
Noname manuscript No.
(will be inserted by the editor)

Generating Data Series Query Workloads

Kostas Zoumpatianos · Yin Lou · Ioana Ileana · Themis Palpanas ·
Johannes Gehrke

Received: date / Accepted: date

Abstract Data series (including time series) has at-

tracted lots of interest in recent years. Most of the re-

search has focused on how to efficiently support simi-

larity or nearest neighbor queries over large data series

collections (an important data mining task), and several

data series summarization and indexing methods have

been proposed in order to solve this problem. Up to this

point very little attention has been paid to properly

evaluating such index structures, with most previous

work relying solely on randomly selected data series to

use as queries. In this work, we show that random work-

loads are inherently not suitable for the task at hand

and we argue that there is a need for carefully generat-

ing query workloads. We define measures that capture

the characteristics of queries, and we propose a method

for generating workloads with the desired properties,
that is, effectively evaluating and comparing data se-

ries summarizations and indexes. In our experimental

evaluation, with carefully controlled query workloads,

we shed light on key factors affecting the performance

of nearest neighbor search in large data series collec-

K. Zoumpatianos
Harvard University & LIPADE, Paris Descartes University
E-mail: kostas@seas.harvard.edu

Y. Lou
Airbnb Inc.
E-mail: yin.lou@airbnb.com

I. Ileana
LIPADE, Paris Descartes University
E-mail: ioana.ileana@parisdescartes.fr

T. Palpanas
LIPADE, Paris Descartes University
E-mail: themis@mi.parisdescartes.fr

J. Gehrke
Microsoft Inc.
E-mail: johannes@microsoft.com

tions. This is the first paper that introduces a method

for quantifying hardness of data series queries, as well

as the ability to generate queries of predefined hardness.

Keywords Time series · Data series · Similarity

search · Indexing · Query workload generation

1 Introduction

Data series (i.e., ordered sequences of values)1 appear

in many diverse domains ranging from audio signal [20]

and image data processing [42], to financial [38] and

scientific data [19] analysis, and have gathered the at-

tention of the data management community for almost

two decades [32,39,6,30,12,13,45].

Nearest neighbor queries are of paramount impor-
tance in this context, since they form the basis of vir-

tually every data mining and analysis task involving

data series [14,16,35,22,3]. However, such queries be-

come challenging when performed on very large data

series collections [7,34]. The state-of-the-art methods

for answering nearest neighbor queries mainly rely on

two techniques: data summarization and indexing. Data

series summarization is used to reduce the dimensional-

ity of the data [23,32,33,27,1,27,21,9,28] so that they

can then be efficiently indexed [32,39,6,41,2,37].

Motivation. We note that despite the considerable

amount of work on data series indexing [15,33,9,39,

21], no previous study paid particular attention to the

1 Note that when these values are measured over time (usu-
ally at fixed time intervals), we call them time series. How-
ever, time series are just one special case of data series: a
series can also be defined over other measures (e.g., mass in
mass spectroscopy, position in genome sequences, angle in ra-
dial chemical profiles, etc.). For the rest of this paper, we will
use the terms sequence, data series, and time series inter-
changeably.



2 Kostas Zoumpatianos et al.

query workloads used for the evaluation of these in-

dexes. Furthermore, since there exist no real data series

query workloads, all previous work has used random

query workloads (following the same data distribution

as the data series collection). In this case though, the

experimental evaluation does not take into account the

hardness of the queries issued.

Indeed, our experiments demonstrate that in the

query workloads used in the past, the vast majority

of the queries are easy. Therefore, they lead to results

that only reveal the characteristics of the indexes’ per-

formance under examination for a rather restricted part

of the available spectrum of choices. The intuition is

that easy queries are easy for all indexes, and thus these

queries cannot capture well the differences among var-

ious summarization and indexing methods (the same

also holds for extremely hard queries as well). In order

to understand how indexes perform for the entire range

of possible queries, we need ways to measure and control

the hardness of the queries in a workload. Being able

to generate large amounts of queries of predefined hard-

ness will allow us to stress-test the indexes and measure

their relative performance under different conditions.

Query Workload Generation. In this work, we

focus on the study of this problem and we propose

the first principled method for generating query work-

loads with controlled characteristics under any situa-

tion, without assuming a single summarization and in-

dex or a specific test dataset.2 To this end, we inves-

tigate and formalize the notion of hardness for a data

series query. This notion captures the amount of effort

that an index would have to undertake in order to an-

swer a given query, and it is based on the properties

of the lower bounding functions employed by all data

series indexes. Moreover, we describe a method for gen-

erating queries of controlled hardness, by increasing the

density of the data around the query’s true answer in a

systematic way.

Intuitively adding more data series around a query’s

nearest neighbor forces an index to fetch more raw data

in that area for calculating the actual distances, which

makes a query “harder.” In this paper, we first inves-

tigate the desirable size and structural properties of

the area around the query’s nearest neighbor, and then

break down the problem of generating query workloads

into three subproblems.

– Determine how to select candidate queries which

can be independently controlled.

– Determine how many data series to add in that area.

– Determine how to add data series.

2 Website: http://www.mi.parisdescartes.fr/~themisp/

bends/

The proposed method leads to data series query

workloads that effectively and correctly capture the dif-

ferences among various summarization methods and in-

dex structures. In addition, these workloads enable us

to study the performance of various indexes as a func-

tion of the amount of data that have to be touched. Our

study shows that queries of increased hardness (when

compared to those contained in the random workloads

used in past studies) are better suited for the task of

index performance evaluation.

Evidently, a deep understanding of the behavior of

data series indexes will enable us to further push the

boundaries in this area of research, developing increas-

ingly efficient and effective solutions. We argue that this

will only become possible if we can study the perfor-

mance characteristics of indexes under varying condi-

tions, and especially under those conditions that push

the indexes to their limits.

Contributions. The contributions of this paper3 can

be summarized as follows.

– Index-dependent query answering effort. We

identify the summarization- and query-specific fac-

tors that make query answering on data series in-

dexes expensive. Such measures can capture the “ef-

fort” a given index needs to make in order to answer

a specific query.

– Intrinsic query hardness. We define measures

that can effectively capture the “effort” of vari-

ous summarization/index combinations, while being

both summarization- and index-independent. We call

this intrinsic measure, the “hardness” of a query.

– Queries with meaningful intrinsic query hard-

ness. We recommend a set of principles that should

be followed when generating evaluation queries such

that the intrinsic “hardness” measure can accurately

capture various summarization/index-specific query

“efforts.”

– Generating workloads. We describe the first near-

est neighbor query workload generator for data series

indexes, which is designed to stress-test the indexes

at varying levels of difficulty. Its effectiveness is inde-

pendent of the inner-workings of each index and the

characteristics of the test dataset.

– Experimental evaluation. We demonstrate how

our workload generator can be used to produce query

workloads, based on both real and synthetic datasets.

Paper outline. The rest of this paper is organized as

follows. Section 2 presents the necessary background.

3 This work (built on our preliminary version [46]) includes
a more precise formal definition of the problem, a deeper
analysis of previous workloads, a robust geometric solution
for placing nearest neighbors at predefined distances from a
query that removes earlier limitations, and an expanded ex-
perimental evaluation section.

http://www.mi.parisdescartes.fr/~themisp/bends/
http://www.mi.parisdescartes.fr/~themisp/bends/


Generating Data Series Query Workloads 3

Query

...

Fig. 1 An example data series and its distance to a query.

Symbol Description
x A data series
q A query data series
D A set of N data series (dataset)
Q A set of M queries (query workload)
DIST (x, q) Euclidean distance between x and q
MINDIST (q) Distance between q and its nearest

neighbor
L(x, q) Lower bound of DIST (x, q)
ATLB(L,x, q) Atomic tightness of lower bound of L

for x, q
TLB(L) Tightness of lower bound of L
µL(q) Minimum effort to answer q using L
N ε(q) ε-Near Neighbors of q
αε(q) Hardness of q for a given ε

Table 1 Table of symbols.

We formally define the notion of hardness and struc-

tural requirements of data series workloads in Section 3.

We then discuss common datasets widely used in the

past in Section 4, and describe our approach for gener-

ating a query workload in Section 5. Finally, we present

an experimental evaluation of our approach in Sec-

tion 6, and conclude in Section 7.

2 Preliminaries

A data series x = [x1, ..., xd] is an ordered list of real

values with length d. Since data series can be repre-

sented as points in a d-dimensional space, in this pa-

per, we also call data series points. Given a dataset

D = {xi}N1 of N points and a query set Q = {qi}M1
of M data series, a query workload W is defined as a

tuple (D,Q, k,DIST ), where each query point qi ∈ Q
is a k nearest neighbors (k-NN) query and DIST (·, ·) is

a distance function. When the context is clear, we use

x(k) to denote k-th nearest neighbor of a query q.

In this work, we focus on the nearest neighbor query,

i.e., k = 1, and define MINDIST (q) as DIST (x(1), q).

However, our methods can be naturally extended to

higher values of k by employing the distance to the

k-th nearest neighbor. An example data series and its

distance to a query can be seen in Figure 1. For the

rest of this study, we consider the Euclidean distance

DIST (x,y) = ‖x− y‖2, due to its wide application in

the data series domain [6,39,41]. Table 1 summarizes

the notation used in this paper.

2.1 Data Series Summarization

Since data series are inherently high-dimensional, dif-

ferent summarization techniques are used in order to

reduce the total number of dimensions. Popular tech-

niques not only include well known transforms and de-

compositions such as DFT [32,33,27,1], DHWT [27,

21,9], PCA and SVD [25,36], but also data series spe-

cific data summarization techniques such as SAX [28],

PAA [23], APCA [8] and iSAX [39,6]. We briefly de-

scribe the most prominent ones below.

Piecewise Aggregate Approximation (PAA) [23]

approximates a data series by splitting it into equal seg-

ments and calculating the average value for each seg-

ment.

Discrete Fourier Transform (DFT) [32,33,27,1]

uses Fourier transforms to convert a data series to the

frequency domain and represents it as a list of coeffi-

cients.4

Discrete Haar Wavelet Transform (DHWT) [27,

21,9] uses Haar wavelets in order to transform a data

series into a list of coefficients.

Symbolic Aggregate approXimation (SAX) [28]

is built above PAA with the addition that the value

space is also discretized, leading to a symbolic repre-

sentation with very small memory requirements.

Nearest neighbor search can be an intensive task;

the näıve approach requires a full scan of the dataset.

Fortunately, lower bounding functions on summariza-

tions along with indexing make it possible to signifi-

cantly prune the search space. To use such summariza-

tions and make exact query answering feasible, indexes

employ lower and upper bounds of the distances be-

tween two data series in the original data space. These

bounds are computed based on the summarizations of

the data series. Throughout our study, we refer to the

lower bounding function of a given summary as L.

Given two summarized data series, L returns a lower

bound of their true distance in the original space.

2.2 Data Series Indexing

Data series indexes are built by hierarchically organiz-

ing data series in one or many levels of aggregation. At

each level, multiple groups of data series are summa-

rized under a common representation. The goal is that

each group contains series that are similar to each other,

therefore, defining a partitioning of the data space.

Moreover, the employed summarizations are carefully

designed in order to support a distance measure (in

the summarized space) that is always a lower bound of

4 In this work, we use the well known FFT algorithm.



4 Kostas Zoumpatianos et al.

Data Series
Index

AnswerData not touched 
during query answering

Data touched 
during query answering

Indexed 
data series

Query

Fig. 2 An index structure built above a set of data series,
pruning the search space for a query.

the corresponding distance in the original (raw data)

space. This allows us to use the index for pruning the

search space by removing true negatives, while at the

same time guaranteeing no false negatives (i.e., no true

positive is ever pruned).

The notion of an index is illustrated in Figure 2,

where the multiple levels of aggregation are represented

as nodes (empty circles in the figure) in a tree-like struc-

ture, and the raw data series (black points in the figure),

lie below it.

In general, data series indexes that support exact

nearest neighbor search can be divided into three broad

categories as follows.

Summarization & spatial access method. The

first category involves the use of a summarization tech-

nique and a (general) spatial access method. Previous

work has proposed the use of R-Trees with summariza-

tions like DFT [1,15,32,33], DHWT [9] and Piecewise
Linear Approximation (PLA) [10].

Data series specific summarization & index.

The second category involves the use of a summariza-

tion method specific to data series, and a specialized

index that is built on top of it. Such indexes include

TS-Tree [2] (based on a symbolic summarization), DS-

Tree [41] (based on APCA), ADS [44] and iSAX in-

dex [39,6,7] (built on an indexable version of SAX),

and SFA index [37] (it uses a symbolic summarization

of data series in the frequency domain based on DFT).

Summary reorganization & multi-level scan.

This last category skips the step of building an index

structure; it rather relies on carefully organizing and

storing the data series representations on disk. Using

this approach, data can be read in a step-wise function,

where distance estimations for all data series are gradu-

ally refined as we read the summarizations in increasing

detail. Both the DFT and DHWT summarizations have

been studied in this context [27,21].

Although the problem of data series indexing has

attracted considerable attention, there is little research

so far in properly evaluating those indexes. In this work,

we focus on studying the properties of data series query

workloads. The aim is to better understand the charac-

teristics of different queries, and how these can be used

to effectively test a data series index under different,

but controllable conditions.

3 Characterizing Workloads

In this section, we investigate the factors that affect the

query answering performance of data series indexes and

summarizations. We start the discussion with the re-

quirements for meaningful and effective workloads (Sec-

tion 3.1). We then give an introduction on lower bound-

ing functions used by summarizations in Section 3.2,

and study the minimum effort that an index can make

in order to answer a given query. This allows us to de-

fine an index-dependent measure of query answering

effort in Section 3.2.2. In order to do this, we connect

the de facto measure for quantifying the quality of a

summarization, called the tightness of the lower bound

(TLB), to the percentage of data that an index will

need to check, in the best case, in order to answer a

query.

Since the amount of data an index has to check is

tightly connected to a specific TLB, and is thus index-

dependent, we continue our discussion with an index-

independent, intrinsic query hardness definition in Sec-

tion 3.3. This hardness notion will be based solely on

the properties of the dataset and the query at hand.

We will however show how, when certain conditions

hold, this index-independent measure will be able to

accurately capture the effort that various indexes and

summarizations will need to do in order to answer this

query. As we mentioned in Section 2.2, data series in-

dexes can be considered as multi-level summarizations

of data series (see also Figure 2). For this reason, in the

rest of the section we reason using summarizations.

3.1 Requirements for Meaningful and Effective

Workloads

According to the discussion above, a “good” workload

should contain queries that effectively capture the qual-

ity of the summarizations. Moreover, the intrinsic hard-

ness of each query should accurately capture the corre-

sponding effort needed to answer each query. Accord-

ingly, we need queries and a hardness definition with

the following accuracy properties:



Generating Data Series Query Workloads 5

1. Intra-index (inter-query) hardness accuracy.

Data series indexes are multi-level summarizations

of data series. Therefore, at each level lI of index I,

this index summarizes data series with a specific

summarization Summarization(lI). Assume that

for two queries q1, q2 and an index I, the efforts

of answering these queries using this index at some

level lI ∈ S are Effort(lI , q1), and Effort(lI , q2), re-

spectively.5 Using the set S we denote the set of

all possible summarizations/index-levels. Then, an

ideal intrinsic hardness definition would need to ac-

curately capture how much bigger the effort for q2
is over the effort of q1 for the given index level.

Moreover this ratio should be consistent across dif-

ferent summarizations/index levels. Formally, if the

hardness values for q1 and q2 are Hardness(q1) and

Hardness(q2), it should hold for every lI ∈ S that:

Effort(lI , q1)

Effort(lI , q2)
=

Hardness(q1)

Hardness(q2)
∀ lI ∈ S.

Thus, given an effort definition for a given summa-

rization, its ratio for any two queries should be:

(R1.a) stable accross different summarization ef-

forts.

(R1.b) equal to the ratio of their intrinsic query

hardnesses.

2. Inter-index (intra-query) effort accuracy. We

now assume a single query q and two indexes I1
and I2. The summarization error is a commonly ac-

cepted measure of how good a summarization is: it

is computed as the difference (e.g., when using Eu-

clidean Distance) between the true values of the se-

ries, and the estimated, reconstructed values based

on the summarization.

At each level lI1 of index I1, the summarization error

is denoted as SummError(lI1), and for index I2 it is

denoted as SummError(lI2). Given two summariza-

tion errors, for a specific level of each index (or two

different levels of the same index), the correspond-

ing efforts should capture how much bigger the error

of one level is with respect to the other level. Thus,

if the effort values for answering the query using

each summary are Effort(lI1 , q), Effort(lI2 , q), then

for every level of each index it should hold that:

(R2) The ratio of efforts of a single query accross

two different summarizations is equal to the ra-

tio of their summarization error.

Alternatively, this can be formally described as:

Effort(lI1 , q)

Effort(lI2 , q)
=

SummError(lI1)

SummError(lI2)
.

5 Informally, the effort is the amount of work that an index
needs to perform. We formally define the notion of effort later
in this section.

It is important to note that this is a property of the

queries, and not a property of our hardness mea-

sure. Therefore, we should either generate, or select

queries that respect this property.

We argue that a hardness definition that satisfies

these criteria across different summarizations/indexes

and different queries is the desired intrinsic hardness

definition. Such a definition, will subsequently allow us

to properly construct queries using a predefined hard-

ness, effectively stressing indexes/summarizations to ef-

forts that correspond to the error of their summariza-

tions. We note that a coarse (bad) summarization (i.e.,

one that does not allow a lot of pruning to be per-

formed), corresponds to a very rough representation of

the indexed data, and is commonly found in the higher

level nodes of an index, where it summarizes a large

number of data series. On the contrary, a fine (good)

summarization (i.e., one that corresponds to a very pre-

cise representation of the data series) allows more prun-

ing to be performed, and is commonly found at the leaf

level of an index, where it summarizes a small num-

ber of data series (usually the size of a disk-page). The

smaller the total number of levels in an index is, and

the better the pruning at each level is, the better the

overall performance of the will be. Consequently, we

study summarizations of varying precision as a proxy

to quantifying global index effort and query hardness.

3.2 Index-Dependent Query Answering Effort

As we have seen earlier, certain properties should hold

for generating “good” workloads. All of these proper-

ties are expressed as constraints on a quantified query

answering effort. In this subsection we study summa-

rizations and the tightness of their lower bounds in or-

der to provide such a definition, which as we will see

later on, we call Minimum Effort of an index to answer

a given query.

3.2.1 Lower Bounds, ATLB and TLB

When navigating an index, we make use of the lower

bounds of the true distances of data series in the orig-

inal space (computed based on the summarizations of

the series). This technique guarantees that there will

be no false negatives in the candidate set. Nevertheless,

it does not exclude the existence of false positives. The

reason behind this is that during the query answering

process, we can move to lower levels of the index that

contain better (finer) summarizations, performing fur-

ther lower bound computations, until we reach a leaf



6 Kostas Zoumpatianos et al.

(a) Points in ε-area (ε = 1.0)

0

5

10

15

20

#
 p

o
in

ts
 i
n
 ε

-a
re

a

q1

0.2 0.4 0.6 0.8 1.0
ε

0

5

10

15

20

#
 p

o
in

ts
 i
n
 ε

-a
re

a
q2

(b) # of points in ε-area

Fig. 3 Two random queries with nearest neighbors depicted
with “×.”

node. At that point, the summarization cannot be fur-

ther improved. Therefore, we need to fetch the raw data

series as well, and use those in order to make exact dis-

tance computations, and to filter out the false positives.

This procedure then guarantees the correctness of the

final answer (no false negatives and no false positives).

In order to capture this notion of how good (or use-

ful) a summarization is, we can use the Tightness of

Lower Bound (TLB) [40], which is measured as the av-

erage ratio of the lower bound distance over the true

distance. We formalize this notion by first introducing

here the Atomic Tightness of Lower Bound (ATLB),

which is the same ratio, but defined for a specific query

and summarized data series pair.

Definition 1 (Atomic Tightness of Lower

Bound) Given a summarization with lower bounding

function L, the atomic tightness of lower bound

(ATLB) between a data series q and a summary of

data series x is defined as

ATLB(L,x, q) = L(x, q)/DIST(x, q). (1)

Example 1 Figure 3(a) demonstrates the implications

of ATLB. For simplicity, we represent each data se-

ries as a point in a two-dimensional space, i.e., d =

2. In this example, we plot two queries q1, q2 and

mark their nearest neighbors with a bold “×.” Assume

MINDIST(q1) = 0.33, MINDIST(q2) = 0.26, and all

data series are summarized using the same summariza-

tion method. Let the ATLB between the queries and

any data point be 0.5, i.e., the lower bound of the dis-

tances between q1 or q2 and all other points is 0.5

times their actual distance. According to the definition

of ATLB, a point x cannot be pruned if

L(x, q) ≤ MINDIST(q) (2)

⇔ DISTx, q) ≤ MINDIST(q)

ATLB(L,x, q)
. (3)

This means that for q1, all points whose actual dis-

tance is within a radius ρ = 0.33
0.5 from q1’s near-

est neighbor can not be pruned, because their lower

bound distances are less than the distance to the an-

swer. Since ATLB(L,x, q) ∈ (0, 1], the right hand side

of Inequality (3) is always no less than MINDIST(q).

These ranges are depicted as disks in Figure 3(a).

The TLB can then be defined as the aggregate

ATLB over a set of queries and data series:

Definition 2 (Tightness of Lower Bound) Given

a summarization with lower bounding function L, a set

of queries Q and a set of data series D, the tightness of

lower bound (TLB) for this summarization is defined

as

TLB(L) =
1

|Q| × |D|
∑
q∈Q

∑
x∈D

ATLB(L,x, q). (4)

Note that the TLB is small for an inaccurate sum-

marization, i.e., such a summarization tends to signif-

icantly underestimate the distance. As a result, data

series under this summarization will look much closer

than they actually are. Consequently, the index will

have to check more raw data, leading to a longer ex-

ecution time. This is indeed an important criteria for

measuring index performance. To formalize such differ-

ence in the effort of more or less effective summariza-

tion/indexing techniques, we hereafter introduce the

notion of Minimum Effort. We will then examine in

the following subsections how this notion can be linked

to a meaningful concept of hardness of a query within

a workload.

3.2.2 Index-dependent Measure of Minimum Effort

We define ME as the ratio of the number of series that

an index has to fetch for answering some query, over

the total number of series in the index, when the index

uses the best (i.e., the most accurate) summarization

it contains for these data series. The ME aims to de-

scribe the absolute minimum amount of raw data that

an index will have to touch in order to answer a query.

Definition 3 (Minimum Effort (ME)) Given a

query q, its MINDIST(q) and a lower bounding func-

tion L, the minimum effort (ME) that an index using

this lower bounding function has to do in order to an-

swer the query is defined as

µL(q) = |{x ∈ D|L(x, q) ≤ MINDIST(q)}|/|D|.



Generating Data Series Query Workloads 7

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●
●

●

0.002 0.020 0.200

0.
00

2
0.

02
0

0.
20

0

Minimum Effort of PAA−32

R
at

io
 o

f D
at

a 
A

cc
es

se
d

(R
−

Tr
ee

 w
ith

 P
A

A
−

32
)

●

●

● ● ●

●
●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●
●

●
●

●

0.002 0.020 0.200
0.

00
2

0.
02

0
0.

20
0

Minimum Effort of PAA−32

S
ec

on
ds

 to
 a

ns
w

er
 q

ue
ry

(R
−

Tr
ee

 w
ith

 P
A

A
−

32
)

● Queries

Fig. 4 100,000 random walk generated data series and 100
queries.

As we have seen in Example 1, given a fixed ATLB

between the query and the data series, the data se-

ries that contribute to ME are within a radius ρ =
MINDIST(q)
ATLB(L,x,q) from the query’s nearest neighbor, and it

is not possible to prune these data series. The size of

this radius is inversely proportional to ATLB and pro-

portional to MINDIST(q).

It is important to clarify that this is the minimum

possible effort that an index will have to undertake; in

most cases, the actual effort that the index will actually

do will be larger. This is because the search for the

solution hardly ever starts with the real answer as the

best-so-far.

Nevertheless, in practice, the ME turns out to be

a fairly good indicator of the actual query answering

effort. To demonstrate this we have run a small ex-

periment with 100 queries performed on 100,000 syn-

thetic series, both generated with a simple randomwalk,

a standard process that we describe in detail in Sec-

tion 4.1. We converted all data series into PAA with 32

segments, and built an R-Tree index above them. We

then fired the 100 queries to the index and measured

the query answering time, as well as the ratio of the

data accessed in order to answer each query. For every

query we also measured its ME (Def. 3). We present the

results in Figure 4. We can see that the ME is highly

correlated to both the query answering time and the

amount of data that an index checks. Additionally, we

can see that the data organization of the index causes

an additional overhead, since the ratio of data checked

by the R-Tree is constantly higher than the minimum

effort, and the time is higher than that required for sim-

ply accessing the data (due to the additional time cost

of the index traversals).

3.3 Intrinsic Query Hardness

Recall that our goal is to investigate the gen-

eral, summarization-independent, intrinsic hardness of

queries in a workload. In this subsection, we discuss how

one can define such a measure. We start by providing

an index-dependent query hardness measure, and show

under how and under which conditions this can be gen-

eralized to an index-independent measure.

3.3.1 ε-dependent Hardness

Since ME is tied to a specific summarization, we need a

more general notion to capture how hard a query is. In-

tuitively, the hardness of a query is related to the num-

ber of points around its nearest neighbor (true answer).

Given this intuition, we define the ε-Near Neighbors (ε-

NN) of a query q as follows.

Definition 4 (ε-Near Neighbors) Given ε ≥ 0, the

ε-near neighbors of a query q is N ε(q) = {x ∈
D|DIST(x, q) ≤ (1+ε)MINDIST(q)}, i.e., all the points

in D that are within (1 + ε)MINDIST(q) of the query’s

nearest neighbor.

The ε-NN naturally defines a hypersphere around

the nearest neighbor of the query. In the rest of this

paper, we will refer to this hypersphere as the ε-area.

Now we define the ε-hardness of a query as follows.6

Definition 5 (ε-hardness) Given ε ≥ 0, the ε-

hardness of a query q is αε(q) = |N ε(q)|
|D| , i.e., the frac-

tion of D that is within (1+ε)MINDIST(q) of the query.

Example 2 Using the example in Figure 3(a), let us as-

sume that the total number of points in the dataset

is 100. ε-hardness computation for ε = 1.0 accordingly

yields α1.0(q1) = 0.06 and α1.0(q2) = 0.18.

In the following, we will discuss under which con-

ditions the ε-hardness can be used as a meaningful in-

trinsic hardness measure for queries within a workload.

3.3.2 ε-independent Hardness

As mentioned in the introduction, we are interested in

an intrinsic hardness measure for queries that would

essentially enable a meaningful comparative analysis

of the performances of various summarization/indexing

techniques.

We introduced above the notion of ME, which pro-

vides a good indication of the efficiency of a summa-

rization w.r.t. a query. We state the following two ob-

jectives:

6 A similar definition has been proposed in the past [5].



8 Kostas Zoumpatianos et al.

1. Select, or generate queries (irrespective of their

hardness values), which are able to reveal the dif-

ferences between effective and non-effective summa-

rizations. This is the inter-index (intra-query) effort

accuracy property that we talked about in the be-

ginning of Section 3.

2. Define an ε-independent intrinsic hardness measure

for queries in a workload, whose values are represen-

tative of the ME, across all summarizations. This is

the intra-index (inter-query) intrinsic hardness ac-

curacy property.

We will now study the structural criteria that al-

low ε-hardness to be a robust hardness measure for

the queries within a workload, according to the require-

ments stated above. In particular, we focus on two im-

portant aspects:

– What are the structural requirements the ε-area of

a query should meet in order to reveal differences

across summarizations.

– What is the ε value that can render an ε-bound

hardness measure to be ε-independent.

In Section 4, we perform an evaluation of the afore-

mentioned criteria in previous workloads and datasets,

showing that they are inadequate for effective index

comparison. Then, in Section 5, we present a method

that allows users to generate workloads that fulfill the

two objectives listed above.

The choice of an ε value. Let us go back to Ex-

amples 1 and 2, and assume a summarization with a

(constant) ATLB of 0.5. As we have shown above, all

points within a radius of 0.33
0.5 = 0.66 from q1 participate

in the ME of our considered summarization. Note that

this radius corresponds to an ε-area with ε=1.

For this precise value of ε, we are sure that the re-

spective ε-area covers exactly the points participating

in the ME. It turns out that, in order to ensure that

an ε-area around a query q in a workload covers all the

points that participate in the ME of a specific summa-

rization (or index) with a constant ATLB, the following

must hold (direct derivation from Equation (3)):

ε ≥ 1

ATLB(L,x, q)
− 1. (5)

The equality in the above formula holds for an ε

value, for which the corresponding area contains all

the points involved in the ME of the specific summa-

rization, and exactly those points. Accordingly, the ε-

hardness is equal to the ME.

In order to demonstrate the relation between ε-

hardness and minimum effort, we run an experiment

on 100,000 randomwalk generated data of size 256, per-

forming 1500 queries. For various ε values and sum-

marizations we measured the correlation between ε-

DHWT FFT PAA SAX

1

2

3

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.00

0.25

0.50

0.75

Fig. 5 Correlations for ε-hardnesses and Minimum Efforts
in 100,000 data series and 1,500 queries.

hardness and ME. As we can see in Figure 5, the corre-

lation between the effort of each different summariza-

tion and ε-hardness peaks at a different ε value, and

is thus tied to a different ε. Moreover, the highest the

resolution of a summarization, the smaller this ε area

to which ME is tied is.

The above observations have various implications.

Let us assume now that for our example we had picked

an ε = 0.1 for the hardness computation. The computed

hardness would then be expectedly lower that the ME

of our considered summarization, since all ME points

between ε = 0.01 and ε = 1.0 will be “unaccounted for.”

Assume further that in the interval between ε = 0.01

and ε = 1.0 we would have a very large number of

dataset points. The estimated hardness of q1, computed

as ε-hardness for ε = 0.01, would then be significantly

lower than the actual ME. The particular difference

would be furthermore uncontrolled by the query hard-

ness.

By the above, we argue that in order to be able to

ensure that ε-hardness is a meaningful hardness mea-

sure within a workload, the value of ε to be chosen

should be such that few/no points participating in the

ME of the summarizations tested are located outside

the ε-areas.

Considering again the case of constant ATLBs, it

is obvious that if this “coverage” property holds for

a summarization it will hold for “better” summariza-

tions (i.e., with higher ATLB) as well. In fact, ensuring

an equality in Equation 5 for the worst summarization

tested guarantees that the ME points are covered by

ε-areas for all summarizations.

Let us now go back to our original question: which

ε value should one choose to ensure a meaningful hard-

ness measure? The answer to this question could simply

be any value. Nevertheless, the lower such a value is,

the narrower the range of summarizations that can be

meaningfully tested by employing the respective work-

load is. This is true for the following reason.

This ε value, should be chosen according to the

worst summarization that we are interested in testing:

all other summarizations equally bad, or worse than



Generating Data Series Query Workloads 9

this reference summarization, will be facing the same

effort. As a result, we need an ε value large enough to

cover all reasonably bad indexes. We call this measure:

Max-Hardness. We will empirically show in Section 4

how to chose an ε, and which some possible values are

for covering the most common summarizations.

Structure of the ε-area. The choice of a suitable

ε value, ensuring that no ME points are “left aside” is a

first necessary step towards turning ε-hardness into an

intrinsic hardness measure. However, as we will demon-

strate below, this first step is not sufficient.

The intra-index (inter-query) hardness accuracy

property. As we mentioned in the first requirement of

the beginning of Section 3, we need to ensure that the

effort of answering queries using a single summarization

is accurately captured by our hardness definition. That

is, for any given summarization (or index), the ratio of

the efforts of two different queries for this summariza-

tion should be equal to the ratio of the hardnesses of

these two queries.

However, if we merely chose the largest ε that we

can, as we can also see in Figure 5, very few MEs of

different summarizations would be highly correlated to

this ε-hardness (Max-Hardness). This is because the

amount of points that exist in the larger area is not

of fixed proportions to the amount of points that exist

in every other smaller ε area. Thus, this query can be

arbitrarily hard for arbitrary summarizations, based on

the amount of data that exist in the ε-area tied to it.

In order to make this clear, we need to revisit Exam-

ple 2. We now observe that queries q1 and q2 have hard-

nesses (computed as ε-hardnesses for ε = 1.0) of 0.06

and 0.18, respectively. These values suggest that q2 is

3 times harder than q1. We now assume two hypotheti-

cal summarizations: S1 with a (constant) ATLB = 0.5,

and a “better” summarization, S2, with a (constant)

ATLB = 0.83. As we have seen earlier, for a constant

ATLB, all points within a radius of 0.66 from q1 partic-

ipate in the ME of our considered summarization. this

radius corresponds to an ε-area with ε=1.

Using the same reasoning, it is easy to show that

S2’s ME on q1 is 0.02. However, S2’s ME on q2 is also

0.02! Therefore, for S2, the two queries appear to be

equally hard, making the relative performance of two

queries behave differently, in relation to the summa-

rization used.

Then, the following questions arise. How could we

ensure that q1 is 3 times harder than q2 for S2? How

could we ensure this in general, for any other summa-

rization within the limits of those addressed by the cho-

sen ε? In other words, how can we make this property

hold for all possible summarizations?

It turns out that, according to Equation 5, S1’s

ME is best characterized by the ε-hardness computed

for ε = 0.2, which in fact yields α0.2(q1) = 0.02 and

α0.2(q2) = 0.02. What we would want instead is for the

1:3 ratio to still hold at ε = 0.2 and for any other ε.

Consequently, we would like the following property to

hold for all summarizations:

αε(q1)

αε(q2)
=
αε̂(q1)

αε̂(q2)
,∀ε̂ ≤ ε. (6)

Since each effort is tied to a given ε-hardness, (R1.a)

would be satisfied, further on, since we can now use

Max-Hardness (the hardness of the biggest ε) as our

intrinsic hardness measure, (R1.b) would also be satis-

fied.

Note that in our example, this property does not

hold for ε = 1.0 for the query workload comprising q1
and q2. Therefore, this workload is unsuitable for com-

paring S1 and S2 (or for comparing any summarizations

that include S2 and others that are “better” than S2).

We observe that the critical issue is related to the

distribution of the ε-areas around q1 and q2, i.e., how

the points are distributed in these areas. To correct this

issue, one needs to either filter-out non-suitable queries,

or alter the distribution of points in their ε-areas. We

will discuss the latter choice in Section 5.

The inter-index (intra-query) effort accuracy

problem. Recall that we also need to ensure that the

second requirement (R2) defined at the beginning of

Section 3 holds. Therefore, we need to ensure the abil-

ity of each query to penalize bad summarizations. This

means that, if for a given query the ε-hardness does not

increase proportionally to the summarization errors and

their corresponding ε values, this query will be unsuit-

able for differentiating the quality of the tested summa-

rizations. Then, this query could appear equally hard

for summarizations whose quality is objectively very

different, or it could appear disproportionately hard

for some summarizations and disproportionately easy

for others. Intuitively, the difference in effort across dif-

ferent summarizations would not be representative of

the actual quality of the summarization, but instead it

would be artificially affected by a biased placement of

points around the query. We will call this situation the

inter-index (intra-query) effort accuracy problem.

As we mentioned earlier, in order to avoid this prob-

lem, it should hold that for a given query the effort for a

specific summarization over the effort of any other one

should be proportional to their relative summarization

errors.

Each summarization has a specific summarization

error, which can be meaningfully measured as, 1−TLB:

the smaller(/larger) this number is, the smaller(/larger)



10 Kostas Zoumpatianos et al.

the error is, and equivalently, the better(/worse) the

TLB is. Therefore the following condition is necessary

in order to guarantee the effort accuracy, for any query

q1, and any two different summarizations S1 and S2:

µS1(q1)

µS2(q1)
=

1− TLB(S1)

1− TLB(S2)
. (7)

Note that the criteria derived above are once again a

structural condition that the ε-areas in a workload need

to respect. Thus, they technically form requirements

that when satisfied, allow the ε-dependent hardness to

generalize into an ε-independent hardness, assuming a

large enough ε value is chosen.

In the following section, we evaluate workloads used

in the past in terms of these structural criteria and

demonstrate that these criteria are not met, since:

(a) Indeed the effort of each summarization is tied to a

different ε-hardness.

(b) The ratio of efforts does not correspond to the qual-

ity of the summarizations but merely to the distri-

bution of the data.

Moreover, we demonstrate that all these workloads are

heavily skewed towards easy queries, thus not allowing

for insightful comparisons accross different data struc-

tures.

4 Evaluation of Previous Work

In this section, we review the characteristics of syn-

thetic and real datasets, as well as the corresponding

query workloads, that have been commonly used in

the literature.7 For capturing trends and shapes, we

z-normalize (mean=0, std=1) all data series following

common practice. We initially describe each one of our

datasets and all summarization methods used. We then

analyze them both in terms of structural properties as

well as in terms of their hardness.

Based on the results of our analysis, we will argue

that these popular datasets and workloads are both

structurally unfit for comparing index structures, and

mostly composed by easy queries.

4.1 Datasets and Workloads

We use 3 datasets, both synthetically generated

and real. RandWalk [1,15,32,9,39,2,6,21,26,7,37,

44]: This is a dataset synthetically produced using a

random walk data series generator, with a step size tat

varies according to a Gaussian distribution. We start

7 We also use the same datasets in our experimental section.

with a fixed random seed and produce 200,000 data

series of length 64, 256, and 1024.

EEG [43,24,2,26,34]: We use the electroen-

cephalograms dataset from the UCI repository [4], and

uniformly sample 200,000 non-overlapping data series

of length 64, 256, and 1024 from the dataset to be used

as the dataset.

DNA [6,7,44]: We use the complete Human DNA

(Homo Sapiens), obtained from the Ensembl project.8

We converted the dataset into data series following the

approach9 described in [39]. We uniformly sample the

dataset to create 200,000 non-overlapping data series of

length 64, 256, and 1024.

The query workloads that have been used in all past

studies are generated in one of the following two ways.

1. A subset of the dataset is used for indexing and a

disjoint subset is used as queries [6,21,7,44].

2. The entire dataset is used for indexing. A subset of

it is selected as a query set, and a small amount of

random noise is added on top of it [1,27,26].

In our study, we shuffle the datasets, and use half of

each dataset (100,000 data series) as queries, and the

other half (100,000 data series) as the indexed dataset.

We note that in these experiments with 100,000 data

series, our goal is to identify the factors that affect index

performance and not to experimentally compare the in-

dex structures themselves. The choice of the relatively

small number of series is dictated by the nature of our

analysis, which is very time-consuming, requiring the

computation of all pair-wise distances.

In all our experiments, we used a sample of 1500

queries to generate our plots. Moreover, we used 4

standard data series summarization techniques to com-

pute efforts, namely, Discrete Haar Wavelet Transforms

(DHWT), Fast Fourier Transforms (FFT), Piecewise

Aggregate Approximation (PAA), and Symbolic Ag-

gregate approXimation (SAX) in 4 distinct resolutions

each, ranging from 8 to 64 bytes. Finally, following

previous work [1], we repeated our experiments with

queries from within the dataset, to which we added a

small amount of gaussian noise (5% as in [1]).

4.2 Structural Properties of Random Workloads

In the first part of our study, we analyze all workloads

in terms of the structural requirements defined in the

previous section.

8 ftp://ftp.ensembl.org/pub/release-42/
9 This algorithm iterates over all symbols in the DNA se-

quence and constructs the series as a cumulative sum, which
increases by 2 for every appearance of the base ‘A’. By 1 for
‘G’. And decreases by 1 and 2 for each appearance of ‘C’ and
‘T’, respectively.



Generating Data Series Query Workloads 11

DHWT FFT PAA SAX

0.9
0.8

0.9
0.8

0.9 0.9
0.9

0.8

0.9
0.8

0.9
0.8

0.9
0.8

0.7

0.8
0.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.00

0.25

0.50

0.75

(a) RandWalk (64)

DHWT FFT PAA SAX

0.9
0.8

0.9
0.9

0.9
0.9

0.9 0.8

0.9
0.8

0.9
0.9

0.9
0.9

0.9 0.9

0.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.25

0.50

0.75

(b) RandWalk (256)

DHWT FFT PAA SAX

0.9

0.8 0.9
0.8

0.9
0.9

0.9
0.8

0.9

0.8 0.9
0.8

0.9
0.8

0.8 0.9

0.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.25

0.50

0.75

(c) RandWalk (1024)

DHWT FFT PAA SAX

0.9
0.9

0.9
0.9

0.9
1

0.9
0.9

0.9
0.9

0.9
0.9

0.9 0.9
1

0.70.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.25

0.50

0.75

(d) EEG (64)

DHWT FFT PAA SAX

0.7
0.9 0.9

0.9

0.8
0.9 0.9

0.9

0.7
0.9 0.9

0.9
0.9

0.9
0.8

1

0.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.25

0.50

0.75

(e) EEG (256)

DHWT FFT PAA SAX

0.5
0.6 0.7

0.8

0.6
0.7 0.8

0.9

0.5
0.6 0.7

0.8
0.7

0.8 0.9
0.9

0.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.2

0.4

0.6

0.8

(f) EEG (1024)

DHWT FFT PAA SAX

0.8
0.8 0.9

0.8

0.9
0.9 0.8

0.6

0.8
0.8 0.9

0.8
0.9

0.8
0.5

0.7
0.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.0

0.2

0.4

0.6

0.8

(g) DNA (64)

DHWT FFT PAA SAX

0.7
0.8 0.8

0.9

0.9
0.8

0.9 0.7

0.7
0.8 0.8

0.9
0.8

0.9 0.7

0.7

0.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.00

0.25

0.50

0.75

(h) DNA (256)

DHWT FFT PAA SAX

0.7
0.8 0.9

0.9

0.9
0.8

0.9
0.8

0.7
0.8 0.9

0.9
0.9

0.9
0.8 0.7

0.01

0.10

1.00

10 100 10 100 10 100 10 100
Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.0

0.2

0.4

0.6

0.8

(i) DNA (1024)

Fig. 6 Correlation between ε-hardness and Minimum Effort.

4.2.1 Effort and Intra-Index Hardness Accuracy

In our first experiment, we look into requirements

(R1.a) and (R1.b). These two requirements allow us

to guarantee that the ratio of efforts of two different

queries remains stable across different summarizations,

and that it is accurately captured by our intrinsic hard-

ness definition. To achieve that we measured for every

query the ε − hardness for various ε values, ranging

from 0.01 to 2.5, and the ME for all resolutions of our

4 summarization techniques.

As with the experiment of Figure 5, we com-

puted the Pearson correlation between each different

ε − hardness and each summarization’s ME across all

queries. Figure 6 depicts the results. The x-axis corre-

sponds to different resolutions of each summarization,

while the y-axis represents different ε values that corre-

spond to different ε−hardnesses. The color represents

the intensity of the correlation between each ε-hardness

and ME (for each resolution). We also list the actual

correlation values for the highest correlated pairs.

It is clear that each different summarization is tied

to a specific ε value. This is the ε-hardness that best

captures its ME. For every summarization, we call each

best fitting ε-hardness the Best-Hardness for that sum-

marization.

We additionally observe that the choice of a single ε

value (possibly the largest one), is an inadequate mea-

sure for capturing the ME for all summarizations. This

is because the number of points that lie at the largest

possible ε area are not a fixed proportion of the number

of points that lie in each smaller ε area. Thus, larger ar-

eas fail to consistently represent the amount of points

existing in each different Best-Hardness ε area. As a re-

sult, choosing the largest ε value for random datasets

violates our desired intra-index (inter-query) hardness

accuracy property defined earlier (R1.a and R1.b).

The problems that arise from such violation are il-

lustrated in Figure 7. In this plot, we used a query

workload of 6 random walk data series and 4 distinct

summarizations. For each query and summarization we

computed the ME and the Best-Hardness. We compare

this to the maximum ε hardness (Max-Hardness), which

was fixed to 1.25 for all summarizations. (We chose this

value, as this was the largest highly correlated ε found

in our previous experiment.) All reported numbers are

normalized in the range [0, 1], where 1 corresponds to

the largest observed value.

Looking at the MEs, it is obvious that for all sum-

marizations q2 is the hardest query. However, for the

first three summarizations, q4 was easier than q3, while

for SAX32, q4 was harder than q3. Evidently, there is

no ordering of the queries based on their ME for this

workload that holds across all summarizations, since

q4 is not consistently easier than q3. Consequently, the

requirement (R1.a) does not hold.

In regards to requirement (R1.b), using a different

epsilon-Hardness per summarization (Best-Hardness)



12 Kostas Zoumpatianos et al.

1 2 3 4 5 6

0.
2

0.
6

1.
0

Query #

R
at

io
 to

 h
ar

de
st

 q
ue

ry

PAA32

1 2 3 4 5 6

0.
2

0.
6

1.
0

Query #
R

at
io

 to
 h

ar
de

st
 q

ue
ry

FFT32

1 2 3 4 5 6

0.
2

0.
6

1.
0

Query #

R
at

io
 to

 h
ar

de
st

 q
ue

ry

DHWT32

1 2 3 4 5 6

0.
2

0.
6

1.
0

Query #

R
at

io
 to

 h
ar

de
st

 q
ue

ry

SAX32

Best−hardness Max−hardness Minimum Effort

Fig. 7 A workload of 6 queries, their ME, Best-Hardness and Max-Hardness.

0.00

0.25

0.50

0.75

1.00

PAA64 PAA32 PAA16 PAA8 FFT64 FFT32 FFT16 FFT8 DHWT64 DHWT32 DHWT16 DHWT8 SAX64 SAX32 SAX16 SAX8

Summarization

A
vg

. N
or

m
. V

al
ue

Best−hardness

Min. Effort

Sum. Error

(a) RandWalk (256)

0.00

0.25

0.50

0.75

1.00

PAA64 PAA32 PAA16 PAA8 FFT64 FFT32 FFT16 FFT8 DHWT64 DHWT32 DHWT16 DHWT8 SAX64 SAX32 SAX16 SAX8

Summarization

A
vg

. N
or

m
. V

al
ue

Best−hardness

Min. Effort

Sum. Error

(b) EEG (256)

0.00

0.25

0.50

0.75

1.00

PAA64 PAA32 PAA16 PAA8 FFT64 FFT32 FFT16 FFT8 DHWT64 DHWT32 DHWT16 DHWT8 SAX64 SAX32 SAX16 SAX8

Summarization

A
vg

. N
or

m
. V

al
ue

Best−hardness

Min. Effort

Sum. Error

(c) DNA (256)

Fig. 8 Average normalized ME, Best-Hardness and Summarization Error for all datasets of length 256.

allows us to accurately capture all MEs. However, this

is not a summarization-independent hardness defini-

tion. Looking at the summarization independent Max-

Hardness in Figure 7, we can make two observations.

First, we observe that it peaks at q3; however if we look

at the ME lines across all summarizations, the hardest

query is consistently q2. Therefore, Max-Hardness fails

to identify the hardest query.

Second, it is also clear that the ranking of queries

imposed by Max-Hardness completely fails to capture

the ME ranking imposed by different summarizations.

For example, as we can see in Figure 7, according to

the ME of the first three summarizations (i.e., PAA32,

FFT32, DHWT32), the queries are ordered from easiest

to hardest as follows: q6, q4, q5, q3, q1, q2. This order-

ing is different for SAX32, though: q3, q6, q1, q5, q4,

q2. Moreover, if we follow the Max-Hardness measure,

then we get yet another ordering (common for all sum-

marizations): q4, q1, q5, q6, q2, q3. As a result, apart

from violating requirements (R1.a) and (R1.b) due to

the inconsistencies across summarization ME rankings,

requirement (R1.b) is additionally violated due to the

ME ranking inconsistency to that of the one imposed

by Max-Hardness.

4.2.2 Inter-Index Effort Accuracy

In our second experiment we turn our attention to re-

quirement (R2). This is about the ratio of MEs of a

single query across different summarizations, and how

well it captures the relative summarization errors. If we

observe queries q3 and q4 in Figure 7, we can see that

query hardnesses can change for different summariza-

tions: e.g., q4 becomes harder than q3 only for SAX32.

Then, a question that arises is the following: if the

ME for a given query q varies across summarizations

(i.e., it increases/decreases), how large should this vari-

ation be? This gets us back to requirement (R2). Our



Generating Data Series Query Workloads 13

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

Best−hardness

%
 o

f q
ue

rie
s

(a) RandWalk (64)

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

Best−hardness

%
 o

f q
ue

rie
s

(b) RandWalk (256)

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

Best−hardness

%
 o

f q
ue

rie
s

(c) RandWalk (1024)

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

Best−hardness

%
 o

f q
ue

rie
s

(d) EEG (64)

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

Best−hardness
%

 o
f q

ue
rie

s

(e) EEG (256)

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

Best−hardness

%
 o

f q
ue

rie
s

(f) EEG (1024)

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

Best−hardness

%
 o

f q
ue

rie
s

(g) DNA (64)

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

Best−hardness

%
 o

f q
ue

rie
s

(h) DNA (256)

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5

Best−hardness

%
 o

f q
ue

rie
s

(i) DNA (1024)

Fig. 9 Best-Hardness distributions (1,500 queries, 100,000 data series).

requirement for a meaningful workload was that the ra-

tio of the ME of a single query between two different

summarizations should increase in the same rate that

the summarization error increases.

For the dataset used to create Figure 7, the TLB of

the different summarizations were as follows. PAA32:

0.86, FFT32: 0.87, DHWT32: 0.86, SAX32: 0.96. Even

though SAX32 has the lowest error (i.e., highest TLB),

q4 is relatively harder for SAX32 than for the rest of

the summarizations. We argue that this is merely an

artifact of the distribution of the data, and does not

capture the true pruning power of the summarization

at hand.

To substantiate this claim, for each dataset and

summarization we computed the theoretical Best-

Hardness, ME, and the Summarization Error (defined

as 1-TLB). We then normalized the value of every mea-

surement for each query based on the corresponding

value for PAA8, resulting in a scale of [0 − 1] (PAA8

and DHWT8 are the worst-performing summarizations

in our experiments). We plot the average ratios in Fig-

ure 8. While normalized Best-Effort is closer to the nor-

malized ME for most of the cases, both these values are

very different from the normalized Summarization Er-

ror. As a result, the relative hardnesses of queries across

different summarizations are not consistent to their rel-

ative quality. This fact breaks also our last requirement

(R2).

4.3 Hardness of Random Workloads

Remember that one of our goals is to generate queries

of varying hardness. In order to characterize our work-

loads, we computed the Best-Hardness of 1,500 queries,

across all our datasets of size 100,000 series each, and

we report their distributions in Figure 9. We can see

that all datasets are highly skewed towards easy queries.

The only exception is EEG of length 1024 (Figure 9(f)),

which includes a lot of hard queries. Even in this case

though, the queries in the workload are either very easy,

or very hard; there are no queries with hardness values

in between.

We repeated the same experiments with the queries

that were drawn from the indexed dataset with the ad-

dition of a small amount of gaussian noise. In this case,

all the results show a negligible hardness (always very

close to zero), and we omit the corresponding graphs

for brevity. The reason for this behavior is that these

queries have their nearest neighbor so close that almost

no other points are close enough to be contained in their

ε-areas.

In conclusion, the workloads commonly used in the

literature not only violate our requirements for a fair

comparison across methods, but are also heavily skewed

towards easy queries.



14 Kostas Zoumpatianos et al.

Fig. 10 Example of 3 queries, where the ε-area of q1 and q2
intersect. As a result we cannot control the hardness of these
two queries independently, as densifying each one of the two
zones might affect also the hardness of the other query.

5 Query workload generation

As we demonstrated in the previous section, all the

widely-used (i.e., randomly generated) query workloads

are both structurally unfit and biased towards easy

queries. In this paper, apart from our structural condi-

tions for a meaningful hardness definition, we also argue

that an effective query workload should contain queries

of varying hardness. Since most existing queries are

easy, we start with these queries and make them harder

by adding more points in their ε-areas, i.e., through the

process of densification.

We start with a list of different hardness values in

non-decreasing order [αε1, ..., α
ε
n] with respect to some ε

that is provided by the user (
∑n
i=1 α

ε
i ≤ 1, αεi ≤ αεj for

i < j), and an input sample query set Q that contains

easy queries (produced through random generation).

We split our workload generation process in three

stages:

– First, we select a subset Q′ of Q, comprising queries

whose ε-areas do not intersect. This ensures that the

densification process can be applied individually to

each of the selected queries, without side-effects on

the rest of the queries in Q′. Observe that when the

ε-areas of different queries intersect (for an example,

refer to Figure 10 and the ε-areas of queries q1 and

q2), controlling the hardness of each query becomes

difficult, since changes in the hardness of one query

may also affect the intersecting queries.

– Second, we match (a subset of n chosen) queries in

Q′ with the provided hardness values, and identify

the amount of points we need to add in each ε-area.

– Finally, we distribute these points in such a way

that, as the TLB of the index gets worse, the mini-

mum effort captured by the workload increases (fol-

lowing the requirements discussed in Section 3 and

in Example 1).

The following subsections describe in detail each one

of the three stages listed above.

q1 q2

q4 q5 q6

q3
DIST(q1, q2) > Rε(q1) + Rε(q2)

DIST(q2, q6) > Rε(q2) + Rε(q6)

DIST(q2, q3) > Rε(q2) + Rε(q3)

DIST(q1, q5) > Rε(q1) + Rε(q5)

DIST(q4, q5) > Rε(q4) + Rε(q5)

DIST(q2, q5) > Rε(q2) + Rε(q5)

Fig. 11 Maximal clique formed by q1, q2, and q5.

5.1 Generating Non-intersecting Queries

The first stage in our query workload generation process

is that of selecting a subsetQ′ of the initial set of queries

Q, comprising the queries whose pairwise ε-areas do

not intersect. Moreover, we wish that Q′’s cardinality

is maximized, so as to accommodate a wide range of

possible hardness values. In the following, we describe

two approaches for achieving our goal.

5.1.1 An Initial Approach: Preserving Original

Nearest Neighbors

In our first approach for query selection (also presented

in our preliminary work [46]), we reason on ε-areas built

around existing nearest neighbors. Therefore, query se-

lection in this case does not imply any alteration of the

original nearest neighbor.

Our first step is to calculate the radius of each ε-

area. In order to do this we need to find the distance to

the nearest neighbor and multiply it by (1 + ε). Since

we are using Euclidean distance (a metric), we can use

the triangle inequality in order to find non-intersecting

queries.

Given a distance function DIST in metric space,

we set Rε(q) = (1 + ε)MINDIST(q) as the radius of

the ε-area. Two queries qi, qj ∈ Q, qi 6= qj are non-

intersecting if and only if the following holds (by the

triangle inequality):

DIST(qi, qj) > Rε(qi) +Rε(qj).

In order to validate this constraint, we first need to

calculate all the pairwise distances for all the queries

in Q, and for each query q, the distance to its nearest

neighbor MINDIST(q).

Given the set of queries and their pairwise distances,

we can create a graph G, where each vertex represents

a query, and an edge exists if two queries qi and qj
do not interfere with each other. Now it is clear that

our problem is closely related to the maximum clique

problem. Figure 11 illustrates an example graph with

6 queries, where queries q1, q2, q5 form the maximum

clique, being mutually non-intersecting.

Note that finding the maximum clique in graph G is

NP-complete, we therefore employ a greedy approach



Generating Data Series Query Workloads 15

Algorithm 1 FindNonIntersectingQueries

1: Rε ← createRadius(Q,D, ε)
2: g ← createV erticesFromQueries(Q)
3: for (qi, qj) ∈ Q×Q do
4: if DIST (qi, qj) > Rε(qi) +Rε(qj) then
5: g.addEdge(qi, qj)
6: V ← g.getSortedV ertices() {Sorted by ascending degree}

7: Q′ ← ∅
8: for q ∈ V do
9: if isCompatible(q,Q′) then

10: Q′ ← Q′ ∪ {q}
11: return Q′

to select queries by assigning a query q to some αεi
(denoted as q(αεi)) if its current hardness is smaller than

αεi and if its ε-area does not intersect with the ε-areas of

all previously assigned queries. This ensures that when

densifying the ε-area for q(αεi), the hardness of other

selected queries q(αεj) (j 6= i) will remain unaffected.

Algorithm 1 describes how to find non-intersecting

queries. The algorithm starts by checking every pair

of queries (Line 3) and compares the distance between

them to the sum of the radiuses of their ε-areas. It then

checks if this distance is bigger than the sum (Line 4),

in which case it marks the two queries as compatible by

connecting them with an edge (Line 5). The algorithm

then sorts the vertices of the graph based on their de-

gree (Line 6). The intuition is that high-degree vertices

have more compatible vertices. We then keep reading

vertices in that order, adding compatible ones to a list

while skipping incompatible ones (Lines 8-10).

5.1.2 Improving Query Selection by Synthetic Nearest

Neighbor Generation

Depending on the specific data and query set, as well as

on the quantity of hardness values provided, the strat-

egy presented in the previous subsection may produce

an insufficient number of selected queries. Therefore, we

now describe an approach, which consists in synthet-

ically generating nearest neighbors for some (possibly

all) the queries in the initial set Q. The main advan-

tage of this technique is that all provided queries can

be part of the final workload (i.e., at the end of the

process, we have Q′ = Q).

We start by computing the minimum pairwise dis-

tances for all queries in Q. For a given query q, we

denote this distance by MINDISTQ(q). We then set:

Rε(q) =
MINDISTQ(q)

2
− ω,

where ω is a very small quantity necessary to avoid

ε-areas tangency.

The above defines a valid radius for placing ε-

spheres around each query in Q. Based on this com-

puted radius, we define for each of the queries in Q a

synthetic nearest-neighbor distance:

MINDISTsyn(q) =
Rε(q)

1 + ε
.

Finally, for each query q, we either keep its exist-

ing (i.e., in the original dataset) nearest neighbor, or

generate a new, synthetic nearest neighbor as follows:

– if MINDIST(q) ≤ MINDISTsyn(q) then the nearest

neighbor is not changed;

– else, we pick a new point, pq, uniformly at ran-

dom among all points that satisfy the constraint

DIST(q, p) = MINDISTsyn(q), and we let D =

D ∪ pq.

5.2 Hardness Assignment and Number of Points to

Add

Given the selected queries (as described above) and the

desired hardness values [αε1, ..., α
ε
n], we proceed by (i)

assigning queries to these hardness values, and (ii) de-

termining the number of points to be added, so that

the corresponding queries attain the desired hardness.

Hardness assignment is in part arbitrary. That is,

any hardness value αεi can be matched with any query

q, as long as the current ε-hardness value (for the given

ε) of q is lower, or equal to αεi . Note that it is possible to

impose additional constraints on the queries (leading to

a ranking function over the queries), in order to improve

the overall workload quality (this is discussed in detail

in Section 3).

Once each hardness value has been paired with a

query, we need to identify the number of points to add

to the ε-area of each query in order to achieve the target

hardness. Let xi be the number of points to add for

N ε(q(αεi)) and Ni = |N ε(q(αεi))| is the current number

of points in q(αεi)’s ε-area, we have the following linear

system,

αε1 =
N1 + x1

N +
∑n
i=1 xi

, ..., αεn =
Nn + xn

N +
∑n
i=1 xi

. (8)

Representing this linear system in matrix form, we have

(A− I)x = b, (9)

where

A =


αε1 α

ε
1 ... α

ε
1

αε2 α
ε
2 ... α

ε
2

... ... ... ...

αεn α
ε
n ... α

ε
n


and

b = [N1 − αε1N, ..., Nn − αεnN ]T .



16 Kostas Zoumpatianos et al.

This linear system can be easily solved and it will

indicate how many points to add in order to densify the

ε-area for each selected query.

5.3 Densification Process

As we mentioned in Section 3, meaningful queries for

effective index comparison should satisfy Equations (6)

and (7). Given that for each summarization we can infer

the ε areas that best characterize it using Equation (5),

then we can assign an ε to each summarization.

Given any two summarizations S1 and S2, and a

single query q1 it should hold that:

µS1(q1)

µS2(q1)
=

1− TLB(S1)

1− TLB(S2)
=
αεS1 (q1)

αεS2 (q1)
. (10)

Since this should hold for any summarization (and as

a result, for every TLB and every ε), it automatically

makes both Equations (6) and (7) hold. In this section,

we describe how to densify the ε-areas for the selected

queries in such a way that the above condition holds.

We call our solution equi-densification. The key

idea is that if we add points to the right locations

in the data space, then the desired properties will

hold. Our method works for non z-normalized, as well

as for z-normalized data. For z-normalized data, note

that we cannot directly add random points in the de-

sired ε-area, because after z-normalization these points

could lie outside of the ε-area. Instead, when dealing

with non z-normalized data, we avoid this problem.

Given that most applications require the data to be

z-normalized [17,29], we present in the following our

approach for the z-normalized case. The corresponding

solution for the non z-normalized case is a simpler ver-

sion of the approach described below.

To solve the densification problem we propose two

different methods of EquiDensification.

– EquiDensification-LC: a baseline method

that utilizes linear combinations of existing (z-

normalized) points within the desired location,

with points that lie outside the desired location

(with the addition of noise).

– EquiDensification-GS: a method that uses the

Gramm-Schmidt procedure for generating random,

already normalized points at the desired locations.

Additionally, in order to demonstrate why Equa-

tions (6) and (7) should hold, we also consider two base-

line candidate strategies for densification:

– BaselineRandom: randomly choosing points in

N ε(q(αεi)), and creating new points by adding noise

to those;

– Baseline1NN: adding noise to the query’s nearest

neighbor (ignoring all other points in its ε-area).

In order to demonstrate the different densification

strategies, we generate queries of hardness 0.2 (ε = 1.0)

for a dataset of 100,000 data series. According to Sec-

tion 4, this ε allows us to test all representations in our

set. In order to evaluate the effort for every query, we

use four standard data series summarization techniques

(namely, SAX, FFT, DHWT, PAA) at various resolu-

tions, ranging from 8 to 64 bytes per data series. The

data series are of length 256, and for each summariza-

tion we measure the minimum effort required.

5.3.1 Baseline methods

We now briefly describe two baseline densification

methods. As we will show later, these methods fall short

of solving our problem, because they do not satisfy the

criteria we have set (i.e., Equations (6) and (7)). Our

solutions for equi-densification follow in the next sub-

section.

BaselineRandom. A näıve method to increase the

hardness in an ε-area is to choose random points from

this area and add noise to them, thus producing the de-

sired amount of extra points. A property of this method

is that the original distribution of the points will not

change significantly. The problem with this method,

however, is that for very good summarization methods

(large TLB values), as we increase the number of points

in the ε-area, the minimum effort will not necessarily

increase relatively to it. As a result, indexes with differ-

ent TLB values might have the same effort to answer a

query.

The result of a query generated with this method

can be seen in Figure 12(a). The histogram at the top

of the figure displays the distribution of the points in

the densified ε-area. As we can see the further away we

get from the nearest neighbor, the more points we find

at each area. The heat map in the center represents the

locations of the points that contribute to the minimum

effort, i.e., L(x, q) ≤ MINDIST (q). The color repre-

sents the portion of these points in the corresponding

bucket of ε. Finally, the vertical graph on the right side

represents the minimum efforts of the different summa-

rization methods.

As expected, the results show that crude summa-

rizations (SAX-8, DHWT-8, FFT-8, PAA-8) that use

less bytes for representing the data series have much

larger minimum efforts. From the plot we could infer

that a significant portion of points that contribute to

minimum effort may not be included by this ε-area. On

the other hand, fine summarizations (SAX-64, DHWT-

64, FFT-64, PAA-64) are well captured by this ε. Ac-

tually, we only need ε = 0.6 to capture all points con-

tributing to the minimum efforts. With the histogram



Generating Data Series Query Workloads 17

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d 

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 
− 

0.
1

0.
1 

− 
0.

2

0.
2 

− 
0.

3

0.
3 

− 
0.

4

0.
4 

− 
0.

5

0.
5 

− 
0.

6

0.
6 

− 
0.

7

0.
7 

− 
0.

8

0.
8 

− 
0.

9

0.
9 

− 
1

ε bucket range

S
um

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

Min. Effort

(a) Query with less sparse histogram

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d 

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 
− 

0.
1

0.
1 

− 
0.

2

0.
2 

− 
0.

3

0.
3 

− 
0.

4

0.
4 

− 
0.

5

0.
5 

− 
0.

6

0.
6 

− 
0.

7

0.
7 

− 
0.

8

0.
8 

− 
0.

9

0.
9 

− 
1

ε bucket range

S
um

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Min. Effort

(b) Query with more sparse histogram

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d 

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 
− 

0.
1

0.
1 

− 
0.

2

0.
2 

− 
0.

3

0.
3 

− 
0.

4

0.
4 

− 
0.

5

0.
5 

− 
0.

6

0.
6 

− 
0.

7

0.
7 

− 
0.

8

0.
8 

− 
0.

9

0.
9 

− 
1

ε bucket range

S
um

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

Min. Effort

(c) 1NN densified query

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d 

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 
− 

0.
1

0.
1 

− 
0.

2

0.
2 

− 
0.

3

0.
3 

− 
0.

4

0.
4 

− 
0.

5

0.
5 

− 
0.

6

0.
6 

− 
0.

7

0.
7 

− 
0.

8

0.
8 

− 
0.

9

0.
9 

− 
1

ε bucket range

S
um

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Min. Effort

(d) Equi-densified query

Fig. 12 Two randomly densified, one 1NN densified and one equi-densified queries on a 100,000 data series randomwalk
dataset. Distribution of distances of all data series in the dataset on top, minimum effort for each summarization technique on
the right. Heat maps represent the amount of points that are part of the effort located at the corresponding bucket of ε.

on the top, it is easy to see that the minimum effort

is related to the distribution of points in the original

space. For example, while the heat map for FFT-64,

DHWT-64 and PAA-64 spans a larger range of ε val-

ues, their minimum effort is not much greater than that

of SAX-64, which spans a much smaller range. This is

because, as we can see in the histogram at the top,

there is a very small amount of data within ε = 0.5 and

it does not increase too much as ε increases. This situ-

ation is more pronounced with another query example

shown in Figure 12(b), where the distribution of points

in the ε-area is even more skewed.

Baseline1NN. Another näıve method for increas-

ing hardness in the ε-area is by just adding noise to

the query’s nearest neighbor itself. This will force all

summarizations to make (almost) the same effort, as

the area very close to the nearest neighbor is now very

dense and all the rest of the ε-area is very sparse. In

this case, all efforts for all summarizations are almost

identical. An example 1NN densified query is shown in

Figure 12(c).

5.4 EquiDensification

As discussed in Section 3.3.2, we want to ensure that

the hardness points are distributed as uniformly as pos-

sible within the ε-area corresponding to each possible

ATLB value. This ensures that we capture the subtle

differences for various summarizations. To this end, we

propose equi-densification that aims to distribute the

extra points we need to add in such a way that buck-

ets that are originally almost empty get a large number

of points, and buckets that are almost full get a small

number of points.

In order to achieve this, we bucketize the ATLB val-

ues, and accordingly the ε values are bucketized (in a

non-uniform way), as well. Note that all ATLB buckets

should have exactly the same number of points. We en-



18 Kostas Zoumpatianos et al.

force this by placing points at the desired locations us-

ing one of our proposed methods: EquiDensification-

LC, or EquiDensification-GS. These algorithms are

described in the next subsections.

A query produced with equi-densification is de-

picted in Figure 12(d). The histogram on the top shows

that the first few buckets have many points, while

the last few buckets have few. This happens because

ε is inversely proportional to ATLB, and as a result,

ε bucket ranges are small for large ATLB values and

large for small ATLB values. For example, for ATLB

values in [0.5, 0.6], the corresponding ε values lie within

[0.67, 1.0], and for ATLB values in [0.6, 0.7] the corre-

sponding ε values lie within [0.43, 0.67] As we can see

in the heat map, the effort points for this equi-densified

query are more evenly distributed in the ε-areas than in

the other cases (Figures 12(a)-(c)). It should be noted

that the bucket limits in this plot are equi-width, while

as we have seen, ε buckets during equi-densification are

not of the same width. For this reason the bucket sizes

appear to be decreasing for smaller ε values. Note also

that as the bounds of a summarization get worse, we

need to increase the ε to include all points that con-

tribute to the minimum effort.

Therefore, equi-densification achieves the desired

result, accurately capturing the relative differences

among different summarizations, and consequently

leading to correct performance comparisons of indexes

based on their TLB. We further validate this claim in

the experimental evaluation.

5.4.1 EquiDensification-LC

In EquiDensification-LC, densification (i.e., the

action of introducing points in the desired locations)

is performed by creating linear combinations of points

located within and outside of each ATLB bucket. This

ensures the diversity of the generated data series, al-

lowing us to control the location of the data points in

the ε-area, and also ensures that the resulting data se-

ries after z-normalization will fall in the desired location

with high probability.

We formally describe the process in Algorithm 2.

The algorithm starts by randomly picking a data se-

ries that is within the ε-area of the query (Line 7) and

one that is outside of it (Line 8). The loop in Lines 12-

17 creates a linear combination between the inner point

and the outer point (Line 14), increasing the ratio of the

outer point (Line 15) until we reach the desirable dis-

tance (Line 17). If we do not succeed in placing the new

point in the right location, we return an error (Line 19)

and continue the search using another query.

Algorithm 2 EquiDensification-LC
1: Input: D: set of all data points
2: Input: Q: the query data point
3: Input: N : set of data points in ε-area of Q.
4: Input: minB: The minimum acceptable distance
5: Input: maxB: The maximum acceptable distance
6: Input: noiseStep: The step we increase noise intensity

7: inPoint← getRandomPoint(N )
8: outPoint← getRandomPoint(D −N )
9: newPoint← inPoint

10: l← noiseStep
11: found← false
12: while found = false and l < 1 do
13: noiseRatio← noiseStep
14: newPoint← inPoint ∗ (1− l) + outPoint ∗ l
15: l← l + noiseStep
16: dist← DIST (Z −Normalize(newPoint), Q)
17: found← (dist < maxB and dist > minB)
18: if found = false then
19: return Not Found
20: else
21: return newPoint

This algorithm produces a correct result, but has

a high complexity since we need to exhaustively test

various factors for the linear combination ranging from

0 to 1, in order to achieve the desired output.

5.4.2 EquiDensification-GS

Generating normalized points (optionally, with addi-

tional distance constraints) is an important primitive

of our workload generation procedure, and its efficiency

significantly affects the workload generation algorithm’s

complexity. We now describe the details of this method.

Generating unconstrained normalized points. A

z-normalized N-dimensional point x = [x1, . . . , xN ]T

has mean 0 and standard deviation 1, that is, it respects

the equations 11 and 12 below:

N∑
i=1

xi = 0, (11)

N∑
i=1

x2i = N. (12)

Note that these define the intersection of an N-

hypersphere (of radius
√
N) with a hyperplane, thus

we naturally expect these points to be found on an

(N-1)-hypersphere. Our purpose, however, is an opera-

tional one, namely a procedure for synthetically gen-

erating such points. We start with an initial basis

V = (V 1, . . . ,V n), where:

V 1 = [
1√
N
, . . . ,

1√
N

]T



Generating Data Series Query Workloads 19

V 2 = [0, 1, . . . , 0]T , . . . ,V N = [0, 0, . . . , 1]T

This basis of free vectors is specifically chosen to

simplify the hyper-sphere expression process. We then

proceed to transform this basis into an orthonormal

one, required for generating synthetic points. To do this

we use the Gram-Schmidt procedure, considering the

orthonormal basis U = (U1, . . . ,Un) where:

U1 = V 1 = [
1√
N
, . . . ,

1√
N

]T , (13)

Ui =
Wi

||Wi||
,Wi = Vi −

i−1∑
j=1

< Vi, Uj > Uj . (14)

Let b1, . . . , bn be x’s coordinates in basisU . Because

of equations (13) and (11) it holds that:

< x,U1 >
(13)
=

N∑
i=1

xi
1√
N

(11)
=

∑N
i=1 xi√
N

= 0.

With U being an orthonormal basis, it also holds

that < x,U1 >= b1. As a result, it follows that:

< x,U1 >= b1 = 0. (15)

Moreover, the dot product of a vector with itself can

be written as:

< x,x >=

N∑
i=1

x2i
(12)
= N.

Since b is just a transformation of x in basis U , it

follows that:

N∑
i=1

b2i = N. (16)

Putting together equations (15) and (16) we end up

with the (N-1) hypersphere equation expected, namely:

N∑
i=2

b2i = N. (17)

Generating the required x is then a two-fold process:

– First, we aim at producing uniform random points

on the (N-1) hypersphere, with radius
√
N (from

equation (17)). To achieve this, we use the stan-

dard procedure for sphere point picking that con-

sists of generating (N-1) Gaussian random variables

bG2 , . . . , b
G
N and producing (partial) b vectors as:

[b2, . . . , bN ]T =
[bG2 , . . . , b

G
N ]T√∑N

i=2 (bGi )2

√
N. (18)

– Then, using the U basis coordinates of x obtained

above and the U basis previously computed (equa-

tions (13) and (14)), we recover the canonical coor-

dinates of x as:

xi =

N∑
j=1

bj ∗ Uji. (19)

Based on the elements above, we thus obtain a

procedure for generating N -dimensional z-normalized

points. Indeed, to generate any number P of such

points, we first construct the basis U as described

above, then for each of the P points to be generated

we produce random b vectors and plug these into equa-

tion (19).

While this procedure is reliable and efficient, it

however only enforces z-normalization. Workload gen-

eration often requires an additional property, namely

a “placement” constraint (for instance, a specific

placement of a data point w.r.t. a query point).

Generating normalized points constrained by

distance. We can further extend the above reason-

ing to obtain a refined primitive useful for workload

generation, namely the ability of generating normalized

points at a given distance D from an existing normal-

ized point p = [p1, . . . , pN ]T . Indeed, this implies the

required points x further verifying the following equa-

tion:

N∑
i=1

x2i +

N∑
i=1

p2i − 2 ∗
N∑
i=1

xi ∗ pi = D2, (20)

where both x and p respect 11 and 12.

It follows that x must further respect the following:

N∑
i=1

xi ∗ pi = N −D2/2. (21)

Note that the above is another hyperplane equation.

Coupled with the restrictions on x given by (11) and

(12). It will thus lead us to an (N − 2)-hypersphere

definition for the required x points. Indeed, proceeding

similarly as above, we will construct the orthonormal

basis comprising:

U1 = [
1√
N
, . . . ,

1√
N

]T , (22)

and

U2 = [
p1√
N
, . . . ,

pN√
N

]T . (23)



20 Kostas Zoumpatianos et al.

Note that < U1,U2 >= 0 and that both U1 and U2

are unit vectors, because of p respecting 11 and 12. We

generate the rest of the basis U as above, by employing

the Gramm-Schmidt procedure. As above, let b1, . . . , bN
be x’s coordinates in the basis U . We then have:

b1 =< x,U1 >=

N∑
i=1

xi
1√
N

=

∑N
i=1 xi√
N

(11)
= 0 (24)

b2 =< x,U2 >=

N∑
i=1

xi
pi√
N

=

∑N
i=1 xipi√
N

(25)

(21)
=

N −D2/2√
N

. (26)

Using (12), i.e., < x,x >= N , we obtain the follow-

ing:

N∑
i=1

b2i = N (27)

or equivalently:

N∑
i=3

b2i = N − b21 − b22 (28)

which, combined with equations (24) and (25), gives

us the following equation for the remaining b coordi-

nates:

N∑
i=3

b2i = D2 ∗ (1− D2

4 ∗N
). (29)

Note that this is indeed the equation of an (N − 2)-

hypersphere, as expected. To generate x points, we then

sample bG3 , . . . , b
G
N Gaussian random variables and pro-

duce (partial) b vectors as:

[b3, . . . , bN ]T =
[bG3 , . . . , b

G
N ]T√∑N

i=3 (bGi )2

√
N −D2/2√

N
. (30)

We can then recover x’s canonical coordinates using

the orthonormal basis U and equation (19), as previ-

ously.

We thus obtain an efficient and reliable proce-

dure for generating N -dimensional z-normalized points

placed at a given distance from a given z-normalized

point (typically a query point). Indeed, to generate any

number P of such points, we first construct the basis U

as described above, then for each of the P points to be

generated we produce random b vectors and plug these

into equation (19).

6 Experiments

In this section, we provide an experimental evaluation

of the proposed method. We generate query workloads

on the three datasets in Section 4 using our method

described in the previous section. All our datasets con-

tain 100,000 data series with length 256. Given a set of

desired hardness values, ε, and the densification mode,

our method produces a new dataset that is the origi-

nal dataset with extra points, and a set of queries that

forms the workload that matches the desired hardness

values. We performed three sets of experiments.

1. The first investigates the amount of non-interfering

queries we can find for each dataset both with

our baseline method, presented in our preliminary

work [46], as well as with our new synthetic near-

est neighbor placement method based on Gramm-

Schmidt.

2. The second set of experiments is intended to com-

pare EquiDensification to the two baseline den-

sification methods with regards to the minimum ef-

fort of various common summarization techniques.

We use PAA, FFT, DHWT and SAX. For each one

of the summarizations, we used 8, 16, 32 and 64

bytes to represent each data series.

3. In the third set of experiments, we used two real

world indexes, iSAX 2.0 [7] and the R-Tree [18]

using PAA as a summarization method. This last

experiment aims to show the impact of our bench-

mark on these indexes compared to choosing ran-

dom points from the dataset (queries are left outside

of the indexed data). A comprehensive experimen-

tal comparison of various data series indexes is out

of the scope of this study and is part of our future

work.

6.1 Non-interfering Queries

In Section 5.1, we presented two techniques for find-

ing non-intersecting queries. Our graph based method

maintains the original nearest neighbors, while our new

method allows us to generate new nearest neighbors for

each one of the queries in our sample size. These nearest

neighbors are placed in the appropriate distance, such

that they create non-intersecting areas. Moreover, they

are generated in such a way that they are already nor-

malized. In Figure 13, we can see that the ratio of non

interfering queries found in a sample of 1500 queries

and dataset sizes of 100,000 data series. We include the

ratios for both the old graph based method (named as

GRAPH in the plot), and the new Gram-Schmidt based

method (named as GS in the plot). As we can see, using



Generating Data Series Query Workloads 21

●

●

●

●

0.01

0.10

1.00

0.5 1.0 1.5 2.0
ε# 

of
 q

ue
rie

s 
fo

un
d 

/ s
am

pl
e 

si
ze

 (
lo

g) Algorithm ● GRAPH GS

(a) RandWalk

●

●

●

●

0.01

0.10

1.00

0.5 1.0 1.5 2.0
ε# 

of
 q

ue
rie

s 
fo

un
d 

/ s
am

pl
e 

si
ze

 (
lo

g) Algorithm ● GRAPH GS

(b) DNA

●
●

●

●

0.01

0.10

1.00

0.5 1.0 1.5 2.0
ε# 

of
 q

ue
rie

s 
fo

un
d 

/ s
am

pl
e 

si
ze

 (
lo

g) Algorithm ● GRAPH GS

(c) EEG

Fig. 13 Number of non intersecting queries found using both methods as ε increases.

the old method, even in the case of very small ε (hardly

useful in practice), we are able to use just above 10% of

the queries from the sample for RandWalk and DNA.

For the case of larger ε values, we can use less than 1%

of the sample size for these two datasets. Using the

EEG dataset, nevertheless, we can use a larger number

of queries but only for a very small ε. As a result, for

all the datasets, when an ε > 1.0 is used, we can hardly

ever use more than 10% of the queries. On the contrary,

for the case of our Gram-Schmidt based method, we are

able to select 100% of the sample size as queries, in all

cases and all datasets.

6.1.1 Time Complexity

In regards to time complexity, the overall time spent

in order to solve the Gram-Schmidt equations is much

larger than the time spent for providing an approximate

solution to the graph problem. On the contrary, the

amount of queries found using Gram-Schmidt is much
larger. If we normalize the time spent over the num-

ber of queries found, it becomes clear that the Gram-

Schmidt based method is much more efficient. This

means the time spent per query found is much less than

what is required by the graph based approach. This

can be seen in Figure 14, where we plot the time per

query found for both methods and different ε values.

It is clear that in most cases, Gram-Schmidt outper-

forms the graph based method. In the case of the EEG

dataset, we are also able to generate many queries also

using the graph based method, as a result the normal-

ized time of the graph based method is less. However,

both methods need less 100 milliseconds per query.

6.2 Densification Mode

In this experiment, we generated 3 different queries

with a hardness of 0.2 for each one of them (ε = 1.0).

For each query we used a different densification method.

Our goal is to measure how well different densification

methods capture the relative summarization errors of

different summarization techniques. We use 1 − TLB
as the summarization error for each technique. This

number intuitively captures how far the lower bound

of a summarization is from the true distance. We re-

port the relative summarization errors in the results

(normalized by the smallest summarization error). In

our experiments, the summarization with the smallest

error was SAX (64 bytes). The TLBs for each summa-

rization were computed by comparing the distances to

the lower bounds for 100 random queries against all the

other points of the dataset, for each of the datasets we

generated.

Figure 15 shows the average relative summariza-

tion errors for each dataset (averaged over the 100 dif-

ferent benchmarks generated). The results show that

1NN densification results in almost equal effort for all

summarizations, while random densification tends to

over-penalize bad summarizations and favor good ones.

Both situations are not desirable and cannot be use-

ful. In contrast, equi-densification has an effort much

more closely related to the summarization error across

all datasets. As a result, equi-densification well cap-

tures the actual pruning power of each summarization

and does not over-penalize or under-penalize any of the

summarizations. As a result, our equi-densified work-

load satisfies requirement (R2.a).

In regards to (R1.a) and (R1.b), we repeated the ex-

periment of Figure 5 in Section 3.3.2. This time with 10

equi-densified queries on an initial randomwalk dataset

of 100,000 data series. We plot the Pearson correla-

tions between efforts and all ε-hardnesses up to Max-

Hardness in Figure 16 (our selected max ε was 1). It

is clear that all ε-hardnesses for all methods are corre-

lated to the effort and between-themselves for all sum-

marizations. As a result, we satisfy both structural re-

quirements for an ε-independent and accurate hardness

definition.



22 Kostas Zoumpatianos et al.

●

●

●

●

100

200

300

400

500

0.5 1.0 1.5 2.0
εT

im
e 

sp
en

t p
er

 q
ue

ry
 fo

un
d 

(m
se

c) Algorithm ● GRAPH GS

(a) RandWalk

●

●

●

●

200

400

600

800

0.5 1.0 1.5 2.0
εT

im
e 

sp
en

t p
er

 q
ue

ry
 fo

un
d 

(m
se

c) Algorithm ● GRAPH GS

(b) DNA

● ●
● ●

30

60

90

0.5 1.0 1.5 2.0
εT

im
e 

sp
en

t p
er

 q
ue

ry
 fo

un
d 

(m
se

c) Algorithm ● GRAPH GS

(c) EEG

Fig. 14 Time spent per query found by each method.

64 bytes 32 bytes 16 bytes 8 bytes

100
100.5

101
101.5

102
102.5

100
100.5

101
101.5

102
102.5

100
100.5

101
101.5

102
102.5

R
A

N
D

O
M

W
A

LK
D

N
A

E
E

G

PAA FFT DHWT SAX PAA FFT DHWT SAX PAA FFT DHWT SAX PAA FFT DHWT SAX
Summarization

V
al

ue
 r

el
at

iv
e 

to
 S

A
X

−
64

Summ. Error Equi−dens. (Effort) Random dens. (Effort) 1NN dens. (Effort)

Fig. 15 Minimum efforts for different summarization techniques at different resolutions (8-64 bytes) representing 256 point
data series, compared to the summarization error (1-TLB). All the values have been normalized against SAX-64 which was
the overall tightest summarization method.

DHWT FFT PAA SAX

10 100 10 100 10 100 10 100

0.01

0.10

1.00

Summarization resolution

E
ps

ilo
n

Pearson
Correlation

0.00

0.25

0.50

0.75

1.00

Fig. 16 Pearson correlation between effort and ε-hardness
for an equi-densified workload.

On a side note, we observe that DHWT and PAA

produce the same results in terms of performance (re-

fer to Figures 15 and 16). The reason is that they both

represent exactly the same information (they both par-

tition the space in segments of equal size, and then

DHWT represents them as a hierarchy of coefficients,

while PAA represents them as a list of average values.)

Random

EDQ
0

25
50
75

100

0
25
50
75

100

0.
00

0.
25

0.
50

0.
75

1.
00

Hardness

%
 o

f q
ue

rie
s

(a) RandWalk

Random

EDQ
0

25
50
75

100

0
25
50
75

100

0.
00

0.
25

0.
50

0.
75

1.
00

Hardness

%
 o

f q
ue

rie
s

(b) DNA

Random

EDQ
0

25
50
75

100

0
25
50
75

100

0.
00

0.
25

0.
50

0.
75

1.
00

Hardness

%
 o

f q
ue

rie
s

(c) EEG

Fig. 17 Histogram of hardnesses for ε = 1.0.

6.3 Case Study on Actual Indexes

Our last experiments goal is to demonstrate the qual-

itative difference of using our query workload versus



Generating Data Series Query Workloads 23
R

an
do

m

R
an

do
m

−
H

E
D

Q

0
5

10
15
20

R
−T

re
e

iS
AX

R
−T

re
e

iS
AX

R
−T

re
e

iS
AX

A
vg

. q
ue

ry
 ti

m
e 

(n
or

m
.)

(a) RandWalk

R
an

do
m

R
an

do
m

−
H

E
D

Q

0
5

10
15
20

R
−T

re
e

iS
AX

R
−T

re
e

iS
AX

R
−T

re
e

iS
AX

A
vg

. q
ue

ry
 ti

m
e 

(n
or

m
.)

(b) DNA
R

an
do

m

R
an

do
m

−
H

E
D

Q

0
5

10
15
20

R
−T

re
e

iS
AX

R
−T

re
e

iS
AX

R
−T

re
e

iS
AX

A
vg

. q
ue

ry
 ti

m
e 

(n
or

m
.)

(c) EEG

Fig. 18 Average query answering time comparison between
iSAX (256 characters, 16 segments) and R-Tree (PAA with
8 segments) normalized over iSAX.

a workload of randomly generated queries. In order to

have a sizable sample, we have aimed here at generat-

ing over 500 queries; more precisely, we have created 85

input datasets with 6 queries each, leading to a total

of 510 queries. Among the 6 queries per dataset, 3 are

equi-densified and referred hereafter as EDQ, whereas

the remaining 3 are randomly selected from the in-

put queries sample without any densification. The 3

EDQ queries have hardness values of 0.1, 0.3 and 0.5

(ε = 1.0). Our goal for this study is to demonstrate

the qualitative difference of using our query workload

versus a workload of randomly generated queries.

Figure 17 shows the histograms of the distribution

of the hardnesses for the queries on each workload for

every dataset for ε = 1.0. Again, the random work-

loads are concentrated on easy queries with only a very

small number of hard queries. On the contrary, the

EDQ workload has been designed to produce queries

of varying hardness values, and as a result their his-

tograms contain equal number of queries in the 0.1, 0.3

and 0.5 bucket. This confirms that our method produces

queries with desired properties.

In order to specifically evaluate the effect of hard

queries, we further split the random workload into two

sets, resulting in 3 different workloads: Random, where

we use all the randomly selected queries, Random-H,

where we only use queries with hardness larger than

0.5, and EDQ generated by our method. We indexed

all three datasets with both iSAX [39] and R-Trees [18]

with PAA [23], and measured the average query answer-

ing time per workload. Figure 18 illustrates the normal-

ized query answering time. The results show that when

the Random workload is used, queries are on average

easy, and consequently, the two indexes seem to have

similar performance. The same observation also holds

when only the hard queries are selected using Random-

H, indicating that simply selecting the hard queries of

0.1 0.5 0.9
Epsilon

# 
of

 p
oi

nt
s

1
25

K
50

K

(a) Random

0.1 0.5 0.9
Epsilon

# 
of

 p
oi

nt
s

1
25

K
50

K

(b) Random-H

0.1 0.5 0.9
Epsilon

# 
of

 p
oi

nt
s

1
25

K
50

K

(c) EDQ

Fig. 19 Distribution of points in ε = 1.0 area for 3 types of
queries for RandWalk.

a randomly generated query workload cannot lead to a

good query workload.

The real difference comes when the workload be-

comes harder using the EDQ workload. In this case, the

differences between the indexes become more promi-

nent. The reason behind this can be intuitively seen in

Figure 19, where we plot the distribution of the dis-

tances to the query’s nearest neighbor in the ε-area for

the three different workloads. We can see that with ran-

dom queries, (Random and Random-H), the vast ma-

jority of the points are located towards the large ε val-

ues. The difference between Random and Random-H

is just on the number of points in each bucket. As we

discussed earlier, such a distribution of points cannot

capture the relative TLB of different indexes, as there

are fewer points in small range to the true answer and

many more points in larger range. On the other hand,

the distribution of EDQ is very different from the oth-

ers, which ensures there are roughly equal number of

points for the corresponding ATLB bucket.

7 Conclusions and Future Work

In this work, we focus on the problem of how to sys-

tematically characterize a data series query workload,

and subsequently, how to generate queries with desired

properties, which is a necessary step for studying the

behavior and performance of data series indexes un-

der different conditions. We demonstrate that previous

approaches are not viable solutions as they are biased

toward easy queries. We formally define the key con-

cept of query hardness and conduct an extensive study

on hardness of a data series query. Finally, we describe

a method for generating data series query workloads,

which can be used for the evaluation of data series

summarizations and indexes. Our experimental evalu-

ation demonstrates the soundness and effectiveness of

the proposed method.

Our long term goal is that of developing a generic

framework for comparing and evaluating different data

series index structures. A crucial part of this framework,



24 Kostas Zoumpatianos et al.

which we try to address in this paper, is the ability to

generate query workloads. An important next step is to

compare the various data series index structures using

the workloads proposed in this work. Such an analysis

will offer insights on the performance characteristics of

the different approaches, and highlight the areas that

merit future research efforts. In our future work, we also

plan to extend our ideas to data series with multiple

dimensions. Finally, the ability to scale our workload

generator to raw datasets of multi-million data series is

a very interesting engineering topic that would require

the integration of indexes within the generator itself.

Such indexes could either operate directly on the raw

dataset, or draw inspiration from approaches that index

queries [31,11].

References

1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity
search in sequence databases. In: FODO (1993)

2. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The ts-
tree: Efficient time series search and retrieval. In: EDBT
(2008)

3. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh,
E.J.: The great time series classification bake off: a re-
view and experimental evaluation of recent algorithmic
advances. Data Min. Knowl. Discov. 31(3), 606–660
(2017). DOI 10.1007/s10618-016-0483-9. URL https:

//doi.org/10.1007/s10618-016-0483-9

4. Bay, S.D., Kibler, D., Pazzani, M.J., Smyth, P.: The uci
kdd archive of large data sets for data mining research
and experimentation. In: SIGKDD Explorations (2000)

5. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.:
When is “nearest neighbor” meaningful? In: ICDT (1999)

6. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.: iSAX
2.0: Indexing and mining one billion time series. In:
ICDM (2010)

7. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon,
T., Keogh, E.: Beyond one billion time series: indexing
and mining very large time series collections with isax2+.
KAIS (2013)

8. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.:
Locally adaptive dimensionality reduction for indexing
large time series databases. In: SIGMOD (2002)

9. Chan, K.P., Fu, A.C.: Efficient time series matching by
wavelets. In: ICDE (1999)

10. Chen, Q., Chen, L., Lian, X., Liu, Y., Yu, J.X.: Indexable
pla for efficient similarity search. In: VLDB (2007)

11. Chow, C., Mokbel, M.F., Bao, J., Liu, X.: Query-
aware location anonymization for road networks. GeoIn-
formatica 15(3), 571–607 (2011). DOI 10.1007/
s10707-010-0117-0. URL https://doi.org/10.1007/

s10707-010-0117-0

12. Dallachiesa, M., Nushi, B., Mirylenka, K., Palpanas, T.:
Uncertain time-series similarity: Return to the basics. In:
VLDB (2012)

13. Dallachiesa, M., Palpanas, T., Ilyas, I.F.: Top-k nearest
neighbor search in uncertain data series. In: VLDB (2015)

14. Das, G., Gunopulos, D., Mannila, H.: Finding similar
time series. In: Principles of Data Mining and Knowl-
edge Discovery, First European Symposium, PKDD ’97,

Trondheim, Norway, June 24-27, 1997, Proceedings, pp.
88–100 (1997). DOI 10.1007/3-540-63223-9 109. URL
https://doi.org/10.1007/3-540-63223-9_109

15. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast
subsequence matching in time-series databases. In: SIG-
MOD (1994)

16. Fu, A.W., Leung, O.T., Keogh, E.J., Lin, J.: Finding
time series discords based on haar transform. In: Ad-
vanced Data Mining and Applications, Second Inter-
national Conference, ADMA 2006, Xi’an, China, Au-
gust 14-16, 2006, Proceedings, pp. 31–41 (2006). DOI
10.1007/11811305 3. URL https://doi.org/10.1007/

11811305_3

17. Goldin, D.Q., Kanellakis, P.C.: On similarity queries for
time-series data: Constraint specification and implemen-
tation. In: Principles and Practice of Constraint Pro-
gramming (1995)

18. Guttman, A.: R-trees: A dynamic index structure for spa-
tial searching. In: SIGMOD (1984)

19. Huijse, P., Estévez, P.A., Protopapas, P., Principe,
J.C., Zegers, P.: Computational intelligence challenges
and applications on large-scale astronomical time series
databases. IEEE Comp. Int. Mag. 9(3) (2014)

20. Kashino, K., Smith, G., Murase, H.: Time-series active
search for quick retrieval of audio and video. In: ICASSP
(1999)

21. Kashyap, S., Karras, P.: Scalable knn search on vertically
stored time series. In: KDD (2011)

22. Keogh, E.: Machine learning in time series databases (and
everything is a time series!). In: Tutorial at the AAAI Int.
Conf. on Artificial Intelligence, vol. 2 (2011)

23. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.:
Dimensionality reduction for fast similarity search in
large time series databases. KAIS 3 (2000)

24. Keogh, E., Pazzani, M.: Scaling up dynamic time warping
to massive datasets. In: PKDD (1999)

25. Korn, F., Jagadish, H.V., Faloutsos, C.: Efficiently sup-
porting ad hoc queries in large datasets of time sequences.
In: SIGMOD (1997)

26. Kremer, H., Günnemann, S., Ivanescu, A.M., Assent, I.,
Seidl, T.: Efficient processing of multiple dtw queries in
time series databases. In: SSDBM (2011)

27. Li, C.S., Yu, P., Castelli, V.: Hierarchyscan: a hierarchi-
cal similarity search algorithm for databases of long se-
quences. In: ICDE (1996)

28. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic rep-
resentation of time series, with implications for streaming
algorithms. In: DMKD (2003)

29. Lin, J., Keogh, E.J., Wei, L., Lonardi, S.: Experiencing
SAX: a novel symbolic representation of time series. Data
Min. Knowl. Discov. 15(2), 107–144 (2007)

30. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in
time series using bag-of-patterns representation. J. Intell.
Inf. Syst. 39(2) (2012)

31. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G.,
Hambrusch, S.E.: Query indexing and velocity con-
strained indexing: Scalable techniques for continuous
queries on moving objects. IEEE Trans. Comput-
ers 51(10), 1124–1140 (2002). DOI 10.1109/TC.2002.
1039840. URL https://doi.org/10.1109/TC.2002.

1039840

32. Rafiei, D., Mendelzon, A.: Similarity-based queries for
time series data. In: SIGMOD (1997)

33. Rafiei, D., Mendelzon, A.: Efficient retrieval of similar
time sequences using dft. In: ICDE (1998)

https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10707-010-0117-0
https://doi.org/10.1007/s10707-010-0117-0
https://doi.org/10.1007/3-540-63223-9_109
https://doi.org/10.1007/11811305_3
https://doi.org/10.1007/11811305_3
https://doi.org/10.1109/TC.2002.1039840
https://doi.org/10.1109/TC.2002.1039840


Generating Data Series Query Workloads 25

34. Rakthanmanon, T., Campana, B., Mueen, A., Batista,
G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E.: Search-
ing and mining trillions of time series subsequences under
dynamic time warping. In: KDD (2012)

35. Ratanamahatana, C.A., Lin, J., Gunopulos, D., Keogh,
E.J., Vlachos, M., Das, G.: Mining time series data.
In: Data Mining and Knowledge Discovery Hand-
book, 2nd ed., pp. 1049–1077 (2010). DOI 10.1007/
978-0-387-09823-4 56. URL https://doi.org/10.1007/

978-0-387-09823-4_56

36. Ravi Kanth, K.V., Agrawal, D., Singh, A.: Dimen-
sionality reduction for similarity searching in dynamic
databases. In: SIGMOD (1998)

37. Schäfer, P., Högqvist, M.: Sfa: A symbolic fourier ap-
proximation and index for similarity search in high di-
mensional datasets. In: EDBT (2012)

38. Shasha, D.: Tuning time series queries in finance: Case
studies and recommendations. IEEE Data Eng. Bull.
22(2) (1999)

39. Shieh, J., Keogh, E.: isax: Indexing and mining terabyte
sized time series. In: KDD (2008)

40. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuer-
mann, P., Keogh, E.: Experimental comparison of repre-
sentation methods and distance measures for time series
data. DMKD 26(2) (2013)

41. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A
data-adaptive and dynamic segmentation index for whole
matching on time series. In: VLDB (2013)

42. Ye, L., Keogh, E.J.: Time series shapelets: a new primi-
tive for data mining. In: KDD (2009)

43. Yi, B.K., Jagadish, H., Faloutsos, C.: Efficient retrieval
of similar time sequences under time warping. In: ICDE
(1998)

44. Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for
interactive exploration of big data series. In: SIGMOD
(2014)

45. Zoumpatianos, K., Idreos, S., Palpanas, T.: Rinse: Inter-
active data series exploration. In: VLDB (2015)

46. Zoumpatianos, K., Lou, Y., Palpanas, T., Gehrke, J.:
Query workloads for data series indexes. In: Proceedings
of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW,
Australia, August 10-13, 2015, pp. 1603–1612 (2015)

https://doi.org/10.1007/978-0-387-09823-4_56
https://doi.org/10.1007/978-0-387-09823-4_56

	Introduction
	Preliminaries
	Characterizing Workloads
	Evaluation of Previous Work
	Query workload generation
	Experiments
	Conclusions and Future Work

