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ABSTRACT
The field of data series processing has attracted lots of at-
tention thanks to the increased availability of unprecedented
amounts of sequential data. These data are then processed
and analyzed using a large variety of techniques, most of
which are based on the computation of some distance func-
tion. In this study, we evaluate the benefits of incorporating
into the distance functions correlation measures, which en-
able us to capture the associations among neighboring val-
ues in the sequence. We propose three such measures, in-
spired by statistical and probabilistic approaches. We ana-
lytically and experimentally demonstrate the benefits of the
new measures using the 1NN classification task, and discuss
the lessons learned.

1. INTRODUCTION
The field of data series processing has seen a tremendous

progress in the database community thanks to the increased
availability of an unprecedented amount of data [17, 3, 16,
18, 13]. Any data series complex analysis task can be re-
duced to modeling a distance measure that captures the
most discriminating features across different classes or pat-
terns in the data [12].

The most widely used distance models are variations of
the Euclidean distance and are characterized by the invari-
ant properties that they support. For example, the Dynamic
Time Warping (DTW) distance [1] allows accelerations and
decelerations of the signal along the x-axis, and the Longest
Common Subsequence (LCSS) distance [7] allows gaps in
the sequence. The Euclidean distance is widely used, and
has been shown to be very effective for large data collections,
performing equally well or outperforming new distance mod-
els (such as SpADe and TQuEST), as well as traditional
elastic distance measures (such as DTW)[9]. Therefore, in
this work we will concentrate on Euclidean distance.

We observe that the distance measures mentioned above
do not model the correlations that do exist among neigh-
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Figure 1: Euclidean distance fails to distinguish between

the X and Y series, given query Q.

boring points in the series. Nevertheless, previous work has
shown that modeling explicitly the correlation inherent in
the data series leads to better results [4, 5, 6]. An exam-
ple is illustrated in Figure 1. The graph shows four series,
namely X, Y , Z and Q. The point values of the series are
the following: X =< 2, 3, 2, 3, 2 >, Y =< 2,−1, 2,−1, 2 >,
Z =< −1,−2,−1,−2,−1 > and Q =< 1, 1, 1, 1 >. The Eu-
clidean distance between Q and the other series X, Y and
Z is the same,

√
11. The series X and Z are equally similar

to the series Q. Despite the larger deviations in the values
of series Y , the distance between Q and Y is exactly the
same. A similar result can be obtained for other Minkowski
distances and their extensions, such as the DTW and LCSS
distances, as well as for z-normalized series.

In this study, we answer the following question: can dis-
tance measures that take into account the neighboring-point
correlations in the series outperform the Euclidean distance
in mining tasks such as classification? As we will see, the
answer to this question is yes.

In this work, we make the following contributions. We
present distance models inspired by statistical and proba-
bilistic approaches that have been designed to capture the
correlation among neighboring points in a data series: auto-
correlation, Markov chains and value-difference histograms
defined over sliding windows. We combine the proposed
models with the Euclidean distance and provide an exper-
imental evaluation with real datasets, which demonstrates
the utility of the correlation-aware distance measures.

2. NEED FOR A NEW DISTANCE
A data series X is a sequence of real valued points X =
{xi}ni=1 where n is the length of X, and xi is the value of
data series X at position i. A data series is z-normalized (or
simply normalized)if its mean is equal zero and its variance is
equal to one. The Euclidean distance between data series X



and Y is defined as follows: DEucl(X,Y ) =
√∑n

i=1(xi − yi)2.
Though it is very efficient in many applications, euclidean
and euclidean-like distances cannot capture correlations among
neighboring data points in the sequence.

We note that the Euclidean distance between two series X
and Y , formally denoted by DEucl(X,Y ), is invariant to two
transform rules as defined below. First, a pair of correspond-
ing points xi and yi can be swapped with any other pair of
points xj and yj , i 6= j without any change in the distance
value. For example, the Euclidean distance between series
X =< 1, 2, 3, 4 > and Q =< 5, 6, 7, 8 > does not change
if we swap the second and the fourth values (obtaining se-
ries X ′ =< 1, 4, 3, 2 > and Q′ =< 5, 8, 7, 6 >, respectively),
though the new series are obviously not the same.

Second, the value of the Euclidean distance does not change
when new values x′i and x′j are assigned respectively to
points xi and xj , where x′i and x′j satisfy the following con-
dition:

(xi − yi)2 + (xj − yj)2 = (x′i − yi)2 + (x′j − yj)2

Consider for instance, the Euclidean distance between series
Q = {0, 0, 0, 0} and X = {5, 5, 5, 5} is the same to the Eu-
clidean distance between the seriesQ and Y = {4.3563, 5.5698,
4.3563, 5.5698}. The Euclidean norm distance for both pairs
Q,X and Q,Y is 10, while the shape of the series is drasti-
cally different.

We conclude that Euclidean distance fails to capture im-
portant semantics of data series, as shown in the above ex-
amples. In contrast, the correlation-aware distance measures
presented in Section 3 aim to reveal such differences.

3. PROPOSED DISTANCE MEASURES
In this section we introduce and describe four distance

measures which take into account the correlations among
neighboring points in the series.

3.1 Autocorrelation Distance (ACD)
The distance measure based on autocorrelation coefficient

is not new, it comes from the statistical domain and is widely
exploited in a data mining community [10]. In this work, we
calculate the autocorrelation vector R = {r(τ)}nτ=1, which
consists of autocorrelation coefficients r(τ) with different

lags up to n: r(τ) =
E[(xt−µ)(xt+τ−µ)]

σ2 , µ is a mean and σ2

is a variance of a data series X = xi. The distance between
two series is defined as the Euclidean distance between their
autocorrelation vectors. The length of aoutocorrelation vec-
tor n is a training parameter.

3.2 Markovian Distance
Markovian models are commonly used to capture corre-

lations among points of a data series. A Markov chain of
order k is a sequence of random variables, which satisfy
the Markovian property that the current state of the chain
depends only on the previous k states. In our study, we
consider Markov chains with alphabet size m = 32, and
treat the order as a parameter, which we need to estimate
during the training phase. For the testing phase, we esti-
mate a transition probability matrix M , which characterizes
a Markov chain by estimating the conditional probabilities
of the query X. We do this by looking across the series and
first calculating the frequencies of all sequences of length k
and k + 1, and then calculating all the conditional prob-
abilities: M(xt−k, xt−k+1..., xt) = Pr[xt|xt−1, ..., xt−k] =

Freq[xt,xt−1,...,xt−k]
Freq[xt−1,...,xt−k]

), where t = k + 1, ..., n, n is the length

of the series. We then identify the nearest neighbor, that is,
the series Y with the highest probability of being generated
by the model of the query series:

Pr(y1, ..., yn|M) = Pr[y1, ..., yk]

n∏
t=k+1

M(yt−k, ..., yt), (1)

where Pr[y1, ..., yk] is the initial state of the Markov chain.
In order to avoid the accumulation of machine error caused
by the multiplications in Equation 1, we calculate the log of
the probabilities:

logPr(y1, ....., yn|M) ∼
n∑

t=k+1

log[M(yt−k, yt−k+1..., yt)].

(2)
This leads to a natural distance measure, which is a probabil-
ity that one sequence is generated using a model of another
sequence. As logPr defined by Equation 2 is a similarity
measure, the distance between X and Y can be defined as
− logPr. Note that this distance can also be efficiently com-
puted in an online setting, where streaming series for very
large alphabet sizes should be compared, using Conditional
Heavy Hitters [15, 14] for estimating the most significant
elements of the transition probability matrix.

3.3 Local Distance Distribution (LDD)
In this section, we propose the Local Distance Distribution

(LDD), a ranking function that is based on the distribution
of Euclidean distances determined on sub-sequences from
candidate series Xi and query Q.

Given a series Xi, let X
[a,b]
i be the sub-sequence of Xi

between positions a and b. Let Wh(Xi, w) be the content of
the sliding window on series Xi of length w whose first point
is xh, i.e., Wh(Xi, w) =< xh, ..., xh+w−1 >. The set of dis-
tance samples betweenXi andQ is denoted byD(Q,Xi) and
is defined as: D(Q,Xi) = {Euclidean(Wh(Xi, w),Wh(Q,w)) :
h ∈ {1, ..., n−w+1}}, where Euclidean(Xi, Xj) denotes the
Euclidean distance between series Xi and Xj and n is the
length of the series. D(Q,Xi) is a set of pairwise point dis-
tances along the series Q and Xi. Let Hi be the equi-width
histogram composed of B buckets that summarizes the dis-
tance values in D(Q,Xi).

Given two series Xi and Xj , the probability that a ran-
dom distance value di ∈ D(Q,Xi) is lower than a random
distance value dj ∈ D(Q,Xj) can be estimated as follows:

Pr(di < dj) =
∑B
b=1Hi,b

∑b
l=b+1Hi,l, where Hi,l is the

value of the lth bucket of the equi-width histogram Hi. We
can now introduce the probability for a candidate series Xi
to be the nearest neighbor to a query series Q as:

PNN(Xi, Q) =
∏
j 6=i

Pr(di < dj), (3)

where di and dj are two random distance values fromD(Q,Xi)
and D(Q,Xj), respectively. The function PNN(Xi, Q) is a
ranking function that can be used to implement a nearest
neighbor classifier.

3.4 Using the Proposed Methods
Using the Euclidean distance for 1NN classification leads

to the fastest and simplest classification. In this work, we
combine Euclidean distance with the proposed techniques
for 1NN classification: when the discrimination confidence



of the Euclidean distance is low, then we switch to using
our techniques. In this way, we aim to combine the speed of
Euclidean with the accuracy of the proposed techniques.

Given an oracle, we can choose to use our techniques only
when Euclidean fails. In practice though, we have to pre-
dict when this will happen. We use the following strat-
egy for this classification failure prediction [8]. First, we
compute a confidence value based on the distances to the
two nearest neighbors belonging to two different classes:
Conf = 1 − di

mini6=jdj
, dj = min{dist(Q,Xj)|j ∈ C}. Then,

we use the proposed distance measures when this confidence
value is below some threshold. Our experiments show that
the accuracy of this prediction is slightly above 75%, and
fairly robust for thresholds between 0.2-0.8.

4. EXPERIMENTAL EVALUATION
We compare our methods to the simple and widely-used

Euclidean distance for the 1NN classification task. We re-
port the F1 measure: F1 = 2∗ precision∗recall

precision+recall
, with precision =

tp
tp+fp

and recall = tp
tp+fn

, where tp, fp and fn represent
true positives, false positives, and false negatives, respec-
tively. Precision and recall are calculated for each class sep-
arately, and their arithmetic mean is used to calculate the
mean F1 value.

We use 43 UCR datasets with normalized series of differ-
ent lengths from several domains [11].

4.1 Results
In the first set of experiments, we perform a sanity check

by comparing the accuracy of using the proposed distance
measures in a 1NN classifier, against the accuracy of a ran-
dom classifier. The results, depicted in Figure 2, show that
all three methods consistently outperform the random clas-
sifier (i.e., points above the diagonal). This is especially true
for the case where (with the help of an oracle) we use the
three proposed methods only when Euclidean distance fails
to identify the correct class (i.e., square green points).

We now focus on the performance of the ACD distance,
shown in Figure 3. As mentioned in Section 3.1, the autocor-
relation function is a cross-correlation of a data series with
itself within a given time lag. The resulting autocorrelation
vectors are then used to compute the Euclidean distance
between the series. Figure 3(a) shows that the ACD dis-
tance assisted by failure-prediction performs better than Eu-
clidean only for some of the datasets (i.e., points above the
diagonal). Failure-prediction is used in the way described in
Section 3.4, where we predict (with a less than perfect accu-
racy) the cases that the Euclidean-based classification fails.
A close look at the experimental results reveals that ACD
significantly improves the classification accuracy for several
datasets. One such dataset is Trace, for which the classi-
fication accuracy with ACD is 100%, while the Euclidean
distance based classification has an accuracy of only 76%.

Figure 3(b) shows that switching to ACD when we know
for sure that the Euclidean distance will fail leads to a re-
markable improvement in accuracy. Thus, using a perfect
oracle for predicting failure of Euclidean distance based clas-
sification and then switching to ACD based classification
shows significant accuracy improvement for all 43 datasets.

Classification based on the proposed Markovian distance
uses the transition probability matrix for each query data
series in order to capture the correlation among adjacent

points in the sequence. This transition probability matrix
is used to find the series of the training set, which is the
most likely to be generated by the query model. Since esti-
mating the Markov model requires data series with discrete
values, we used iSAX2.0 [2] to generate 32 discrete states for
our data series. The experiments focus on the effect of the
order of the Markov chain on classification accuracy. Our
cross validation experiments showed that the transition ma-
trix for chains of order 3 gives the best performance for most
datasets (though some datasets produce better cross valida-
tion results when using different orders). Based on this, we
used Markov chains of order 3 for the rest of our experiments
with the Markovian distance.

Figure 4(a) shows that the Markovian method with failure-
prediction outperforms the Euclidean distance in 20 datasets.
Moreover, switching to the Markovian distance only when
Euclidean truly fails (i.e., failure prediction with a perfect
oracle) results in a significant improvement in almost all the
datasets (refer to Figure 4(b)). This improvement signifies
that the Markovian distance is able to capture semantics
embedded in the series, which the Euclidean distance fails
to uncover.

Finally, we turn our attention to the LDD distance. This
method uses a series of distances calculated using a slid-
ing window over the query series Q and each series Xi in
the dataset. The distribution of the resulting sliding win-
dow based distances is represented as a histogram. We then
calculate the joint probability of each Xi being the nearest
neighbor (i.e., the corresponding LDD value is the smallest).
Maximizing this probability gives us the most probable class
Ci for a query Q. The sliding window sizes were set inde-
pendently for each dataset, and were selected during the
training phase by maximizing F1.

Figure 5(a) depicts the results of the comparison between
the combination of LDD with Euclidean (i.e., LDD is used
when Euclidean is predicted to fail), and Euclidean. As
with the other two proposed measures, the methodology that
uses the LDD distance is able to outperform Euclidean in
some, but not all datasets we tested. Once again, when
the failure of the Euclidean distance based classifier can be
perfectly predicted, then the advantage of switching to the
LDD measure is significant for all datasets.

5. CONCLUSIONS
In this work, we argued about the utility of taking into

account the correlations inherent among neighboring values
of a sequence, when designing distance measures for data
series. We proposed three different measures that are corre-
lation aware, based on autocorrelation, Markov chains, and
the subsequence distance distributions.

Our preliminary experimental results with 43 real datasets
show that these more complex distance measures have the
potential to compute distances more accurately, as demon-
strated using the 1NN classification results. This result is
explained by the fact that they can effectively encode infor-
mation about the sequentiality of the points in a data series,
which is completely ignored by the Euclidean distance.

In our future work, we plan to conduct more detailed ex-
periments for the characterization of the performance be-
havior of the proposed distances, as well as new ones. More-
over, we will study in depth the problem of when to use
the correlation-aware measures, and how to combine them
with other distance measures. This proves to be a critical
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Figure 2: Comparison of ACD, Markovian, and LDD to a random classifier

(a) (b)

Figure 3: Comparison for ACD distance

(a) (b)

Figure 4: Comparison for Markovian distance

(a) (b)

Figure 5: Comparison for LDD distance

step in order to exploit the benefits of the proposed distance

measures.
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