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1 Expressions of the statistics Aold
k,i and Bold

k,i

For k = 1, . . . ,K, i = 1, . . . , n, define

Aold
k,i =

exp
(
ea

old
i,k ck−1 + aoldi,k −

∑k−1
j=1 e

aoldi,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θold)− S(Ri | Zi,θold)

∫ ck∧Ri

ck−1∨Li

exp
(
− ea

old
i,k t
)
dt

= exp
(
− ea

old
i,k ck−1 ∨ Li

)(
1− exp

(
− ea

old
i,k (ck ∧Ri − ck−1 ∨ Li)

))
×

exp
(
ea

old
i,k ck−1 −

∑k−1
j=1 e

aoldi,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θold)− S(Ri | Zi,θold)

and

Bold
k,i =

exp
(
ea

old
i,k ck−1 + aoldi,k −

∑k−1
j=1 e

aoldi,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θold)− S(Ri | Zi,θold)

∫ ck∧Ri

ck−1∨Li

(t− ck−1) exp(−ea
old
i,k t)dt

Bold
k,i =

{(
exp(−aoldi,k ) + ck−1 ∨ Li − ck−1

)
exp(−ea

old
i,k ck−1 ∨ Li)

−
(

exp(−aoldi,k ) + ck ∧Ri − ck−1
)

exp(−ea
old
i,k ck ∧Ri)

}
×

exp
(
ea

old
i,k ck−1 −

∑k−1
j=1 e

aoldi,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θold)− S(Ri | Zi,θold)
·

The function Q is then expressed as a function of these two statistics (see Section 3 of the
main paper).

2 The Schurr complement

The Schurr complement is used to compute the inverse of the Hessian matrix of Q, in the case of
fixed cuts (Section 3 of the main paper) and of `pen, for the adaptive ridge estimator (Section 4 of
the main paper). It makes use of the special structure of the block matrix corresponding to the
second order derivatives with respect to the aks which is either diagonal (for Q) or tri-diagonal
(for `pen).

Let I(a, β) be minus the Hessian matrix of Q or `pen for the maximisation problem with
respect to a1, . . . , aL and β1, . . . , βdZ . Let A be of dimension K ×K, B of dimension K × dZ
and C be of dimension dZ × dZ such that

I(a, β) =

(
A B
Bt C

)
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Let U(a, β) be the score vector of Q or `pen and b1 be the column vector of dimension K, b2 be
the column vector of dimension dZ such that U(a, β) = (b1, b2)

t. Using the Schurr complement,
we have

I(a, β)(−1)U(a, β) =

(
A−1b1 −A−1B(C −BtA−1B)−1(b2 −BtA−1b1)

(C −BtA−1B)−1(b2 −BtA−1b1)

)
.

For the inversion of the Hessian matrix of Q and `pen, the K×K matrix A is either diagonal (for
Q) or a band matrix of bandwidth equal to 1 (for `pen). Its inverse can be efficiently computed
using a fast C++ implementation of the LDL algorithm. This is achieved in linear complexity
using the R bandsolve package. As a result, the total complexity for the computation of
I(a, β)(−1)U(a, β) is of order O(K) in the case K >> dZ .

3 Score vector and Hessian matrix for the function Q when
including exact observations and a cure fraction

In the presence of exact observations and a cure fraction, the score vector and the Hessian
matrix are given from the following formulas:

∂Q(θ | θold)

∂ak
=

∑
i not exact

πoldi

{
Aold
k,i − (ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi − eakBold
k,i e

βZi

}

+
∑
i exact

{
Oi,k − exp(ak + βZi)Ri,k

}
,

∂Q(θ | θold)

∂β
=

∑
i not exact

πoldi Zi

K∑
l=1

Aold
l,i −

{
l−1∑
j=1

(cj − cj−1)eajAold
l,i e

βZi + ealBold
l,i e

βZi

}
+
∑
i exact

Zi

K∑
l=1

{
Oi,l − exp(al + βZi)Ri,l

}
,

∂2Q(θ | θold)

∂a2k
= −

∑
i not exact

πoldi

{
(ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi + eakBold
k,i e

βZi

}
−
∑
i exact

exp(ak + βZi)Ri,k,

∂2Q(θ | θold)

∂β2
= −

∑
i not exact

πoldi ZiZ
t
i

K∑
l=1

 l−1∑
j=1

(cj − cj−1)eajAold
l,i e

βZi + ealBold
l,i e

βZi


−
∑
i exact

ZiZ
t
i

K∑
l=1

exp(al + βZi)Ri,l,

∂2Q(θ | θold)

∂ak∂β
= −

∑
i not exact

πoldi Zi

(
(ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi + eakBold
k,i e

βZi

)
,

−
∑
i exact

Zi exp(ak + βZi)Ri,k.

4 Full regularisation path on a simulated dataset

We illustrate in this section the full regularisation path of the algorithm. As explained in Sec-
tion 4 of the main paper the algorithm consists of the detection of the set of cuts from the
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penalised estimator combined with the non-penalised estimator using this estimated set of cuts.
We consider one sample generated from Model M1, Scenario S1 of Section 6 of the main paper
in the absence of covariates and we estimate the hasard function using both the ridge and the
adaptive ridge algorithm. More precisely, the first algorithm uses the weights ŵk equal to 1
while the second algorithm iteratively updates the ŵk using Equation (5) of the main paper.
A set of penalty is chosen, on the log scale, as the set of 200 equally spaced values ranging
from log(0.1) to log(10 000). Figure 1 displays the regularisation path for the ridge on the left
and for the adaptive ridge on the right where the y-axis represents the values of the estimated
ak’s for each penalty value of the x-axis. We clearly see that the ridge procedure produces
a smooth estimation and the adaptive ridge procedure provides a selection of the cuts along
with an estimated piecewise constant hazard. Both estimators converge toward the same con-
stant model as pen tends to infinity. Figure 2 shows the resulting estimated hazard from the
adaptive ridge procedure after selection of the cuts using the BIC. On the left panel it is seen
that the BIC chooses a model with three cuts and four values of ak’s. On the right panel we
see that, on this sample, the adaptive ridge estimator follows closely the true value of the hazard.
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Figure 1: Regularization path for the ridge on the left panel and for the adaptive ridge on the
right panel. The x-axis represents the penalty value and the y-axis represents the estimated
values of the ak’s.

5 Proof of Theorem 4.1 of the main document

The proof follows two steps.

1. First of all, we prove that, at a given step of the adaptive-ridge algorithm, maximising
Equation (4) using the EM algorithm is equivalent to maximising

`pen∗ (θ) = log(Lobs
n (θ))− pen

2

K−1∑
k=1

ŵ
(l−1)
k (ak+1 − ak)2.

Let θold be the current parameter value of the EM algorithm. In the following we use the
notation fL,R,Z,T (data1:n, T1:n,θ) to represent the joint density of (L1, . . . , Ln, R1, . . . , Rn,
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Figure 2: Regularization path for the adaptive-ridge on the left panel. The estimated set of
cuts using the BIC is shown as a vertical dotted line. The resulting piecewise constant hazard
estimator is shown on the right panel as a solid line. The dotted line represents the true hazard.

Z1, . . . , Zn, T1, . . . , Tn) evaluated at the same observations with parameter θ. We have:

log(Lobs
n (θ)) = log

(∫
fL,R,Z,T (data1:n, T1:n,θ)dT1:n

)
= log

(∫
fT |L,R,Z(T1:n | data1:n,θold)

fL,R,Z|T (data1:n | T1:n,θ)fT (T1:n,θ)

fT |L,R,Z(T1:n | data1:n,θold)
dT1:n

)
≥
∫
fT |L,R,Z(T1:n | data1:n,θold) log

(
fL,R,Z|T (data1:n | T1:n,θ)fT (T1:n,θ)

fT |L,R,Z(T1:n | data1:n,θold)
dT1:n

)
,

where the last inequality was obtained from Jensen inequality and the fact that
∫
fT |L,R,Z(T1:n |

data1:n,θold)dT1:n = 1. Then, define

`1(θ | θold)

=

∫
fT |L,R,Z(T1:n | data1:n,θold) log

(
fL,R,Z|T (data1:n | T1:n,θ)fT (T1:n,θ)

fT |L,R,Z(T1:n | data1:n,θold)fL,R,Z(data1:n,θold)
dT1:n

)
,

we have

`pen∗ (θ)− `pen∗ (θold) ≥ `1(θ | θold)− pen

2

K−1∑
k=1

ŵ
(l−1)
k

(
(ak+1 − ak)2 − (aoldk+1 − aoldk )2

)
.

By defining this time

`2(θ | θold) = `pen∗ (θold) + `1(θ | θold)− pen

2

K−1∑
k=1

ŵ
(l−1)
k

(
(ak+1 − ak)2 − (aoldk+1 − aoldk )2

)
,

we directly see that `pen∗ (θ) ≥ `2(θ | θold) and `2(θold | θold) = `pen∗ (θold). Finally, we
notice that maximising `2(θ | θold) is equivalent to maximising Equation (4). We note θ̂
such a maximiser:

θ̂ = arg max
θ

`2(θ | θold) = arg max
θ

`pen(θ | θold),

and `pen∗ (θ̂) ≥ `2(θ̂ | θold) ≥ `2(θold | θold) = `pen∗ (θold).
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2. The second step consists in showing that maximising `pen∗ with the iterative adaptive
ridge penalisation is equivalent to maximising log(Lobs

n (θ)) − κ
∑K−1

k=1 p(∆ak), for some
κ > 0. To that purpose, we use a Local Quadratic Approximation (see Fan and Li (2001)
and Hunter and Li (2005)) of p(β). For all β(l) ∈ R, for all β ∈ R, one can easily show
that p(β) ≤ q(β | β(l)) with

q(β | β(l)) =
log(1 + (β(l))2/ε2)

log(1 + 1/ε2)
+
β2 − (β(l))2

ε2 + (β(l))2
· 1

log(1 + 1/ε2)
·

It is also directly seen that q(β(l) | β(l)) = p(β(l)). Now, define

g(θ | θ(l)) = log(Lobs
n (θ))− κ

K−1∑
k=1

q(∆ak | ∆a
(l)
k ).

Notice that g(θ̂
(l) | θ̂(l)) = log(Lobs

n (θ̂
(l)

))−κ
∑K−1

k=1 p(∆â
(l)
k ) and let θ̂

(l+1)
= arg maxθ g(θ |

θ̂
(l)

). Then:

log(Lobs
n (θ̂

(l+1)
))− κ

K−1∑
k=1

p(∆â
(l+1)
k ) ≥ g(θ̂

(l+1) | θ̂(l)) ≥ g(θ̂
(l) | θ̂(l))

≥ log(Lobs
n (θ̂

(l)
))− κ

K−1∑
k=1

p(∆â
(l)
k ).

We conclude the proof by noticing that maximising g(θ | θ̂(l)) is equivalent to maximising

`pen∗ (θ) with pen = 2κ/ log(1 + 1/ε2) and ŵ
(l−1)
k =

(
(â

(l−1)
k+1 − â

(l−1)
k )2 + ε2

)−1
, which is

the adaptive-ridge algorithm.

6 Proof of Theorem 5.1 of the main document

Proof of 1.
For this proof, we only consider the initial fixed set of cuts {c1, . . . , cK}. In order to avoid

confusion, we denote by θ† = (a†1, . . . , a
†
K , β

∗) the true parameter using this set of cuts. This

means that there might exist several k’s for which a†k = a†k+1. Note that removing the equal

consecutive values of a†k will yield θ∗. In the following, we will prove that θ̂ → θ† in probability.
For interval-censored, left or right-censored data, the full likelihood function can be written

as

L̃obs
n (θ) =

n∏
i=1

(fL,R,δ(Li, Ri, 1))δi(fL,R,δ(Li, Ri, 0))1−δi ,

where fL,R,δ(Li, Ri, 1), fL,R,δ(Li, Ri, 0) represent the joint density of the mixed distribution
(L,R, δ) respectively evaluated at (Li, Ri, 1) and (Li, Ri, 0). It is then seen that fL,R,δ(Li, Ri, 1) =
P[δ = 1 | L = Li, R = Ri, Zi,θ]fL,R,Z(Li, Ri, Zi) where fL,R,Z represents the joint density of
(L,R,Z) and P[δ = 1 | L = Li, R = Ri, Zi,θ] = (S(Li | Zi,θ) − S(Ri | Zi,θ))δi under the
independent censoring assumption. The same kind of reasoning holds for fL,R,δ(Li, Ri, 0) such
that

L̃obs
n (θ) =

n∏
i=1

(S(Li | Zi,θ)− S(Ri | Zi,θ))δi(S(Li | Zi,θ))1−δifL,R,Z(Li, Ri, Zi),

=
n∏
i=1

gθ(Li, Ri, Zi),
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where gθ(Li, Ri, Zi) := (S(Li | Zi,θ) − S(Ri | Zi,θ))fL,R,Z(Li, Ri, Zi) with the slight abuse of
notation S(Ri | Zi,θ) = 0 if Ri = ∞ (for a right-censored observation). The above equation
shows that the full likelihood is simply the observed likelihood Lobs

n (θ) of Section 3.1 of the
main document multiplied by the quantity fL,R,Z(Li, Ri, Zi) which does not depend on θ. In
case of exact observations, the full likelihood can be rewritten as:

L̃obs
n (θ) =

∏
i not exact

gθ(Li, Ri, Zi)
∏

i exact

f(Li | Zi,θ).

It should be noted that gθ(Li, Ri, Zi) and f(Li | Zi,θ) are densities. For gθ, write∫∫∫
l 6=r

gθ(l, r, z)dldrdz = Eθ
[
I(Li 6= Ri)Eθ[S(Li | Zi,θ)− S(Ri | Zi,θ) | L,R,Z]

]
=

∫∫∫
P[T ∈ (l, r) | L = l, R = r, Z = z,θ)fL,R,Z(l, r, z)dldrdz.

From the independent censoring assumption, P[T ∈ (l, r) | L = l, R = r, Z = z,θ)] = 1 and
consequently gθ is a density.

Now the penalised estimator defined in (6) of the main document verifies θ̂ = arg maxθ `
pen
n (θ),

where

`penn (θ) =

{
`n(θ)− pen

2n

K−1∑
k=1

ŵ
(1)
k (ak+1 − ak)2

}
,

with `n(θ) = log(L̃obs
n (θ))/n. We introduce `(θ) = Eθ† [I(Li 6= Ri) log(gθ(Li, Ri, Zi))] +

Eθ† [I(Li = Ri) log(f(Li | Zi,θ))] and we write:

|`penn (θ)− `(θ)| ≤ |`n(θ)− `(θ)|+ pen

2n

K−1∑
k=1

ŵ
(1)
k (ak+1 − ak)2.

The two terms on the right-hand side of the equation converge toward 0 in probability: the first

one from the law of large numbers, and the second one from the consistency of ŵ
(1)
k and the

condition pen/n→ 0.
Then, from Jensen inequality,

Eθ†
[
−I(Li 6= Ri) log

(
gθ(Li, Ri, Zi)

gθ†(Li, Ri, Zi)

)]
≥ − log

(
Eθ†

[
I(Li 6= Ri)

gθ(Li, Ri, Zi)

gθ†(Li, Ri, Zi)

])
≥ − log

(∫∫∫
l 6=r

gθ(l, r, z)

gθ†(l, r, z)
gθ†(l, r, z)dldrdz

)
= 0.

The same reasoning applies to Eθ† [I(Li = Ri) log(f(Li | Zi,θ)/f(Li | Zi,θ†))] which proves
that `(θ) ≤ `(θ†) for all θ. To conclude, we have proved that |`n(θ)− `(θ)| → 0 in probability,
with θ̂ = arg maxθ `

pen
n (θ) and θ† = arg maxθ `(θ). The concavity of `penn (θ) yields that θ̂ → θ†

in probability.

Proofs of 2. and 3.
We start by working on the true set of cuts A∗. We need to define the estimator

ˆ̂
θA∗ , that

is our estimator using the true set of cuts. In particular we need to define the value of ˆ̂ak,A∗

on each interval c∗k−1 < t ≤ c∗k. As a matter of fact, for a given n the sets An and A∗ might be

different and therefore some ˆ̂ak,A∗ might not exist. We set:

exp(ˆ̂ak,A∗) =
ˆ̂
λ0,An(c∗k−1).
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This definition is arbitrary and any value of t ∈ (c∗k−1, c
∗
k] could be taken for

ˆ̂
λ0,An(t). We now

also define `n,A∗(θ) = log(Lobs
n,A∗(θ)) the observed log-likelihood defined using the true set of

cuts A∗. From a Taylor expansion, we have:

∇θ`n,A∗(
ˆ̂
θA∗) = ∇θ`n,A∗(θ∗) + (

ˆ̂
θA∗ − θ∗)t∇2

θ`n,A∗(θ̃A∗),

where θ̃A∗ is on the line segment between ˆ̂θA∗ and θ∗. As a consequence,

√
n( ˆ̂θA∗ − θ∗)t = −(∇2

θ`n,A∗(θ̃A∗)/n)−1(∇θ`n,A∗(θ∗)−∇θ`n,A∗(
ˆ̂
θA∗))

1√
n
· (1)

From the result in 1. of this theorem,
ˆ̂
θA∗ → θ∗ in probability, and thus ∇2

θ`n,A∗(θ̃A∗)/n −
∇2
θ`n,A∗(θ∗)/n converges to 0 in probability and−∇2

θ`n,A∗(θ̃A∗)/n→ −E[∇2
θh
∗
θ(Li, Ri, Zi))|θ=θ∗ ] =

Σ in probability.

The key to the proof is now to show that ∇θ`n,A∗(
ˆ̂
θA∗)/

√
n converges to 0 in probability.

We denote by θ̂A∗ the estimator that maximises `n,A∗(θ). Noticing that ∇θ`n,A∗(θ̂A∗) = 0 we
have

∇θ`n,A∗( ˆ̂θA∗)/
√
n =
√
n( ˆ̂θA∗ − θ̂A∗)t∇2

θ`n,A∗(θ̃A∗)/n, (2)

where θ̃A∗ is on the line segment between ˆ̂θA∗ and θ̂A∗ . Since θ̂A∗ → θ∗ and ˆ̂θA∗ − θ̂A∗ → 0
in probability, we can prove as previously that ∇2

θ`n,A∗(θ̃A∗)/n→ Σ in probability.

We now work on the initial set of cuts {c1, . . . , cK} and we define θ̂†, the estimator θ̂A∗ that
is defined on {c1, . . . , cK} (this is always possible since A∗ ⊂ {c1, . . . , cK}). We need to prove

that
√
n(θ̂− θ̂†)t converges to 0 in probability which will imply that

√
n( ˆ̂θA∗ − θ̂A∗)t converges

to 0 in probability. Introduce the function:

ψn(u, v) := `n(θ̂† + (u, v)/
√
n)− `n(θ̂†)− pen

2n

K−1∑
k=1

ŵ
(1)
k (V (â†k + uk/

√
n)− V (â†k)),

where (u, v) = (u1, . . . , uK , v1, . . . , vdZ ) is a row vector of dimension (K + dZ) and V (ak) =
(ak+1 − ak)2. For

(û, v̂) = arg min
u,v

ψn(u, v),

we have â = â†+ û/
√
n and β̂ = β̂†+ v̂/

√
n, that is û =

√
n(â− â†) and v̂ =

√
n(β̂− β̂†). We

now study the limit of ψn. First of all,

`n(θ̂† + (u, v)/
√
n)− `n(θ̂†) =

(u, v)√
n
∇θ`n(θ̂†) +

1

2n
(u, v)∇2

θ`n(θ̂†)(u, v)t + oP(1),

where the oP(1) is obtained from the law of large numbers applied to the partial derivatives of
order three of `n(θ̃n), for a θ̃n on the line segment between θ̂† and (u, v)/

√
n. By definition, θ̂†

maximises `n and therefore ∇θ`n(θ̂†) = 0. By the law of large numbers, 1
2n(u, v)∇2

θ`n(θ̂†)(u, v)t

converges in probability toward 1
2(u, v)∇2

θ`(θ
†)(u, v)t = −1

2(u, v)Σ(u, v)t. Secondly,

V (â†k + uk/
√
n)− V (â†k) =

2√
n

(â†k+1 − â
†
k)(uk+1 − uk) +

(uk+1 − uk)2

n
.

Since ŵ
(1)
k → ((a†k+1 − a

†
k)

2 + ε2)−1, â†k+1 − â
†
k → a†k+1 − a

†
k in probability and∣∣∣∣∣ a†k+1 − a

†
k

(a†k+1 − a
†
k)

2 + ε2

∣∣∣∣∣ < 1,
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we see that V (â†k + uk/
√
n) − V (â†k) → 0 in probability. To summarise we have shown that

ψn(u, v)→ −1
2(u, v)Σ(u, v)t in probability. Since Σ is a positive definite matrix, −1

2(u, v)Σ(u, v)t

is minimal for (u, v) = (0, 0). This proves that
√
n(θ̂ − θ̂†)t converges to 0 in probability.

Going back to Equations (1) and (2), and from the asymptotic normality of ∇θ`n,A∗(θ∗)/
√
n

using the Central Limit Theorem, we finally obtain:

√
n(

ˆ̂
θA∗ − θ∗)t = −(∇2

θ`n,A∗(θ̃A∗)/n)−1(∇θ`n,A∗(θ∗))
1√
n

+ oP(1) −→ Σ−1N (0,Σ),

in distribution. This concludes the proof.

7 Extended simulation study for the piecewise constant hazard
model: two scenarios that include exact observations and a
cure fraction

We consider two new scenarios which include a proportion of non-susceptible individuals. For
the susceptibles, the data include left, interval and right-censored observations along with a
proportion of exact observations. The model is defined by Equations (2) and (3) of the main
paper with a logistic link for the probability of being cured. In both scenarios, the Z covariate,
β coefficient and λ0 baseline function are all generated as in the simulation section of the main
paper. The X covariate is of dimension dX = 2 (including the intercept) and follows a Bernoulli
distribution with parameter 0.8. In Scenario S3, γ = (log(2.35), log(2))t and in Scenario S4,
γ = (log(0.8), log(2))t. These values yield an average number of susceptible individuals E[p(X)]
respectively equal to 80% and 58%. Among the susceptibles, both scenarios correspond to a
proportion of 18% of exact observations, 19% of left observations, 40% of interval-censored ob-
servations and 23% of right-censored observations. The results are presented in Table 1. Only
our adaptive ridge estimator has been implemented for these two scenarios. The γ estimator is
initialised to 0 in the EM algorithm.

Table 1: Simulation results for the estimation of β and S0 in Scenarios S3 and S4. S3: 80% of susceptible
individuals. S4: 58% of susceptible individuals. Among the susceptible individuals, 18% of exact data,
19% of left-censoring, 40% of interval-censoring, 23% of right-censoring.

Adaptive Ridge estimate
n Bias(β̂) SE(β̂) MSE(β̂) Bias(γ̂) SE(γ̂) MSE(γ̂) IBias2(Ŝ0) IVar(Ŝ0) TV(λ̂0)

S3 200 −0.015 0.291 0.085 0.102 0.498 0.259 0.004 0.324 0.840
0.003 0.236 0.056 0.011 0.630 0.398

400 −0.017 0.207 0.043 0.075 0.356 0.132 0.002 0.160 0.659
−0.005 0.162 0.026 0.027 0.433 0.189

1 000 0.006 0.127 0.016 0.025 0.184 0.035 0.001 0.059 0.414
0.006 0.094 0.009 0.012 0.198 0.039

S4 200 −0.021 0.387 0.150 0.077 0.479 0.235 0.005 0.563 1.195
−0.010 0.310 0.096 0.038 0.511 0.262

400 −0.023 0.255 0.066 0.048 0.296 0.090 0.003 0.255 0.810
0.003 0.209 0.044 0.016 0.309 0.096

1 000 −0.009 0.150 0.023 0.032 0.186 0.036 0.001 0.096 0.530
0.008 0.124 0.015 0.004 0.205 0.042

A slight deterioration of the variance estimation of β̂ and λ̂0 is seen when a cure fraction is
included and the degree of deterioration increases as the proportion of cured gets bigger. On
the other hand the bias of the parameter estimates is similar with or without the cure fraction.
In the presence of a cure fraction, the γ parameter is less accurately estimated as compared
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to the β parameter both in terms of bias and variance. Nevertheless the results show that as
the sample size increases the bias and variance of γ̂ get smaller with a bias very close to 0 for
a sample size equal to 1 000. The estimation performance of E[p(X)] was also investigated by
computing the average value of

∑
i p̂(Xi)/n for all generated samples where p̂(X) is defined as

in Equation (3) of the main paper with γ replaced by γ̂. For example, in Scenario S4 we found
a bias and empirical standard error (SE) equal for n = 200 to 0.057 (SE = 0.064), for n = 400
to 0.046 (SE = 0.044) and for n = 1 000 to 0.033 (SE = 0.028).

More simulations were conducted. In particular, the cure model without covariates for the
cure fraction was also implemented in Scenario S1, Model M1 of the main paper such that
the parameters to be estimated are θ = (a1, . . . , aL, β, p) with the true value of p equal to 1.
In replications of samples of size 400, it was seen that the model estimated the proportion of
susceptibles p to a value greater than 0.99 in 98% of cases and the lowest value on the 500
replications for the estimation of p was equal to 0.95. This highlights the very high specificity
of our model in terms of detecting a cure fraction. It shows that our model does not tend
to overestimate the proportion of cured when the population is homogeneous, which is a very
important feature of the estimation method. On the other hand, a scenario identical to Scenario
S1, Model M1 but with a true proportion of susceptibles equal to p = 0.7 was also considered.
In replications of samples of size 400, the estimator of p was equal to 0.712 on average and only
0.5% of the estimates where greater than 0.99. This suggests in turn a high sensitivity of our
model to detect heterogeneity in interval censored data.

8 Computational cost of the adaptive ridge algorithm

The complexity for the inversion of the Hessian of ` is of order O(K), in the case K >> dX +dZ
(see Section 2 in the Supplementary Material about the Schurr complement). However, for a
given penalty, it should be noted that the global algorithm for maximising Q or `pen consists
of an EM algorithm with a Newton-Raphson procedure at each step. As a consequence, in
the simulations and for the dental dataset a Generalised Expectation Maximisation (GEM)
algorithm (see Dempster and others (1977)) is used instead of the standard EM where, as soon
as the value of Q or `pen increases, the Newton-Raphson procedure is stopped. This results
in computing only a few steps of the Newton-Raphson algorithm (very often only one step is
needed). As the EM algorithm is usually very slow to reach convergence the turboEM R package
with the squareEM option is used to accelerate the procedure (see for instance Varadhan and
Roland (2008)). Finally, the algorithm must be iterated for the whole sequence of penalties. In
order to evaluate the global computational cost, numerical experiments were conducted which
showed that, for a maximum of Kmax initial cuts, the total complexity of the whole procedure

is of order O(nK
1/2
max).

More specifically, the computation time for the method was evaluated on replicated samples
for the three sample sizes n = 200, 400, 1 000 and for different values of the maximal number
of initial cuts: Kmax = 18, 40, 80. We estimated the implementation of the whole method with

200 penalty values to 0.0016× nK1/2
max minutes. For example, for n = 400,Kmax = 40 the whole

program takes 4 minutes, for n = 400,Kmax = 80 it takes 5.7 minutes, for n = 1 000,Kmax = 40
it takes 10.12 minutes and for n = 1 000,Kmax = 80 it takes 14.3 minutes. These values are
given as an indication of the algorithmic complexity and should be considered with caution
as the implementation has not been optimised. In particular, computation of the Aold

k,i and

Bold
k,i terms could be improved by computing the set of values (ck ∧ Ri, ck−1 ∨ Li) such that

(Li, Ri) ∩ (ck−1, ck) 6= ∅ more efficiently in C++. Also the non-penalised MLE is implemented
for each selection of cuts. For small penalty values, the set of selected cuts can be quite large
and the turboEM R package has trouble to converge in these cases. For very large set of selected
cuts it often does not converge at all and the algorithm is stopped after 200 iterations. This
procedure could be greatly improved by only implementing the MLE for reasonable sets of cuts.
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Finally, it should be noted that the adaptive ridge procedure needs only to be implemented
once on the dataset, in order to detect the set of cuts. Then given this set of cuts, the piecewise-
constant hazard model is much faster to compute. For example in Scenario S1 from the main
paper with three cuts, the computation time of the piecewise-constant hazard maximum likeli-
hood model is on average respectively equal to 1.13, 1.80 and 3.33 seconds for n = 200, 400, 1 000.

9 The likelihood ratio approach to construct confidence inter-
vals

As shown in Section 5 of the main document, statistical inference in our model reduces to a
fully parametric problem since, after selection of the cuts, one can consider these cuts as fixed
and the asymptotic distribution of the final estimator is identical to the asymptotic distribution
one would get if the true cuts were initially provided.

Statistical tests are implemented from the likelihood ratio test which is based on the observed
likelihood Lobs

n . Let θ = (θ1, θ2) with θ1 of dimension d. To test the null hypothesis H0 : θ1 = θ0,
with θ0 known, one can use the test statistic −2 log(Lobs

n (θ0, θ̂2)/L
obs
n (θ̂1, θ̂2)) which follows a

chi-squared distribution with d degrees of freedom from standard likelihood theory. Confidence
intervals can also be constructed from the likelihood ratio statistic. Let us assume that θ =
(θ1, θ2) with θ1 of dimension 1 and consider the test H0 : θ1 = θ0 versus H1 : θ1 6= θ0. The 1−α
confidence interval level of the parameter θ1 will be determined by the set of values θ0 such that
the previous test is not significant at the significance level α. Note that the p-value of the test
is defined by (with a slight abuse of notation for the realisation of the test statistic)

P

[
χ2(1) > −2 log

(
Lobs
n (θ0, θ̂2)

Lobs
n (θ̂1, θ̂2)

)]
,

and the test is non-significant if this value is greater than α. Let q1−α
χ2 be the 1− α quantile of

the χ2(1) distribution. The bounds of the confidence intervals can therefore be determined by
resolving the equation

log(Lobs
n (θ0, θ̂2)) +

1

2
q1−α
χ2 − log(Lobs

n (θ̂1, θ̂2)) = 0, (3)

with respect to θ0. This equation has two solutions and since it is clear that θ0 = θ̂1 is part of the
confidence interval (the p-value equals one for this value), a grid search can be performed using
for example the uniroot package with the two starting intervals [θ̂1−c; θ̂1] and [θ̂1; θ̂1+c], where
c is a positive constant. This constant can be chosen arbitrarily large and should satisfy that the
left-hand side of Equation (3) is of opposite sign for θ0 = θ̂1−c and θ0 = θ̂1+c. See Zhou (2015)
for more details about the likelihood ratio test approach for constructing confidence intervals.

A more classical method for deriving confidence intervals can be based on the normal ap-
proximation of the model parameter obtained from Theorem 5.1 of the main document. It
requires to compute the Hessian matrix of the observed log-likelihood. The details for this
approach are given in the next section.

10 Score vector and Hessian matrix for the observed log-likelihood

Computation of the Hessian matrix of the observed log-likelihood ∂2 log(Lobs
n (θ))/∂θ2 evaluated

at θ = θ̂ can be done by direct calculation or by using the following relationship which makes
use of the complete likelihood Ln (see Louis (1982)):

∂ log
(
Lobs
n (θ)

)
∂θ

= E
[
∂ log (Ln(θ))

∂θ

∣∣∣∣ data,θ

]
. (4)
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In the above equation, the Hessian can be computed based on the complete likelihood by taking
the derivative of the right-hand side of the equation with respect to θ. For simplicity, we assume
that all individuals are susceptibles. Then,

log (Ln(θ)) =
∑

i not exact

K∑
k=1

I(ck−1 < Ti ≤ ck)
(
ai,k −

k∑
j=1

eai,j (Ti ∧ cj − cj−1)
)
,

+
∑
i exact

K∑
k=1

{
Oi,kai,k − exp(ai,k)Ri,k

}
∂ log (Ln(θ))

∂ak
=

n∑
i not exact

{
I(ck−1 < Ti ≤ ck)−

K∑
l=k

I(cl−1 < Ti ≤ cl)eai,k(Ti ∧ ck − ck−1)
}
,

+
∑
i exact

{
Oi,k − exp(ai,k)Ri,k

}
∂ log (Ln(θ))

∂β
=

n∑
i=1

K∑
l=1

I(cl−1 < Ti ≤ cl)Zi
(

1−
l∑

j=1

eai,j (Ti ∧ cj − cj−1)
)

+
∑
i exact

K∑
l=1

Zi
{
Oi,l − exp(ai,l)Ri,l

}
.

We now need to take the expectation conditionally on the data of the last two equations. This
will involve the quantities

P[ck−1 < Ti ≤ ck | data,θ] =
S(ck−1 ∨ Li | Zi,θ)− S(ck ∧Ri | Zi,θ)

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

and

E[I(ck−1 < Ti ≤ ck)Ti | data,θ)]

= Jk,i

∫ ck∧Ri

ck−1∨Li

t exp
(
ai,k −

k∑
j=1

eai,j (t ∧ cj − cj−1)
)
dt× 1

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

=
{(

exp(−ai,k) + ck−1 ∨ Li
)

exp(−eai,kck−1 ∨ Li)−
(

exp(−ai,k) + ck ∧Ri
)

exp(−eai,kck ∧Ri)
}

×
exp

(
eai,kck−1 −

∑k−1
j=1 e

ai,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θ)− S(Ri | Zi,θ)
·

Calculation of the right-hand side of Equation (4) is now straightforward. We first separate
exact and non exact observations in the following way:

∂ log(Lobs
n (θ))

∂θ
=

∑
i not exact

∂Lobs
i,1 (θ)

∂θ
+
∑
i exact

∂Lobs
i,2 (θ)

∂θ
.

For the non-exact observations, we introduce

Ci,k(θ) =
S(ck−1 ∨ Li | Zi,θ)− S(ck ∧Ri | Zi,θ)

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

Di,k(θ) = Jk,i
{(

exp(−ai,k) + ck−1 ∨ Li
)

exp(−eai,kck−1 ∨ Li)

−
(

exp(−ai,k) + ck ∧Ri
)

exp(−eai,kck ∧Ri)
} exp

(
eai,kck−1 −

∑k−1
j=1 e

ai,j (cj − cj−1)
)

S(Li | Zi,θ)− S(Ri | Zi,θ)
,
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such that

∂Lobs
i,1 (θ)

∂ak
= Ci,k(θ)− eai,k

(
Di,k(θ)− ck−1Ci,k(θ)

)
− eai,k(ck − ck−1)

K∑
l=k+1

Ci,l(θ),

∂Lobs
i,1 (θ)

∂β
= Zi

{
Ci,k(θ)− Ci,k(θ)

k−1∑
j=1

eai,j (cj − cj−1)− eai,k
(
Di,k(θ)− ck−1Ci,k(θ)

)}
.

For the exact observations we have

∂Lobs
i,2 (θ)

∂ak
= Oi,k − exp(ak + βZi)Ri,k,

∂Lobs
i,2 (θ)

∂β
= Zi

K∑
l=1

{
Oi,l − exp(al + βZi)Ri,l

}
.

For the Hessian matrix ∂2 log(Lobs
n (θ))/∂θ2, we first compute

∂S(ck−1∨ Li | Zi,θ)

∂ak
= − (LiIk(Li) + ckI(Li > ck)) e

ai,kS(Li | Zi,θ),

∂S(ck−1∨ Li | Zi,θ)

∂β
= −Zi

K∑
l=1

(cl ∧ ck−1∨ Li − cl−1)I(cl−1 ≤ ck−1 ∨ Li)eai,kS(ck−1∨ Li | Zi,θ),

∂S(ck ∧Ri | Zi,θ)

∂ak
= −(ck ∧Ri − ck−1)eai,kS(ck ∧Ri | Zi,θ)I(Ri ≥ ck−1),

∂S(ck ∧Ri | Zi,θ)

∂β
= −Zi

K∑
l=1

(cl ∧ ck ∧Ri − cl−1)I(cl−1 ≤ ck ∧Ri)eai,kS(ck ∧Ri | Zi,θ),

∂S(Li | Zi,θ)

∂ak
= −(ck ∧ Li − ck−1)eai,kS(Li | Zi,θ)I(Li ≥ ck−1),

∂S(Li | Zi,θ)

∂β
= −Zi

K∑
l=1

(cl ∧ Li − cl−1)eai,lS(Li | Zi,θ)I(Li ≥ cl−1),

∂S(Ri | Zi,θ)

∂ak
= −(ck ∧Ri − ck−1)eai,kS(Ri | Zi,θ)I(Ri ≥ ck−1),

∂S(Ri | Zi,θ)

∂β
= −Zi

K∑
l=1

(cl ∧Ri − cl−1)eai,lS(Ri | Zi,θ)I(Ri ≥ cl−1),

such that calculation of the partial derivatives of Ci,k(θ) are calculated from the formulas

∂Ci,k(θ)

∂ak
=
∂S(ck−1 ∨ Li | Zi,θ)/∂ak − ∂S(ck ∧Ri | Zi,θ)/∂ak

S(Li | Zi,θ)− S(Ri | Zi,θ)

− Ci,k(θ)
∂S(Li | Zi,θ)/∂ak − ∂S(Ri | Zi,θ)/∂ak

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

∂Ci,k(θ)

∂β
=
∂S(ck−1 ∨ Li | Zi,θ)/∂β − ∂S(ck ∧Ri | Zi,θ)/∂β

S(Li | Zi,θ)− S(Ri | Zi,θ)

− Ci,k(θ)
∂S(Li | Zi,θ)/∂β − ∂S(Ri | Zi,θ)/∂β

S(Li | Zi,θ)− S(Ri | Zi,θ)
·

Then, we can show that
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∂

∂ak

K∑
l=k+1

Ci,l(θ) =
(ck ∨ Li − ck−1)eai,k

∑K
l=k S(cl ∨ Li | Zi,θ)

S(Li | Zi,θ)− S(Ri | Zi,θ)

−
(ck ∧Ri − ck−1)eai,kI(Ri ≥ ck−1)

∑K
l=k+1 S(cl ∨Ri | Zi,θ)

S(Li | Zi,θ)− S(Ri | Zi,θ)

−
K∑

l=k+1

Ci,l(θ)
∂S(Li | Zi,θ)/∂ak − ∂S(Ri | Zi,θ)/∂ak

S(Li | Zi,θ)− S(Ri | Zi,θ)
·

We now introduce:

Ei,k = exp(−ai,k − eai,kck−1∨ Li) +
(

exp(−ai,k) + ck−1∨ Li
)(

exp(ai,k − eai,kck−1∨ Li)ck−1∨ Li
)

+ exp(−ai,k − eai,kck−1 ∨ Li) +
(

exp(−ai,k) + ck ∧Ri
)(

exp(ai,k − eai,kck ∧Ri)ck ∨Ri
)
,

such that

∂Di,k(θ)

∂ak
= −

Ei,k exp
(
eai,kck−1 −

∑k−1
j=1 e

ai,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θ)− S(Ri | Zi,θ)
+Di,k(θ)eai,kck−1Jk,i

−Di,k(θ)
∂S(Li | Zi,θ)/∂ak − ∂S(Ri | Zi,θ)/∂ak

S(Li | Zi,θ)− S(Ri | Zi,θ)
Jk,i,

∂Di,k(θ)

∂β
= −Zi

Ei,k exp
(
eai,kck−1 −

∑k−1
j=1 e

ai,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θ)− S(Ri | Zi,θ)

+ ZiDi,k(θ)(eai,kck−1 −
k−1∑
j=1

eai,j (cj − cj−1))Jk,i

−Di,k(θ)Jk,i
∂S(Li | Zi,θ)/∂β − ∂S(Ri | Zi,θ)/∂β

S(Li | Zi,θ)− S(Ri | Zi,θ)
·

Finally, we have

∂2Lobs
1 (θ)

∂a2k
=
∂Ci,k(θ)

∂ak
− eai,k

(
Di,k(θ)− ck−1Ci,k(θ) +

∂Di,k(θ)

∂ak
− ck−1

∂Ci,k(θ)

∂ak

)
− eai,k(ck − ck−1)

(
K∑

l=k+1

Ci,l(θ) +
∂

∂ak

K∑
l=k+1

Ci,l(θ)

)
,

∂2Lobs
1 (θ)

∂ak∂β
= Zi

{
∂Ci,k(θ)

∂ak
−
∂Ci,k(θ)

∂ak

k−1∑
j=1

eai,j (cj − cj−1)

− eai,k
(
Di,k(θ)− ck−1Ci,k(θ) +

∂Di,k(θ)

∂ak
− ck−1

∂Ci,k(θ)

∂ak

)}
,

∂2Lobs
1 (θ)

∂β2
= Zi

{
∂Ci,k(θ)t

∂β
−
∂Ci,k(θ)t

∂β

k−1∑
j=1

eai,j (cj − cj−1)

− eai,k
(
ZtiDi,k(θ)− ck−1ZtiCi,k(θ) +

∂Di,k(θ)t

∂β
− ck−1

∂Ci,k(θ)t

∂β

)}
,
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and for the exact observations

∂2Lobs
2 (θ)

∂a2k
= − exp(ak + βZi)Ri,k,

∂2Lobs
2 (θ)

∂ak∂β
= −Zi exp(ak + βZi)Ri,k,

∂2Lobs
2 (θ)

∂β2
= −ZiZti

K∑
l=1

{
exp(al + βZi)Ri,l

}
.
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