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S1 Relation between the adaptive ridge and other L; and L, reweighted
methods

As pointed out by a reviewer, Frommlet and Nuel (2016) provide no formal proof that the adap-
tive ridge approximates the L, penalty for ¢ € [0,1). Other iterative methods, like Candes et al.
(2008)’s L1 reweighted scheme, have been shown to be an approximation of the L, penalty using
a Majorization-Minimization (MM, see Lange, 2004, Section 6) optimization scheme. This esti-
mating procedure extends to the case ¢ = 0, where it approximates the logarithmic penalty defined
below. In this section, we show that the adaptive ridge minimizes the same function as the L;
reweighted scheme. Both belong to the class of MM optimization algorithms and as such both are
guaranteed to converge to a local minimum of the function to minimize.

We first prove that both methods solve the L, penalty for 0 < g < 1. We then show that they
both extend to the case ¢ = 0, where they are now approximations of the logarithm penalty instead.

S1.1 MM Optimization for Solving L, Penalties, 0 < ¢ < 1

Consider the problem of minimizing the likelihood penalized by the L, norm:
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where 0 < ¢ < 1 and k > 0 is the penalty constant, rescaled here by a factor 1/¢, and ¢,,(3) is the
function to minimize (in our case, the negative log-likelihood). This problem is difficult to solve
because of the non-convexity of the L, norm.

We will use MM optimization to derive a numerical scheme to solving Equation (1). MM
Optimization makes use of a secondary function which majorizes the function to minimize (see



Hunter and Li, 2005). Since the majorization relation between functions is closed under sum, it
suffices to focus in Equation (1) on the function p(|3;]) = |3j]|?/q for 1 < j < p in order to
construct an MM optimization scheme. We present two local approximations of p(|/3;|) present in
the literature, which give rise to two optimization schemes.

L, reweighted scheme Let BJ(-I) € R be the current point of the numerical scheme. Using a local
quadratic approximation (LQA, see Fan and Li, 2001; Hunter and Li, 2005), the function
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majorizes p(|3;]) since we have p(|3; |) < QLQA(BJ | BJ(.I)) for every (3; with equality if and only if

Bj = ,8 ) Define the current weights w |ﬁ |‘1 2. Noting that the second term of qLoa does
not depend on j3;, the MM optimization 1s given by the reweighted Lo scheme:
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where (/) is the iteration index.
This scheme is the adaptive ridge procedure, where a small ¢ term is added to the reweighting
step to bound the denominator away from zero (see discussion on this topic hereafter).

L, reweighted scheme Using a local linear approximation (LLA, see Zou and Li, 2008) the func-
tion,
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majorizes p(|3;|). Defining now w;” = |; 2 |9=1, we obtain the following reweighted L1 scheme:
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S 1.2 Extension to the case ¢ = 0

Let us note that even though ¢ has to be strictly positive in Equation (1), both numerical schemes
(2) and (3) are still defined for ¢ = 0. We now show that in the case ¢ = 0, neither scheme solves
the Ly penalty: they correspond to a logarithmic penalty, which is a good approximation thereof
(Candes et al., 2008, Section 2.3).

Let us first note that formally, the logarithmic penalty seems to be a good approximation to the

Lo norm since limg0 37, 8|7 — [|Bllo and limg—0(1/q) 35_,(18;|7 — 1) = 35, log(|8)]).
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In the context of sparse signal recovery, this is enough to prove that the logarithmic penalty yields
the same estimate as the L penalty (including the case with € perturbation) (Wipf and Nagarajan,
2010, Section I). In the context of penalized likelihood, no such identity has been established. In
this section, we make explicit the link between the logarithmic penalty and the L penalty.

Ls reweighted scheme We will start with the case of the Lo reweighted scheme. Consider Prob-
lem (1) where the L, penalty is replaced by the logarithmic penalty: p(|3;]) = log(|5;|). The LQA

of this penalty around the current point B](l) is given by
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and the MM optimization scheme is obtained by iteratively minimizing ¢(3;| 5;“):
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which is the adaptive ridge with ¢ = 0, with ¢ set to zero.
The case € > 0, which is used in this paper, corresponds to the “square-log” penalty function
B — log(1 + 3]2 /€%). More precisely, the pointwise convergence
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justifies approximating Problem (1) when ¢ is small by the problem
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when ¢ is small. MM optimization of the latter problem using LQA is obtained (after rescaling )

by the update
P
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which is the numerical scheme used in this paper. The theoretical properties of the e-perturbed LQA
are studied in Hunter and Li (2005) for a specific class of penalties but, to the best of the authors’
knowledge, no theoretical properties have been established for the “square-log” penalty.



L; reweighted scheme The same reasoning applies to the LLA and shows (Zou and Li, 2008;
Candes et al., 2008) that the L reweighted scheme with ¢ = 0 corresponds to the MM optimization
of (1) with penalty function p(|3;]) = log(|3;|/|e| + 1).

S 1.3 Related Works

Many works have made use of the reweighted L.; and Lo schemes derived above. We mention some
related works of importance and finish with some remarks on the relative merits of the two methods.

These methods seem to first have been used in compressed sensing: Candes et al. (2008) studied
the L, reweighted scheme with ¢ = 0, while Daubechies et al. (2010) and Chartrand and Yin (2008)
studied Algorithm (2) for 0 < ¢ < 1 and ¢ € [0,1) respectively. Johnson et al. (2012) studied
Algorithm (3) with ¢ = 0 in the context of linear regression. de Rooi and Eilers (2011), Rippe
et al. (2012), and de Rooi et al. (2014) used Algorithm (2) with ¢ = 0 in various applications, while
Bach (2011, Section 5) and Mairal et al. (2014, Section 5.4) used the LQA to derive Algorithm (2)
for the L, penalty (0 < ¢ < 1) and for more general norms. More recently, Frommlet and Nuel
(2016) studied Algorithm (2) numerically for ¢ € [0, 1), and specifically ¢ = 0, under the name
“adaptive ridge”, which is the method used in this work. Dai et al. (2018) proved its consistency
and oracle property in the setting of linear regression. Finally, Tardivel et al. (2018) have recently
proven that, in the case of sparse signal recovery, the L; reweighted scheme with ¢ = 0 is equivalent
to minimizing the Ly penalty problem.

Remark 1. The choice of g is independent from the choice between reweighted L; or Ly schemes
and it is not tackled here. Many papers cited in this section seem to favor choosing a small value of

q.

Remark 2. Both reweighted L; and Lo schemes have their advantages and drawbacks. The former
is sparse at every step but each step requires solving a L penalty. The latter is only asymptotically
sparse and thus may require more iterations but it involves the simpler Lo penalty, whose solution
is explicit in the linear regression setting and simple to derive in other settings. To the best of
our knowledge, there is no available implementation of the fused L; penalty for a general negative
log-likelihood 4,,(3) .

Remark 3. As in the present work, most works cited in this section use a modified weighting step
for numerical stability: the denominator is bounded away from zero with an e perturbation. While
some offer rules of thumb to adaptatively decrease the value of € as the algorithm converges, we
have followed Frommlet and Nuel (2016)’s implementation and have set € to a very small fixed
value.
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Figure 1: Estimated hazard of death since diagnosis of breast cancer for different cancer stages and
for different ages at diagnosis. The estimate is obtained with the L regularization. The upper right
corner of every graph corresponds to the region where no data are available. All graphs share the
same scale.



S 2 Application to Breast Cancer Mortality: Stratification with Re-
spect to the Age at Diagnosis

The mortality of breast cancer is known to greatly vary on whether the cancer is pre or post-
menopausal (Consensus, 1985). Consequently, a thorough analysis of the mortality from breast
cancer would require to stratify with respect to the menopausal status at diagnosis. Since this co-
variate is not present in the data, we decided to stratify the sample with respect to the age of the
patient at diagnosis, which is a proxy of menopausal status. Most women are known to have their
menopause between 45 and 55 years old (Hill, 1996; Henderson et al., 2008; Gold, 2011), with 25th,
50th, 75th percentiles ranging from years 47-49, 50-51, 52-54, respectively, according to countries
and surveys (Mishra et al., 2017). Consequently, based on the available information in SEER, for
each cancer stage, the patients were divided into three classes of age at diagnosis: (.,45], (45, 55],
and (55,.) as a proxy for pre- menopausal, peri- menopausal and post- menopausal ages, respec-
tively. The resulting estimated hazards are represented in Figure 1.

The stage 1 cancer patients younger than 45 and the stage 3 cancer patients older than 55 display
the same mortality across all dates of diagnosis, i.e. with no cohort effect.

Moreover, the mortality of stage 1 cancer patients aged 45 and older at diagnosis has a slight
cohort effect corresponding to a progressive decrease in the mortality across all survival times (Peto
et al., 2000). This could suggest a trend of slow and steady improvement of the treatment of breast
cancer in the United States over the period 1887 — 2005.

Finally, we observe a clear decrease of the mortality for stage 2 cancers for all three age classes.
This shift is located at the year 1995 for middle-aged patients and around the years 1997 — 1998
for patients younger than 45 and older than 55. The same drop in mortality is observed for stage 3
cancers with patients younger than 45 at diagnosis, around year 1995. This could correspond to the
introduction of improvements in the treatments of breast cancer in the United States (Consensus,
1985). Among the three main medical innovations, which can be considered in this period, the im-
provement of the surgical procedures for the loco- regional control of the disease and the assessment
of the beneficial effect of hormone-receptor therapies could be reflected in the observed survival in
stages 1-2, whereas the later emergence during this period of new classs of chemotherapeutic agents
like taxoids (Rowinsky et al., 1992; Crown et al., 2004) or herceptin-based therapies targeted on new
class of tumor markers (Pegram et al., 1998; Emens and Davidson, 2004) would be related with the
changes in survival observed in stage 3. In the next section, we will use a stratified analysis to
understand the effect of hormone-receptor therapies on the mortality shift in the mid-1990s.

S 3 Application to Breast Cancer Mortality: Stratification with Re-
spect to the Estrogen Receptor Status

The cohort effect highlighted in the previous section could correspond to the introduction of Se-
lective Estrogen Receptor Modulator (SERM) treatments and in particular the use of Tamoxifen as
a treatment for breast cancer, showing improved survival in women with estrogen receptor posi-
tive tumor, initially in post- menopausal women (Fisher et al., 1989), later in both post - and pre-
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Figure 2: Estimated hazard of death since diagnosis of breast cancer for Stage 2 cancers. The esti-
mation is carried separately for three classes of age at diagnosis: (., 45], (45, 55], and (55, .) and for
sensitive and non-sensitive estrogen receptor cancers. Inference is made with the L regularization.
All graphs share the same scale.



menopausal women (Early Breast Cancer Trialists’ Collaborative Group, 1988; Fisher et al., 1998;
Pritchard, 2005; Cochrane, 2008). Indeed, Tamoxifen was gradually used in the early years of
1990’s (Gail et al., 1999; Harlan et al., 2002; Mariotto et al., 2006) to decrease the mortality of
breast cancer patients. This treatment is only efficient on estrogen receptor-sensitive cancers. To
validate our hypothesis, we conducted the estimation of mortality separately for patients with es-
trogen receptor sensitive and non-sensitive cancers. Since stage 2 cancers displayed a strong cohort
effect across all ages at diagnosis, we only kept stage 2 cancers in this study. The estimated mor-
tality is given in Figure 2. Note that the spikes in the mortality are an artifact of the segmentation
procedure when the sample sizes tend to be too small in some regions of the age-cohort plane and
are not to be taken into account in the interpretation of the mortality.

There is a clear difference in the evolution of mortality with respect to time at diagnosis between
sensitive and non-sensitive estrogen cancers. For estrogen sensitive cases, the mortality displays the
same sudden decrease around years 1997 — 1998 as in Figure 1, across all age classes. In particular
for individuals aged 55 or more at the time of diagnosis, the mortality has gradually decreased for
estrogen sensitive patients, whereas it did not evolve with time for estrogen non-sensitive patients.
On the other hand, the mortality for non-estrogen sensitive cancers displays almost no cohort effect
for all ages at diagnosis (Knight et al., 1977).

The same analysis was run with stratification with respect to progesterone receptor status, with
very similar morality estimates (results not shown here). Further analyses could be carried out to
better understand the effect of the introduction of hormone-blocking therapies on mortality. How-
ever, the segmentation of the hazard rate, even with this simple stratified analysis, highlighted that
the adoption of SERM therapies in the United States is a potential reason for the sharp decrease of
mortality in the middle of the 1990s (Peto et al., 2000).
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