM. All algorithms were implemented in C, and
compiled using GCC v7.5.0 on OpenSuse Linux v15.5. As
we have 36 cores available, we performed experiments with
9, 18, 36 cores, each. For both MESSI and SOFA, we used
consistent configurations across all experiments: ‘initial-lbl-
size‘, ‘min-leaf-size‘, and ‘leaf-size‘ were set to 20000, with
the queue size matching the number of cores. To ensure
a fair comparison, the alphabet size is fixed at 256 and
the word length at 16 for both SAX and SFA across all
datasets. Unless stated otherwise, SOFA employs the equi-
width binning strategy. In other words, these parameters are not
optimized individually for each dataset but are kept constant
across all experiments. SFA quantization was learned using a
fraction of 1% of the dataset, and selected the highest variance
Fourier values (real or imaginary) from the first 16 Fourier
coefficients. As we test the batch case, where all data is
available, we chose 1% to avoid overfitting the train dataset,
which could lead to decreased performance on the independent
query data.

c) Datasets: Table I provides a summary of the prop-
erties of the 17 datasets uted in this study. They originate
from various fields, including seismology (ETHZ, Iquique,
LenDB, NEIC, OBS, SCEDC), astronomy (Astro), neuro-
science (SALD), and vector datasets (Deep1B, BigANN,
SIFT1b). Only 5 of these datasets (Astro, BigANN, Deep1B,
SALD, SIFT1b) have been previously used for similarity
search. Each is accompanied by a distinct set of 100 queries.
12 datasets are seismic datasets sourced from [61]. The
samples were obtained by segmenting the seismic data into
non-overlapping windows. Queries were generated using only
the location of the primary (P)-wave of a seismic event, which
travels faster than the secondary (S)-wave. The dataset sizes
vary from 500k to 100M series, with series lengths ranging
from 96 to 256 floats. Overall, there are 1 Billion real DS,
corresponding to ∼ 1 TB on disk. We used distinct sets of
100 query series for each dataset, ensuring they were kept
separate from the indexed data.

A. Index Creation

Figure 7 presents the mean runtime results for index creation
across three systems: SOFA using SFA, MESSI using SAX
for summarization, and FAISS (IndexFlatL2, CPU) using all
17 datasets. The measurements exclude I/O times for reading
datasets from disk. On average, index creation times range
from 15 seconds to 1 minute. MESSI is the fastest, averaging
around 15 seconds, followed by FAISS. There is minimal
improvement in index creation times when utilizing more
cores. Notably, we observed an increase in index creation
times when scaling from one CPU (18 cores) to two CPUs
(36 cores), due to an increased overhead in synchronization.

TABLE I
CHARACTERISTICS OF THE 17 DATASETS USED

Dataset Name # of Series Series Length

Astro [62] 100,000,000 256
BigANN [63] 100,000,000 100
Deep1b [64] 100,000,000 96
ETHZ [61] 4,999,932 256

Iquique [65] 578,853 256
ISC EHB DepthPhases [66] 100,000,000 256

LenDB [67] 37,345,260 256
Meier2019JGR [61] 6,361,998 256

NEIC [68] 93,473,541 256
OBS [69] 15,508,794 256

OBST2024 [70] 4,160,286 256
PNW [71] 31,982,766 256
SALD [72] 100,000,000 128

SCEDC [73] 100,000,000 256
SIFT1b [74] 100,000,000 128
STEAD [75] 87,323,433 256
TXED [76] 35,851,641 256
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The SFA method in SOFA incurs an overhead for learning the
quantization from a 1% sample of the data. This overhead is
negligible compared to the time required for transformation
and index creation. Overall, SFA has a higher transformation
time than SAX, due to the use of the Fourier transform, which
has a complexity of O(n log n) in the DS length n, compared
to O(n) for PAA. Index creation times are also higher for
SOFA, potentially indicating more node splits. We measured
the average indexing speed of each method on the dataset. The
results are as follows using 36 cores: FAISS achieved a rate of
2.3 million series per second, MESSI indexed at 1.9 mio, and
SOFA 1.4 mio. While SOFA is ∼ 30% slower than MESSI at
indexing, this is faster than real time for most applications.

Overall there is little difference in the structure of the indices
over all 17 datasets (see supporting webpage). SOFA has a
slightly higher average tree depth and a smaller fill degree of
the leafs (center). The fanout of the root node is slightly lower
for SOFA. For index construction, MESSI divides the data
into chunks, processes each chunk independently, and then
merges them into subtrees, which are subsequently combined
into the full index. Therefore, the structure of the index may
vary depending on the number of workers or cores used.



TABLE II
MEAN AND MEDIAN 1-NN QUERY TIMES IN MS FOR MIXED WORKLOAD

ON 17 DATASETS. SOFA IS FASTEST.

median mean
Method Cores

FAISS IndexFlatL2 [18] 09 358 510
18 206 309
36 248 344

MESSI 09 335 932
18 185 486
36 112 299

SOFA 09 149 581
18 81 293
36 58 209

UCR SUITE-P [17] 09 1448 1654
18 790 867
36 557 587

TABLE III
MEDIAN k-NN QUERY TIMES IN MS FOR MIXED WORKLOAD ON THE 17

DATASETS USING 36 CORES. SOFA STAYS FASTEST.

Method 1-NN 3-NN 5-NN 10-NN 20-NN 50-NN

UCR suite 557 - - - - -
FAISS 248 283 276 284 307 314
MESSI 112 139 145 181 193 209
SOFA 58 70 70 83 87 98

B. Exact Similarity Search

a) 1-NN Exact Search: Table II shows the results for
the exact 1-NN similarity search under ED. We report mean
and median query times over all 17 datasets. SOFA is the
fastest method for all configurations, except for median on
9 cores, where FAISS is fastest. On average, SOFA is > 10
times faster than UCR SUITE-P, 2-4 times faster than FAISS
and 2-3 times faster than MESSI. All methods scale with the
number of cores, except FAISS, which degenerates from 18 to
36 cores. With SOFA an exact 1-NN similarity query can be
answered in 58 ms in the median case on our hardware and
with our datasets, faster than a blink of an eye.

b) k-NN Exact Search: Table III presents the results for
the exact k-NN similarity search using ED. We report the
median query times across all 17 datasets, utilizing 36 cores.
Among the methods, SOFA consistently demonstrated the
fastest performance. For this experiment, we did not compute
the full k-NN results for the UCR suite, as even for 1-NN,
its query times were already an order of magnitude larger
compared to SOFA. Overall, SOFA exhibits the best scalability
as the number of nearest neighbors increases 8. Notably, all
methods scale efficiently with increasing k.

c) Scalability in the number of cores: Figure 9 displays
the query times for all datasets using box-plots, illustrating
performance across an increasing number of cores. SOFA
consistently shows the lowest median runtimes. However, both
MESSI and SOFA exhibit high variance in query times across
the different datasets. In contrast, the query times for FAISS
and the UCR SUITE are more tightly clustered around their
median values, indicating more consistent performance.
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Fig. 9. A comparison of 1-NN query times with an increasing number of
cores on a logarithmic axis. SOFA shows overall lowest query times with
most queries in the range of 100ms and some in the range of a few ms.

d) Scalability in Leaf Size: Figure 10 displays the impact
of increasing leaf sizes on the overall query times. With
increasing leaf size, the query time decreases and plateaus
around 10k series. We used 20k as the default value for both
MESSI and SOFA.

e) SOFA vs MESSI: To evaluate the impact of using SFA
versus SAX, we conducted a comparative analysis between
MESSI and SOFA. Figure 11 illustrates the relative improve-
ment in average query times of SOFA compared to MESSI,
with MESSI serving as the baseline (100%). The results
demonstrate that SOFA consistently outperforms its MESSI
across all datasets, with some cases showing remarkable im-
provements of up to 38 times faster query processing (notably
on the LenDB dataset). Figure 1 highlights datasets where
SOFA exhibits its most significant performance gains. In these
cases, the SAX summarization technique employed by MESSI
proves inadequate, as the mean-based segmentation results
in oversimplified straight-line representations, particularly for
datasets that do not follow a Normal distribution. In contrast,
SOFA’s use of SFA allows for better adaptation to diverse
data characteristics, resulting in substantially improved query
times—up to 40 times faster in some instances.

This performance disparity underscores the superiority of
SFA in scenarios with high-frequency DS, such as complex
data patterns, and its ability to provide more accurate and
efficient summarizations across a wide range of dataset types.
The adaptive nature of SFA in SOFA proves particularly
advantageous for datasets where traditional SAX-based ap-
proaches fall short, highlighting the importance of choosing
appropriate summarization techniques.

f) Vector Datasets: To demonstrate the versatility of
SOFA beyond DS, we evaluated its performance on six widely
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used vector datasets derived from image and text embeddings.
The results, shown in Figure 12, reveal that 1-NN query times
on these datasets are significantly higher than those observed
for SOFA datasets (Table III). Specifically, the median query
times are as follows: FAISS at 345 ms, MESSI at 496 ms,
SOFA at 324 ms, and UCR SUITE at 630 ms. Notably, TEXT-
TOIMAGE and TURINGANN are particularly challenging,
with response times approaching 1 second—comparable to
those of a sequential scan. Despite these challenges, SOFA
consistently achieves the lowest 1-NN query times among the
methods tested. However, these times are approximately six
times higher than those reported for DS. Unlike DS, vector
data lacks explicit ordering. This absence of structure makes
it difficult to approximate such data using methods like sine
waves (SFA) or mean values (SAX), presenting a significant
challenge for indexing and querying.

g) Effect of Sampling on Query Times: SFA utilizes
1% of the indexing samples to learn quantization bins. To
explore the trade-offs associated with varying sampling rates,
we conducted an experiment (Section IV-F). As shown in
Table IV, the median query times stabilize at around a 1%
sampling rate, reaching 58 ms. However, the mean query times
continue to improve up to a sampling rate of 5%. Conversely,
using less than 1% of the data results in a slight increase in
mean and median query times.

h) When SOFA excels: SFA excels on datasets with
rapid changes by selecting frequencies based on their largest
variance (Section IV-D1). To investigate the hypothesis that
higher variance in frequency correlates with greater speedup,
we examined the mean index of the Fourier coefficients
selected by SOFA and its corresponding speedup over MESSI
for each dataset. For instance, if SOFA selects eight Fourier co-
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Fig. 12. A comparison of 1-NN query times on vector datasets.

TABLE IV
PERFORMANCE OF SOFA AT DIFFERENT SAMPLING RATES ON THE 17

DATASETS USING 36 CORES.

Method Sampling Mean Time in ms Median Time in ms
SOFA 0.1% 220 67

0.5% 211 64
1% 209 58
5% 192 61

10% 192 62

efficients with indices [8, 9, 10, 11, 12, 13, 14, 15], their mean
index would be 11.5. The highest possible index that can be se-
lected is 32. Our experiment (Figure 13) reveals a clear trend,
with a positive Pearson correlation of 0.51. This suggests
that Fourier coefficients corresponding to higher frequencies
are associated with increased speedup—indicating that when
SOFA prioritizes higher-frequency coefficients, it tends to
outperform MESSI. The datasets used in this experiment cover
a wide range of frequency variances. Those characterized
by low frequency variance include: Meier2019JGR, ASTRO,
Iquique, NEIC, ETHZ, PNW, and SALD.

We analyzed the average frequency of each dataset in
the SOFA collection by calculating the zero-crossing rate
(ZCR) [77], which measures how often a signal crosses the
zero axis. The ZCR was averaged across all samples, serving
as an indicator of the signal’s dominant frequency [77]. To
enable comparisons across datasets, we normalized the ZCR
to a range of [0, 0.5]. For example, a ZCR of 10% indicates
that a dataset segment of length 256 has, on average, 26
zero crossings, while 50% is the maximum, and represents
one zero crossing every other value. Figure 14 illustrates that
the SOFA datasets span a wide range of frequencies, from
very high (vector data) to low. SOFA demonstrates strong
performance across all frequency ranges (compare query times
in Figure 11). Interestingly, while there is some overlap
between frequency characteristics and performance trends, the
relationship is not entirely linear. There are performance gains
for the very-high frequency datasets, like Deep1B (49% ZCR
and 16% speedup), or the very low-frequency datasets such
as ISC-EHB (1.3% ZCR and 21% speedup). Though, SOFA’s
improvements over MESSI are most pronounced for mid- to
high-range frequencies, such as SCEDC (23% ZCR and 10x
speedup) and SIFT1b (31.5% ZCR and 4x speedup).

C. Ablation Study

We conducted an ablation study using the tightness of lower
bound (TLB) metric, two benchmark datasets and the aeon
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framework [78]. The TLB is defined as the LBD over the true
distance [19]. Higher is better, and the TLB reaches one if both
are equal. A tighter (higher) TLB results in a better pruning
of the search tree and thus a lower runtime. We used the
UCR dataset archive [3], which consists of approximately 120
datasets spanning a wide range of applications. Each dataset
includes a training and test set. The training set was used
to learn SFA, while the test set served as queries. We also
employed the 17 SOFA datasets used in this study (Table I).
Each dataset is split into an indexing set for learning SFA and
a query set for performing queries.

We test SFA in combination with equi-width (EW) or equi-
depth (ED) binning, with and without using the variance
for feature selection. For all summarizations we used length
l = 16. For SAX-TD [47], we use 8 mean and 8 trend features.
For ASAX [43] we use 16 variable length segments. Tables V
and VI reveal that the TLB improvement is notably higher
for smaller alphabet sizes, and is up to 16 percentage points
higher for alphabet size 4 on the UCR datasets. Overall, SFA
using EW and variance for feature selection yields the highest
TLB. ASAX and SAX-TD perform worst among all com-
petitors. For ASAX, using variable-length segments appears
to yield inferior results compared to fixed-length segments.
Additionally, incorporating trend features in SAX-TD seems
to provide less informative representations than simply using
twice as many mean values, as done in iSAX. A high TLB
enables the pruning of ED calculations, which is a key reasons
why SOFA outperforms MESSI in similarity search. Finally,
we use critical difference diagrams to compare mean ranks
of approaches, with horizontal bars indicating statistically

TABLE V
MEAN TLB ON UCR DATASETS FOR INCREASING ALPHABET SIZES.

Alphabet Size 4 8 16 32 64 128 256
Method

SFA ED +VAR 0.56 0.67 0.73 0.77 0.79 0.80 0.80
SFA EW +VAR 0.53 0.65 0.73 0.77 0.80 0.81 0.81
iSAX 0.40 0.51 0.59 0.65 0.69 0.71 0.73
ASAX 0.17 0.31 0.42 0.49 0.52 0.53 0.53
SAX-TD 0.11 0.21 0.30 0.37 0.42 0.45 0.47

TABLE VI
MEAN TLB ON SOFA DATASETS FOR INCREASING ALPHABET SIZES.

Alphabet Size 4 8 16 32 64 128 256
Method

SFA ED +VAR 0.41 0.49 0.54 0.57 0.58 0.60 0.61
SFA EW +VAR 0.34 0.47 0.54 0.59 0.61 0.63 0.64
iSAX 0.37 0.45 0.45 0.52 0.54 0.55 0.55
ASAX 0.20 0.33 0.40 0.45 0.48 0.51 0.51
SAX-TD 0.12 0.22 0.31 0.37 0.40 0.41 0.42
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Fig. 15. Critical Difference plot on average ranks of TLB on 120 UCR (left)
and SOFA (right) datasets for l = 16 and α = 256 (lower rank is better).

indistinguishable cliques (p-value 0.05, Wilcoxon-Holm post-
hoc analysis). Figure 15 shows that SFA EW+Var achieves
significantly better ranks for both benchmarks, followed by
ED and finally iSAX. Variance-based feature selection en-
sures optimal bin sizes. Equi-width outperforms equi-depth
by avoiding small bins in z-normalized DS, which occur when
using 256 equi-depth bins in the -1 to +1 range. Again, SAX-
TD and ASAX are inferior to the other approaches.

VI. CONCLUSIONS

We introduced SOFA, a fast and exact index for data
series (DS) similarity search that uses the Symbolic Fourier
Approximation (SFA), a new symbolization technique that is
learned from the data distribution in the frequency domain.
SFA demonstrates its advantage across a variety of datasets.
In our extensive experimental evaluation on a comprehensive
benchmark comprising 17 real use cases covering 1 billion
DS and ∼ 1 TB, we show that SOFA is up to 38x faster than
MESSI, and on average 2− 10 times faster than the SotA for
exact similarity search. In our future work, we plan to study
techniques for approximate similarity search using SFA, as
well as other distance measures, symbolic representations, and
parallelization opportunities through the use of GPUs.
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