NONPARAMETRIC ESTIMATION OF THE INTENSITY FUNCTION OF A RECURRENT EVENT PROCESS

OLIVIER BOUAZIZ\(^{(\ast)}\), FABIENNE COMTE\(^{(\ast\ast)}\) AND AGATHE GUILLOUX\(^{(\ast\ast\ast)}\)

Abstract. In this paper, we consider the problem of estimating the intensity of a recurrent event process observed under a standard censoring scheme. We first propose a collection of kernel estimators for which we provide MSE and MISE bounds. Then, we describe and study an adaptive procedure of bandwidth selection, in the spirit of Goldenshluger and Lepski (2010) and we prove an oracle type bound for both the MSE and the MISE of the final estimator. The method is illustrated by simulation experiments.

May 18, 2012


1. Introduction

Recurrent event data arise in many fields such as medicine, insurance, economics and reliability. Medical examples include infections in HIV-infected subjects, tumor recurrences in cancer patients or epileptic seizures of patients. Such repeated events impact on the quality of life of the patients and also increase their risk of death. Therefore it becomes of natural interest to study the rate function of the recurrent event process which represents the instantaneous probability of experiencing a recurrent event at a given time. In this paper, we propose a new kernel estimator of the rate function when the recurrent event process is subject to right censoring and a terminal event is present. Then, we study the finite sample properties of this nonparametric estimator and develop a method to choose the bandwidth using data-driven techniques.

Regression methods have been widely studied to estimate the cumulative mean function or the rate function of the recurrent event process. For instance, Andersen

\(^{(\ast)}\): MAP5, UMR CNRS 8145, University and IUT Paris Descartes
\(^{(\ast\ast)}\): MAP5, UMR CNRS 8145 and University Paris Descartes,
\(^{(\ast\ast\ast)}\): LSTA, University Pierre et Marie Curie.
and Gill [2] considered a Cox model in presence of right censoring and they studied
the intensity of the recurrent process under a Poisson assumption. In the absence
of terminal events, Pepe and Cai [18] and Lin et al. [15] performed estimation
of the regression parameters in a more general model, taking into account time
dependent covariates. Ghosh and Lin [10, 11] extended these results to the presence
of terminal events and derived asymptotic properties of the regression parameter
estimates. Finally, Bouaziz et al. [5] studied the cumulative mean function through
a single-index assumption which can be seen as a generalization of the previous
models. Asymptotic results on the parameter estimates were derived and data-
driven techniques were used.

However, all these approaches rely on a modelisation assumption on the mean
or the rate functions which may not hold in practice. In a more flexible way, non-
parametric procedures were considered by several authors. In presence of censored
data and without the Poisson assumption, Nelson [17] and Lawless and Nadeau [14]
introduced an estimator of the cumulative mean function and derived a robust es-
timator of its variance. They also obtained confidence intervals which enable them
to compare mean functions in a two-sample testing. Then, the theoretical proper-
ties of this estimator were derived in Ghosh and Lin [9]. In their main result, the
cumulative mean function is proved to converge weakly to a zero mean Gaussian
process. More recently, Dauxois and Sencey [8] studied a model of recurrent events
with competing risks and a terminal event. They performed two-sample tests on the
rate function although their estimation procedure did not need estimation of this
function.

Few works using smoothing approach were also introduced in this framework.
Bartoszyński et al. [3] briefly presented a kernel estimator of the rate function when
the recurrent events were supposed to be distributed according to a Poisson process
and the censored times constant. Then, Chiang et al. [6] extended their results to a
more general setting where no Poisson assumption is made, no terminal events are
considered and the censoring variables are random, but observed. They studied two
types of kernel estimator of the rate function and gave asymptotic results for both
estimators. Mainly, the asymptotic normality is proved and confidence intervals
are derived using a bootstrap method, where theoretical arguments are provided to
validate their procedures. Another kind of smoothing estimator was also introduced
in Bouaziz et al. [5] to estimate the cumulative mean function when covariables and
terminal events are present.
In this paper, we propose a new kernel estimator of the rate function, the derivative of the cumulative mean function, in a nonparametric context, with unobserved random censoring variables and terminal events. For this estimator, we develop an adaptive procedure to select the bandwidth, based on the recent work of Goldenshluger and Lepski [12]. We establish oracle inequalities, for the $L_2$-risk and the integrated $L_2$-risk of our estimator with a data-driven choice of the bandwidth. This is the first non-asymptotic result in this setting. In addition, the data-driven procedure is easily implementable.

The paper is structured as follows. After presenting the recurrent event model in the next section, we introduce our estimation procedure and infer a kernel-type estimator of the rate function in Section 3.1. In Sections 3.2 and 3.3 we give Mean Squared Error (MSE) and Mean Integrated Squared Error (MISE) bounds of the estimator for a fixed bandwidth. An adaptive procedure of bandwidth selection is then presented in Section 4. In particular, we derive our main result, an oracle bound for both the MSE and the MISE of our rate function estimator. A simulation study is conducted in Section 5 in order to assess the practical properties of the method. We also provide a comparison with a bootstrap method adapted from [6]. Finally, a few concluding remarks gathered in Section 6 end our presentation. The main proofs are detailed in Section 7 and some technical results are postponed to the appendix in Section 8.

2. Notations and first assumptions

2.1. Notations. In the following, for a real $q \geq 1$ and for a function $f : \mathbb{R} \mapsto \mathbb{R}$ such that $|f|^q$ is integrable or bounded, we denote by

$$
\|f\|_q = \left( \int |f(x)|^q dx \right)^{1/q} \quad \text{and} \quad \|f\|_\infty = \sup_{x \in \mathbb{R}} |f(x)|.
$$

For simplicity, we also set $\|f\| = \|f\|_2$. The integrals and the supremum are restricted to the support of $f$ and for $\tau$ a positive real number, we set $\|f\|_{\infty, \tau} = \sup_{x \in [0, \tau]} |f(x)|$.

We denote by $x^* = \arg\min_{x \in \mathcal{X}} f(x)$ the point $x^*$ such that $f(x^*)$ realizes the minimum of the function $f$ over the set $\mathcal{X}$, if it exists.

For $k$ a positive integer, $f^{(k)}$ represents the derivative of order $k$ of the function $f$, and we set by convention $f^{(0)} \equiv f$.

For $h$ a positive real number, $f_h$ represents the function $f_h(\cdot) = f(\cdot/h)/h$. 

For two square-integrable functions $f$ and $g$ from $\mathbb{R}$ to $\mathbb{R}$, we denote the convolution product of $f$ and $g$ by $f \ast g$, where

$$f \ast g(t) = \int f(t-x)g(x)dx = \int f(t)g(x-t)dt.$$ 

Finally, for two quantities $\alpha(n)$ and $\gamma(n)$, the notations $\alpha(n) \lesssim \gamma(n)$ and $\alpha(n) \propto \gamma(n)$ will be used to say that there exists a positive constant $c$ such that $\alpha(n) \leq c\gamma(n)$ and $\alpha(n) = c\gamma(n)$ respectively.

2.2. Process assumptions. Let $D$ be the terminal event (e.g. death) and $N^*(t)$ be the number of recurrent events experienced up to time $t$. As no recurrent event can occur after the terminal event, the process $N^*(\cdot)$ has jumps of size $+1$ on $[0, D]$.

Let $C$ be the censoring time, assumed to be independent of both $N^*(\cdot)$ and $D$. The i.i.d. observations are then given by:

$$\begin{cases} T_i = D_i \land C_i \\ \delta_i = I(D_i \leq C_i) \\ N_i(t) = N_i^*(t \land C_i), \end{cases}$$

for $i = 1, \ldots, n$. The distribution functions of $D$, $C$ and $T = D \land C$ are respectively denoted by:

$$(1) \quad F(t) = \mathbb{P}[D \leq t], \quad G(t) = \mathbb{P}[C \leq t] \quad \text{and} \quad H(t) = \mathbb{P}[T \leq t], \quad t \geq 0.$$ 

The mean function of $N^*$ is defined as $\mathbb{E}[N^*(t)] = \mu(t)$ for all $t \geq 0$. We assume that $N^*$ has an intensity, in the sense that there exists a non-negative function $\lambda$ such that, for all $t \geq 0$:

$$\mathbb{E}[N^*(t)] = \mu(t) = \int_0^t \lambda(s)ds.$$ 

Note that this definition is different from the conventional definition of the intensity of a recurrent event process. In our context $\lambda(t)$ refers to the occurrence probability of recurrent events at time $t$ unconditionally to the history of the recurrent events process. In addition, $\lambda(t)$ is defined unconditionally to $t \leq D$ or $t \leq C$ contrary to the usual model assumptions in a recurrent events framework. This function is defined in Cook and Lawless [7] and is referred to as the rate function, and denoted by $\rho$. It is also introduced in Dauxois and Sencey [8] as the frequency function. On the opposite, the definition of the rate function in Chiang et al. [6] is different from ours. But notice that, multiplying their rate function by $1 - G(\cdot -)$, gives the intensity function as defined in our context.
Our aim here is to infer on this intensity function $\lambda$. To this purpose we first introduce some assumptions.

**Assumption 1.** Assume that:

(i) $C$ is independent of $D$ and of the process $(N(t))_{t \geq 0}$,

(ii) $\mathbb{P}[dN^*(C) \neq 0] = 0$,

(iii) $\mathbb{P}[D = C] = 0$.

Assumption (i) is common in the context of recurrent events when censored data are present (see e.g. [8],[9]). Assumptions (ii) and (iii) are technical assumptions used to prevent us from ties between death, censoring and the apparition of recurrent event. Notice that in practical situations, if such ties exist, they can be dealt with by assigning to censored events values just slightly larger than their actual values.

The next assumption is introduced to circumvent problems arising in the tails of the distributions of $C$ and $N$.

**Assumption 2.** Assume that:

(i) for $F, G, H$ defined by (1), there exist three positive constants $\tau, c_F$ and $c_G$ such that $\tau < \inf\{t : H(t) = 1\}$ and, for all $t \in [0, \tau]$,

$$1 - G(t) \geq c_G, \quad 1 - F(t) \geq c_F.$$ 

(ii) there exists $c_\tau > 0$, such that $N(t) \leq c_\tau$ almost surely for every $t \in [0, \tau]$,

(iii) $\|\lambda\|_{\infty, \tau} := \sup_{t \in [0, \tau]} \lambda(t) < \infty$.

The first assumption is common in the context of estimation with censored observations (cf. [1]) while the second can be found e.g. in [8]. The last one is an additional condition only required for the pointwise setting.

### 2.3. Kernel and functional assumptions

In this paper, our goal is to perform non-parametric estimation of the function $\lambda$ using a kernel-type estimator. Very classical regularity conditions are required for the intensity function and the kernel $K$. We first impose $\lambda$ to belong to a Hölder space (see [20]).

**Assumption 3.** Let $\beta > 0$ and $L > 0$. Assume $\lambda^{(l)}$ exists for $l = \lfloor \beta \rfloor$ and

$$|\lambda^{(l)}(t + z) - \lambda^{(l)}(t)| \leq L|z|^{\beta - l}, \quad \forall z \in [-h, h], t \in [h, \tau - h].$$

We also need to impose some conditions on the kernel $K$ and the bandwidth $h$. Note that the following set of assumptions are fulfilled by many standard kernel functions.
Assumption 4. Assume that

(i) $K$ has a compact support $[-1, 1]$, $\int_{-1}^{1} K(u)du = 1$ and $\|K\|^2 = \int_{-1}^{1} K^2(u)du < \infty$,

(ii) $\|K\|_{\infty} = \sup_{u \in [-1, 1]} |K(u)| < \infty$,

(iii) $K$ is a $l = \lfloor \beta \rfloor$ order kernel, in the sense that
$$\int_{-1}^{1} u^j K(u)du = 0, \text{ for } j = 1, \ldots, l,$$
$$\int_{-1}^{1} u^\beta K(u)du < \infty,$$

(iv) $nh \geq 1$ and $0 < h < 1$.

Considering these four assumptions, it is now possible to perform estimation of $\lambda$. Our kernel estimator is introduced in the next section.

3. Study of the MSE and the MISE of $\hat{\lambda}_h$

3.1. Kernel estimator. One of the difficulties for estimating the intensity function comes from the fact that the process $N^*(t)$ is not directly observable. Therefore, our estimation procedure is based on the next equality which provides a new expression of $\lambda$ relying on the process $N$ instead of $N^*(t)$.

Under Assumption 1 and since $N^*$ does not jump after $D$, we have:

$$E[dN(t)] = E[dN^*(t \wedge C)] = E[dN^*(t)E[I(t \leq C)|N^*]] = \lambda(t)(1 - G(t-))dt. \quad (2)$$

The distribution function $G$ is estimated by $\hat{G}$, the Lo et al. [16] modified Kaplan-Meier estimator,

$$\hat{G}(t) = \begin{cases} 
1 - \prod_{i:T_i(t) \leq t} \left(1 - \frac{1}{n - i + 2}\right)^{1-\delta(i)} & \text{if } t \leq T_{(n)}, \\
\hat{G}(T_{(n)}), & \text{if } t > T_{(n)},
\end{cases}$$

where $T_{(i)}$ denotes the $i$th order statistic associated to the sample $T_1, \ldots, T_n$ (that is $T_{(1)} \leq \ldots \leq T_{(n)}$ and the $(\delta(i))$’s are the $\delta_i$’s associated to the new indexes). Notice that, from this definition, for all $t \geq 0$:

$$1 - \hat{G}(t) \geq (n + 1)^{-1}. \quad (3)$$

Then, we can propose the following kernel estimator to estimate $\lambda$:

$$\hat{\lambda}_h(t) = \frac{1}{nh} \sum_{i=1}^{n} \int K\left(\frac{t-s}{h}\right) \frac{dN_i(s)}{1 - \hat{G}(s-)} , \quad (4)$$

where $K$ is a kernel function and $h$ a bandwidth, satisfying Assumption 4. It is important to notice that the kernel is bounded with compact support on $[-1, 1]$.
and consequently the integral in (4) will vanish outside the interval \([t - h, t + h]\). Therefore, given a bandwidth \(h\), we will in the following only discuss estimation of \(\lambda\) for \(t\) such that \(t \pm h \in [0, \tau]\).

Let us also introduce the following pseudo-estimator:

\[
\tilde{\lambda}_h(t) = \frac{1}{nh} \sum_{i=1}^{n} \int K \left( \frac{t - s}{h} \right) \frac{dN_i(s)}{1 - G(s^-)},
\]

which is the kernel estimator of \(\lambda\) in the case where \(G\) is known. In the following, the study of the quadratic error of \(\tilde{\lambda}_h - \lambda\) is divided into two steps. We first study the error of \(\tilde{\lambda}_h - \lambda\), then the one of \(\tilde{\lambda}_h - \hat{\lambda}_h\). The final results, a bound for the Mean Squared Error (MSE) at a fixed point and the Mean Integrated Squared Error (MISE) of \(\hat{\lambda}_h - \lambda\) are given in Theorem 1.

3.2. Study of the pseudo estimator \(\tilde{\lambda}_h\). We obtain with rather classical tools the following results for the risk of the pseudo-estimator. We state successively the pointwise error and the integrated error as the sum of a bias term and a variance term.

**Proposition 1.** Under Assumptions 1 to 4 we have:

(a) for all \(t \in [h, \tau - h]\):

\[
\mathbb{E} \left[ (\tilde{\lambda}_h(t) - \lambda(t))^2 \right] \leq c_1^2 h^{2\beta} + \frac{c_r ||\lambda||_{\infty, \tau}}{nhc_G} \|K\|^2,
\]

where

\[
c_1 = \frac{L}{l!} \int_{-1}^{1} |u|^2 K(u) du.
\]

(b) \(\int_h^{\tau-h} \mathbb{E} \left[ (\tilde{\lambda}_h(t) - \lambda(t))^2 \right] dt \leq \tau c_1^2 h^{2\beta} + \frac{c_r \Lambda(\tau)}{nh} \|K\|^2,\) where

\[
\Lambda(\tau) = \int_0^\tau \frac{\lambda(s)ds}{1 - G(s^-)}.
\]

**Proof.** For the bias terms, observe that, from Equation (2)

\[
\mathbb{E}[\tilde{\lambda}_h(t)] = \frac{1}{h} \int K \left( \frac{t - s}{h} \right) \lambda(s) ds
\]

and using a change of variables, this leads to

\[
(\mathbb{E}[\tilde{\lambda}_h(t)] - \lambda(t))^2 \leq \left( \int_{-1}^{1} K(u) (\lambda(t + uh) - \lambda(t)) du \right)^2.
\]
Now write $\lambda(t + uh) = \lambda(t) + \lambda'(t)uh + \cdots + \frac{(uh)^{\ell}}{\ell!} \lambda(0)(t + \xi uh)$, for $0 \leq \xi \leq 1$, and use Assumptions 3 and 4 to obtain the required square bias bounds $c_1^2 h^{2\beta}$ in (a) and $\tau c_1 h^{2\beta}$ in (b).

Let us denote by $\nabla[X]$ the variance of $X$. For the variance terms, recalling that $K_h(\cdot) = (1/h) K(\cdot/h)$, we write

$$
\nabla[\tilde{\lambda}_h(t)] = \frac{1}{n} \mathbb{E} \left[ \int K_h(t-s) dN(s) \right] \leq \frac{1}{n} \mathbb{E} \left[ \left( \int K_h(t-s) dN(s) \right)^2 \right].
$$

Then apply Lemma 9 (see Section 8), under Assumption 2 (ii):

$$
\nabla[\tilde{\lambda}_h(t)] \leq \frac{c}{n} \mathbb{E} \left[ \int \frac{K_h^2(t-s)}{1-G(s^{-})} dN(s) \right] \leq \frac{c}{n} \int \frac{K_h^2(t-s)}{1-G(s^{-})} \lambda(s) ds.
$$

From this point, Assumption 2 (i) and (iii) and the equality $\int K_h^2(t-s) ds = h^{-1} \|K\|^2$ give the pointwise variance bound of (a) while a change of variables gives the integrated variance term of (b).

Gathering the bias and the variance bounds gives the MSE and the MISE stated in (a) and (b) and thus the result of Proposition 1 follows.

\[\square\]

### 3.3. Study of the estimator $\hat{\lambda}_h$.

The most difficult part concerns the study of the difference between $\hat{\lambda}_h$ and $\tilde{\lambda}_h$. We give our final conclusion here and postpone the proof until Section 7.

**Lemma 1.** Under Assumptions 1 to 4, for all $t \in [h, \tau - h]$, we have

$$
\mathbb{E} \left[ (\hat{\lambda}_h(t) - \tilde{\lambda}_h(t))^2 \right] \leq c \frac{\log(n)}{n},
$$

and

$$
\mathbb{E} \left[ \int_{h}^{\tau-h} (\hat{\lambda}_h(t) - \tilde{\lambda}_h(t))^2 dt \right] \leq c' \frac{\log(n)}{n},
$$

where $c$ is a constant depending on $\|K\|_\infty, \|\lambda\|_\infty, \tau, c_\tau$ and $c'$ is a constant depending on $\Lambda(\tau), \|K\|$ and $c_\tau$.

Now, gathering the results of Proposition 1 (a) – (b) and Lemma 1 gives the following global bounds for the estimator.
Theorem 1. Under Assumptions 1 to 4 we have:

(a) for all \( t \in [h, \tau - h] \),
\[
\mathbb{E} \left[ (\hat{\lambda}_h(t) - \lambda(t))^2 \right] \leq 2c_1^2 h^{2\beta} + 2\frac{c_r \|\lambda\|_{\infty, \tau} \|K\|^2}{nhc_G} + c \frac{\log(n)}{n},
\]

(b) \[
\int_h^{\tau-h} \mathbb{E} \left[ (\hat{\lambda}_h(t) - \lambda(t))^2 \right] dt \leq 2\tau c_1^2 h^{2\beta} + 2\frac{c_r \Lambda(\tau) \|K\|^2}{nh} + c' \frac{\log(n)}{n},
\]

where \( c_1 \) is the constant defined in Proposition 1 and \( c \) and \( c' \) are the two constants introduced in Lemma 1.

Note that the inequalities stated in Theorem 1 are nonasymptotic. In both cases, they provide a bound which contains firstly a squared-bias term of order \( h^{2\beta} \), secondly a variance term of order \( 1/(nh) \) and lastly a residual term which is negligible. If one wants to obtain an asymptotic convergence rate from these results, one has to optimize with respect to \( h \) to obtain the smallest possible order of the risk bounds. Classically, it appears that we should choose \( h \propto n^{-1/(2\beta+1)} \) and obtain a rate proportional to \( n^{-2\beta/(2\beta+1)} \). Nevertheless, to reach such a rate, we would need to know \( \beta \), the regularity index of the unknown function: however, in practical situation this knowledge is usually unavailable. In the following, we provide a data-driven way of selecting the bandwidth which allows to reach almost or exactly the optimal rate without requiring the knowledge of \( \beta \).

4. Adaptive estimation of \( \lambda \)

4.1. Pointwise bandwidth selection. In this part we want to select automatically a relevant bandwidth for our estimator using Goldenshluger and Lepski’s [12] method. Let \( t = t_0 \) be the point of interest and define for any \( t \):
\[
\hat{\lambda}_{h,h'}(t) = K_{h'} \ast \hat{\lambda}_h(t),
\]
where we recall that \( f \ast g \) denotes the convolution product of the functions \( f \) and \( g \). Note that, from the definition of \( \hat{\lambda}_{h,h'} \),
\[
\hat{\lambda}_{h,h'}(t) = \frac{1}{n} \sum_{i=1}^{n} \int K_{h'} \ast K_h(t-s) \frac{dN_i(s)}{1 - G(s-)} = \frac{1}{n} \sum_{i=1}^{n} \int K_h \ast K_{h'}(t-s) \frac{dN_i(s)}{1 - G(s-)},
\]
so that \( \hat{\lambda}_{h,h'}(t) = K_h \ast \hat{\lambda}_{h'}(t) = \hat{\lambda}_{h',h}(t) \). Then, for some \( \kappa_0 > 0 \), define
\[
V_0(h) = \kappa_0 \frac{c_r \|\lambda\|_{\infty, \tau} \|K\|^2 \log(n)}{nhc_G}
\]
and consider, for $H_n$ a discrete set of bandwidths specified in the following,

$$A_0(h, t_0) = \sup_{h' \in H_n} \left\{ (\hat{\lambda}_{h'} - \hat{\lambda}_{h,h'})^2(t_0) - V_0(h') \right\}^+.$$  

Lastly, we define our adaptive estimator in the following way:

$$\hat{h}(t_0) = \text{argmin}_{h \in H_n} (A_0(h, t_0) + V_0(h))$$  

and  

$$\hat{\lambda}(t_0) = \hat{\lambda}_{\hat{h}(t_0)}(t_0).$$

**Theorem 2.** Under Assumptions 1 to 4, and if $H_n$ is a finite discrete set of bandwidths such that $\text{Card}(H_n) \leq n$,

$$\forall h \in H_n, \; nh \geq \kappa_1 \log(n), \; \text{for some } \kappa_1 \geq 0,$$

and

$$\sum_{k: \; h_k \in H_n} \frac{1}{nh_k} \lesssim \log^a(n), \; \text{for some } a \geq 0,$$

then there exists a constant $\kappa_0$ such that $\hat{\lambda}$ defined by (5), (6) and (7) satisfies:

$$\forall h \in H_n, \; \mathbb{E} \left[ (\hat{\lambda}(t_0) - \lambda(t_0))^2 \right] \leq c (c_1^2 h^{2\beta} + V_0(h)) + c' \frac{\log^{(1+a)}(n)}{n},$$

where $c$ is a real (absolute) number and $c'$ a real constant depending on $c_\tau, \|\lambda\|_{\infty, \tau}$ and $c_G$.

**Remark 1.** Note that $V_0(h)$ contains several types of terms:

- $\kappa_0$, a real number. The proof below shows that $\kappa_0$ taken equal to 80 would give the theoretical result but a much smaller value works, in practice (see Section 5).
- $\log(n)/(nh)$ which gives the asymptotic order of the term and is known.
- $\|K\|$, a known constant, as the kernel is user chosen.
- $c_\tau$ and $\|\lambda\|_{\infty, \tau}$ which are unknown quantities that can respectively be estimated by

$$\hat{c}_\tau = \max_{1 \leq i \leq n} N_i(\tau), \; \|\lambda\|_{\infty, \tau} = \sup_{x \in [h_n, \tau - h_n]} \hat{\lambda}_{h_n}(x).$$

Here $h_n$ is an arbitrary bandwidth (it can be taken equal to $n^{-1/5}$ for instance). Note that if we replace in $V_0(h)$ the unknown terms by their estimates given in (11), we get an estimate $\hat{V}_0(h)$. Inserting this in theoretical part would imply several additional steps to the study of the estimate. For the sake of simplicity, we do not provide this part of the study.
The bound (10) holds for all \( h \in \mathcal{H}_n \) and therefore reaches automatically the rate \((n/\log(n))^{-2\beta/(2\beta+1)}\) provided that an optimal value for \( h \) of order \((n/\log(n))^{-1/(2\beta+1)}\) belongs to \( \mathcal{H}_n \). We can note that a logarithmic loss occurs here with respect to the optimal non-adaptive rate. This is also what happens for classical density estimation and we can thus conjecture that the procedure is nevertheless adaptive optimal.

**Example of \( \mathcal{H}_n \).** Considering constraints (8) and (9) on \( \mathcal{H}_n \), we can propose

\[
\mathcal{H}_n = \left\{ \frac{k}{n} : k = \left\lfloor \log_2(n) \right\rfloor, \left\lfloor \log_2(n) \right\rfloor + 1, \ldots, n \right\}
\]

so that \( \text{Card}(\mathcal{H}_n) \leq n \) and for all \( k = \left\lfloor \log_2(n) \right\rfloor, \ldots, n \), we have \( h_k \in [n^{-1}, 1] \) and \( h_k \geq \log(n)/n \) which gives (8). Moreover, \( k_0 = \left\lfloor n^{2\beta/(2\beta+1)}(\log(n))^{1/(2\beta+1)} \right\rfloor \) is guaranteed to be such that \( k_0/n \propto (n/\log(n))^{-1/(2\beta+1)} \) belongs to \( \mathcal{H}_n \). Besides, \( \sum_k 1/(nh_k) = O(\log(n)) \) and condition (9) holds with \( a = 1 \).

### 4.2. Global bandwidth selection.

In the global risk setting, we set, for some \( \kappa > 0 \),

\[
V(h) = \kappa \frac{c_r \Lambda(\tau)\|K\|^2}{nh}
\]

and we consider for \( \mathcal{H}_n \) a discrete set of bandwidths specified in the following,

\[
A(h) = \sup_{h' \in \mathcal{H}_n} \left\{ \| \hat{\lambda}_{h'} - \hat{\lambda}_{h,h'} \|^2 - V(h') \right\}_+.
\]

Finally we define:

\[
\hat{h} = \arg\min_{h \in \mathcal{H}_n} (A(h) + V(h)) \quad \text{and} \quad \lambda^* = \hat{\lambda}_{\hat{h}}.
\]

**Theorem 3.** Under Assumptions 1 to 4, and if \( \mathcal{H}_n \) is a finite discrete set of bandwidths such that \( \text{Card}(\mathcal{H}_n) \leq n \), condition (9) is fulfilled and

\[
\sum_{k : h_k \in \mathcal{H}_n} \exp(-b/h_k) < +\infty, \quad \forall b > 0,
\]

then there exists a constant \( \kappa \) such that \( \lambda^* \) defined by (12), (13) and (14) satisfies:

\[
\forall h \in \mathcal{H}_n, \quad \int_1^{\tau-1} \mathbb{E} \left[ (\lambda^*(t) - \lambda(t))^2 \right] dt \leq c(\tau c_r^2 h^{2\beta} + V(h)) + c' \frac{\log^{1+a}(n)}{n},
\]

where \( c \) is a numerical constant and \( c' \) a constant depending on \( c_r, \Lambda(\tau) \) and \( c_G \).
Remark 2. Note that all the points in Remark 1 can be transposed to $V(h)$. The additional term $\Lambda(\tau)$ is also unknown and can be estimated by:

$$
\hat{\Lambda}(\tau) = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \frac{dN(s)}{(1 - G(s))^{2}}.
$$

It is worth emphasizing here that, if $\mathcal{H}_n$ is large enough to contain bandwidths of order $h_{opt} \propto n^{-1/(2\beta+1)}$, then the adaptive estimator automatically reaches the optimal rate $n^{-2\beta/(2\beta+1)}$, without requiring the knowledge of $\beta$. Compared to the pointwise setting, no logarithmic loss occurs here.

Let us now give two examples of $\mathcal{H}_n$ fulfilling Assumption 4 (iv), conditions (9) and (15).

Example 1. Take

$$
\mathcal{H}_n = \left\{ h_k = \frac{1}{k} : k = 1, 2, \ldots, \lfloor \sqrt{n} \rfloor \right\}.
$$

Then $\text{Card}(\mathcal{H}_n) \leq \sqrt{n} \leq n$ and $\forall k = 1, \ldots, \lfloor \sqrt{n} \rfloor$, we have $h_k \in [n^{-1}, 1]$. Moreover

$$
\sum_{k : h_k \in \mathcal{H}_n} \left( \frac{1}{nh_k} \right) = \frac{1}{n} \sum_{k=1}^{\lfloor \sqrt{n} \rfloor} k = O(1)
$$

which ensures condition (9). Lastly

$$
\sum_{k : h_k \in \mathcal{H}_n} \exp(-b/h_k) = \sum_{k=1}^{\lfloor \sqrt{n} \rfloor} e^{-bk} = O(1)
$$

and (15) is ensured.

Let us emphasize that since $h_{opt} \propto n^{-1/(2\beta+1)}$, the condition $n^{-1/2} \leq n^{-1/(2\beta+1)} \leq 1$ is required, that is $\beta \geq 1/2$. This means that there is a minimal regularity condition to impose on the function of interest for (16) to hold.

Example 2. Take

$$
\mathcal{H}_n = \left\{ h_k = \frac{1}{2^k} : k = 1, 2, \ldots, \lfloor \log(n)/\log(2) \rfloor \right\}.
$$

Then $\text{Card}(\mathcal{H}_n) \leq \log(n)/\log(2) \leq n$ and $\forall k = 1, 2, \ldots, \lfloor \log(n)/\log(2) \rfloor$, we have $h_k \in [n^{-1}, 1]$. Moreover

$$
\sum_{k : h_k \in \mathcal{H}_n} \left( \frac{1}{nh_k} \right) = \frac{1}{n} \sum_{k=1}^{\lfloor \log(n)/\log(2) \rfloor} 2^k = O(1),
$$

and (15) is ensured.
which ensures condition (9). Lastly

$$\sum_{k : h_k \in \mathcal{H}_n} \exp(-b/h_k) = \sum_{k=1}^{\lfloor \log(n)/\log(2) \rfloor} e^{-b2^k} = O(1)$$

and (15) is verified.

Here, no minimum regularity condition of the function to estimate is needed.

5. Simulations

We illustrate the behavior of estimator $\hat{\lambda}$, constructed with the pointwise bandwidth selection of Section 4.1 and conduct a Monte Carlo study to compare our adaptive procedure for the selection of the bandwidth to a bootstrap-based selection.
5.1. **Description of the simulation scheme.** Recurrent events data are simulated as follows. For individuals $i = 1, \ldots, n$, the terminal event $D_i$ is simulated according to the distribution $F$, the censoring time $C_i$ according to $G$. Conditionally on $D_i$, the number $n(i)$ of recurrent events experienced by individual $i$ on time interval $[0, D_i]$ are simulated according to a Poisson distribution $\mathcal{P}(\int_0^{D_i} \varphi(u)du)$. Finally the recurrent times for individual $i$ are simulated as $n(i)$ i.i.d. random variables with common probability density function $\varphi/\int_0^{D_i} \varphi(u)du$. The intensity of the process $N^*$ is then given by:

$$\lambda(t) = \varphi(t)(1 - F(t)).$$

We consider two scenarios for the simulated data:
1. \( \varphi(t) = t \) and \( 1 - F(t) = \exp(-\beta t) \).
2. \( \varphi(t) = (3/2)(1 - |t - 1|)^2 \) on \([0, 2]\) and \( 1 - F(t) = \exp(-\beta t) \) on \([0, 2]\).

The estimators of Section 4.1 are constructed with Epanechnikov kernels:

\[
K_{E,2}(t) = (3/4)(1 - t^2), \quad \text{if } |t| \leq 1.
\]

We use a data-driven criterion for the selection of the bandwidth, by replacing \( V_0(h) \) in Definition (5) by:

\[
\hat{V}_0(h) = \kappa_0 \hat{c}_\tau \hat{\lambda}_{\infty,\tau} K^2 \log(n),
\]

with

\[
\hat{c}_\tau = \max_i (\sup_{t \in [0, T_{\text{max}}]} N_i(t)) + 2
\]

\[
\|\hat{\lambda}\|_{\infty,\tau} = \sup_{t \in [0, T_{\text{max}}]} |\hat{\lambda}_{0.5}(t)| \quad \text{and}
\]

\[
\hat{c}_G = 1 - G(E_{\text{max}}^-) \quad \text{and}
\]

\[
\kappa_0 = 10^{-2},
\]

where \( E_{\text{max}} \) is the greatest observed recurrent event. We set the universal value of \( \kappa_0 \) at \( 10^{-2} \) after an extensive simulation study: we compare the MSE for several candidate values in the range \( 10^{-5} - 10^2 \) and in different scenarios.

The finite set of bandwidths \( (H_n) \) considered in the algorithm is given by:

\[
H_n = \{\log^2(n)/n + 1/2^k, \ k = 0, 1, \ldots, \lfloor \log(n)/\log(2) \rfloor \}.
\]

5.2. Illustration of the behavior of the adaptive estimator. In figures 1-3, the intensity functions are estimated on a 20-point grid, regularly spaced on \([0, E_{\text{max}}]\). The number of observations \( n \), the mean number of recurrent \( \bar{r} \) and the level of censoring \( pc \) are reported in the captions. In each figure, the left plots show the true intensity functions in red, the estimators in blue, and the set of all the estimators proposed to the selection algorithm is dashed black. The right plots show the value of the selected windows for all points on the grid.

In Figures 1 and 2, we investigate the behavior of our estimators, when the sample size \( n \) grows. In scenario 1, where the intensity \( \lambda \) to recover is smooth, as in scenario 2, where \( \lambda \) has a singularity, the estimator behaves as expected: it improves with the sample size.

In Figure 3, we illustrate the behavior of our estimator when the censoring level grows. In this case, the censoring time has an exponential distribution, with \( 1 - G(t) = \exp(-\gamma t) \), where the parameter \( \gamma \) takes the values \( \gamma = 1/30 \) (top), \( \gamma = 1/3 \)
(middle) and $\gamma = 1$ (bottom). The resulting levels of censoring and mean numbers of recurrent events are indicated in the caption. Note that, as the level of the censoring grows, the numbers of observed recurrent events vanishes (from $\bar{re} = 1.12$, when $pc = 4\%$, to $\bar{re} = 0.25$, when $pc = 50\%$) as does the time intervals, on which they are observed (from $[0, 9]$, when $pc = 4\%$, to $[0, 2.5]$, when $pc = 50\%$).

From a general point of view, we can see in Figures 1, 2 and 3 that the algorithm makes very different bandwidth choices, depending on the point of time. Therefore, the pointwise strategy is very useful. In particular, we can see in Figures 1 and 2 that the minimal bandwidth choice occurs at time 1 which in both cases is the location of the maximum; moreover, the selected bandwidth is smaller when the function is less smooth (look at the value of $\hat{h}$ for the peaks of the functions). Lastly, Figure 3 shows that the pointwise strategy is relevant: indeed, it is obviously a good strategy to change the bandwidth in function of the time since none of the proposed curves would globally give a better estimate.

5.3. Monte Carlo study. In this section, we aim at comparing our adaptive strategy for the selection of the bandwidth to a bootstrap-based strategy described below, in the spirit of Chiang et al. [6]. Note that no theoretical results are available for the bootstrap method in our present setting. In addition Chiang et al. [6] in their context presents only asymptotic results and for fixed bandwidth.

Towards that end, we conduct a Monte Carlo study (with $M = 100$ replications) and calculate the following squared error on the simulated data of replication $m$ (for $m = 1, \ldots, M$):

$$SE(\hat{\lambda}^m) = \frac{1}{K - 2|K\rho|} \sum_{k=1+|K\rho|}^{K-|K\rho|} (\hat{\lambda}_{\eta(t_k)}^m(t_k) - \lambda(t_k))^2,$$

where $\hat{\lambda}_{\eta(t_k)}^m$ is the estimator $\hat{\lambda}$ calculated on the $m$th dataset in the Monte Carlo experiment, at point $t_k$ (on a $K$ point grid) and for the selected pointwise bandwidth $\eta(t_k)$. In the previous equation, $0 \leq \rho < 1$ represents the proportion of the smallest and largest observations withdrawn in the computation of $SE$ to avoid the boundary effects.

We consider

- the adaptive bandwidth selection procedure described in the previous subsection and will denote by $SE(\hat{\lambda}_{Adapt}^m)$ its squared error: in this case $\hat{\lambda}_{\eta(t_k)}^m = \hat{\lambda}_{\bar{h}(t_k)}^m$, where $\bar{h}(t_k)$ is defined in Equation 7.
• a bootstrap-based procedure and will denote by $SE(\hat{\lambda}_{\text{Boot}}^m)$ its squared error: in this case $\hat{\lambda}_{\eta(t_k)}^m = \hat{\lambda}_{h_{m,\star}(t_k)}^m$, where $\hat{h}_{m,\star}(t_k)$ is defined by:

$$\hat{h}_{m,\star}(t_k) = \arg\min_{h \in \mathcal{H}_n} \hat{MSE}_n^*(\hat{\lambda}_{h}^m(t_k))$$
<table>
<thead>
<tr>
<th>$\times 10^3$</th>
<th>$n = 200$</th>
<th>$n = 500$</th>
<th>$n = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>median</td>
<td>mean</td>
</tr>
<tr>
<td>Adaptive</td>
<td>1.72</td>
<td>1.44</td>
<td>0.71</td>
</tr>
<tr>
<td>Bootstrap</td>
<td>1.76</td>
<td>1.57</td>
<td>0.73</td>
</tr>
</tbody>
</table>

**Table 1.** Scenario 1 with 0% of censoring and $\beta = 1$

<table>
<thead>
<tr>
<th>$\times 10^3$</th>
<th>$n = 200$</th>
<th>$n = 500$</th>
<th>$n = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>median</td>
<td>mean</td>
</tr>
<tr>
<td>Adaptive</td>
<td>4.25</td>
<td>3.24</td>
<td>2.05</td>
</tr>
<tr>
<td>Bootstrap</td>
<td>4.30</td>
<td>3.24</td>
<td>1.95</td>
</tr>
</tbody>
</table>

**Table 2.** Scenario 1 with $\sim 33\%$ of censoring and $\beta = 1$

with

$$\widehat{MSE}^* (\hat{\lambda}_h^m(t_k)) = \widehat{Var}^* (\hat{\lambda}_h^m(t_k)) + \left(\widehat{Bias}^* (\hat{\lambda}_h^m(t_k))\right)^2.$$ 

The term $\widehat{Var}^* (\hat{\lambda}_h^m(t_k))$ is the estimated variance calculated on $B$ samples bootstrapped from the $m$th dataset in the Monte Carlo experiment and

$$\widehat{Bias}^* (\hat{\lambda}_h^m(t)) = \frac{1}{nh} \sum_{i=1}^{n} \left\{ K_{E,2} \left( \frac{t - s}{h} \right) - K_{E,4} \left( \frac{t - s}{h} \right) \right\} \frac{dN^m_i(s)}{1 - \hat{G}_m(s)}$$

where $N^m_i$ and $\hat{G}_m$ are calculated on the $m$th Monte Carlo experiment and $K_{E,4} = (15/8) \times (1 - (7/2)u^2)K_{E,2}(u)$, see Chiang et al. [6] and Schucany [19] for the estimation of the bias and Hansen [13] for the definition of $K_{E,4}$.

In tables 1 to 3, we display the mean and the median of $SE(\hat{\lambda}_{Adapt}^m)$ and $SE(\hat{\lambda}_{Boot}^m)$ obtained on $M = 100$ Monte Carlo experiments. The number of bootstrap sample $B = 100$ and $\tau = 0.1$. The variances and interquartile ranges are roughly the same for both methods. Note that the grid of bandwidths proposed in the bootstrap algorithm is borrowed from our theoretical proposal.

We can see from tables 1-3 that the performances of the two bandwidth selection methods are roughly similar: our proposal is slightly better in table 1 while the bootstrap method performs slightly better in table 3. This is certainly partly due to the choice of the set of bandwidths $H_n$ which sets the bootstrap under control. Let also emphasize that the number of kernel estimators that are computed are $|H_n|^2$ for
our method versus $B|\mathcal{H}_n|$ for the bootstrap method, where $B = 100$ and $|\mathcal{H}_n| \simeq 10$ for $n = 1000$, which makes our method approximately 10 times faster.

6. Concluding remarks

In this work, we not only provide a kernel estimator for the intensity function of a recurrent event process, but we also prove oracle type inequalities for the risk of an adaptive estimator with data-driven selected bandwidth. We have studied both cases of pointwise risk for pointwise chosen bandwidth and integrated global risk with a globally selected bandwidth. Our bandwidth selection proposal is original and slightly different from standard cross-validation methods. This is because it is based on recent ideas developed by Goldenshluger and Lepski [12]; in this sense, our results are new and the way of proving the results is of interest. We also assess the practical feasibility and the good performances of our proposal through a short simulation study: we found it more challenging to evaluate the pointwise selection and we illustrated the different bandwidths choices performed by the algorithm.

7. Proofs

7.1. Proof of Lemma 1. The proof relies on four additional lemmas which are presented below. First, write:

$$
\hat{\lambda}_h(t) - \tilde{\lambda}_h(t) = \frac{1}{nh} \sum_{i=1}^{n} \int \frac{\hat{G}(s-) - G(s-)}{(1 - \hat{G}(s-))(1 - G(s-))} K \left( \frac{t - s}{h} \right) dN_i(s).
$$

Then introduce the sets

$$
\Omega_G = \left\{ \omega : \forall t \in [0, \tau], G(t) - \hat{G}(t) \geq -c_G/2 \right\},
$$

$$
\Omega^*_G = \left\{ \omega : \forall t \in [0, \tau], |G(t) - \hat{G}(t)| \leq c_0 \sqrt{n^{-1} \log n} \right\},
$$

and

(17) $\Omega_{cd} = \Omega_G \cap \Omega^*_G$. 

Our idea is to study the difference process $\hat{\lambda}_h - \bar{\lambda}_h$ on $\Omega_{c_0}$ and its complementary. The next lemma gives a useful bound of $\mathbb{P}[\Omega_{c_0}^c]$. The proof is postponed to Section 8.

**Lemma 2.** For all $p \in \mathbb{N}$, there exists a choice of the constant $c_0 = c_0(p)$ such that,

\[
P[\Omega_{c_0(p)}^c] \leq c_2 n^{-p},
\]

where $c_2$ is a constant depending on $p$, $c_F$ and $c_G$, and $c_0(p)$ also depends on $c_F$.

In the following, we denote by $\Omega_p = \Omega_{c_0(p)}$ such that Equation (18) in Lemma 2 holds. We now start the proof of Lemma 1 by studying the difference process $\hat{\lambda}_h - \bar{\lambda}_h$ on the set $\Omega_p^c$.

**Lemma 3.** Under Assumptions 1 to 4, for all $p \in \mathbb{N}, t \in [h, \tau - h]$, we have:

\[
\mathbb{E} \left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p^c) \right] \leq (n + 1)^2 n^{2-p/2} c_3 (\|K\|_\infty)^2,
\]

where

\[
c_3 = c_r^{3/2} \sqrt{c_2} \left( \int_0^{\tau} \frac{\lambda(s) ds}{(1 - G(s))^3} \right)^{1/2}.
\]

Consequently, choosing $p \geq 10$ yields $\mathbb{E} \left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p^c) \right] \leq c/n$ for a positive constant $c$.

**Lemma 4.** Under Assumptions 1 to 4, for all $p \in \mathbb{N}$, we have:

\[
\int_h^{\tau-h} \mathbb{E} \left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p^c) \right] dt \leq (n + 1)^2 n^{1-p/2} c_3 \|K\|^2.
\]

Consequently, choosing $p \geq 8$ yields $\int_h^{\tau-h} \mathbb{E} \left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p^c) \right] dt \leq c/n$ for a positive constant $c$.

**Proof of Lemmas 3 and 4.** From the facts that $1 - \dot{G}(t) \geq (n + 1)^{-1}$ (see Equation (3)) and $\|\dot{G} - G\|_\infty < 1$, we have for all $t \in [h, \tau - h]$:

\[
\mathbb{E} \left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p^c) \right] \leq \frac{(n + 1)^2}{n^2} \mathbb{E} \left[ \left( \sum_{i=1}^{n} \int \frac{K_h(t-s)}{1-G(s)} dN_i(s) \right)^2 I(\Omega_p^c) \right]
\]

\[
\leq (n + 1)^2 \mathbb{E} \left[ \left( \int \frac{K_h(t-s)}{1-G(s)} dN(s) \right)^2 I(\Omega_p^c) \right]
\]

\[
\leq (n + 1)^2 c_r \mathbb{E} \left[ \int \frac{K_h^2(t-s) I(\Omega_p^c)}{(1-G(s))^2} dN(s) \right],
\]

(19)
where the last inequality is obtained from Lemma 9. Now, for the proof of Lemma 3, use consecutively the Cauchy-Schwarz inequality and Lemma 9 to obtain:

\[
\mathbb{E}\left[\int \frac{K_h^2(t-s)I(\Omega_p^c)}{(1-G(s-))^2} dN(s)\right] \leq \mathbb{E}^{1/2}\left[\int \frac{K_h^2(t-s)}{(1-G(s-))^2} dN(s)\right]^2 \sqrt{\mathbb{P}[\Omega_p^c]}
\]

\[
\leq (\|K\|_\infty)^2 h^{-2} c_r \mathbb{E}^{1/2} \left[\int_0^\tau dN(s)\right] \sqrt{\mathbb{P}[\Omega_p^c]}
\]

\[
\leq (\|K\|_\infty)^2 h^{-2} n^{-p/2} \sqrt{c_2 c_r} \left(\int_0^\tau \lambda(s)ds \right)^{1/2},
\]

and conclude the proof using the fact that \( h^{-1} \leq n \). To prove Lemma 4 write,

\[
\int_h^{\tau-h} \int \frac{K_h^2(t-s)}{(1-G(s-))^2} dN(s) dt \leq h^{-1}\|K\|^2 \int_0^\tau \frac{dN(s)}{(1-G(s-))^2},
\]

Then, using Cauchy-Schwarz inequality, we get from inequality (19):

\[
\int_h^{\tau-h} \mathbb{E}\left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p^c) \right] dt \leq \frac{(n+1)^2 c_r}{h} \mathbb{E} \left[ \int_0^\tau I(\Omega_p^c) dN(s) \right]
\]

\[
\leq \frac{(n+1)^2}{h} c_r \|K\|^2 \mathbb{E}^{1/2} \left[ \int_0^\tau \frac{dN(s)}{(1-G(s-))^2} \right] \mathbb{E} \left[ \int_0^\tau \frac{dN(s)}{(1-G(s-))^2} \right] \sqrt{\mathbb{P}[\Omega_p^c]}
\]

\[
\leq \frac{(n+1)^2 n^{-p/2}}{h} c_r^3 \|K\|^2 \sqrt{c_2} \left(\int_0^\tau \lambda(s)ds \right)^{1/2},
\]

and again, we conclude the proof using the fact that \( h^{-1} \leq n \).

We now study the difference process of \( \hat{\lambda}_h - \bar{\lambda}_h \) on \( \Omega_p \).

**Lemma 5.** Under Assumptions 1 to 4, we have for all \( t \in [h, \tau-h] \) and any \( p \in \mathbb{N} \),

\[
\mathbb{E}\left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p) \right] \leq \frac{c_4 \log n}{n} \|\lambda\|_{\infty,\tau} \left\{ (\|K\|_1)^2 \|\lambda\|_{\infty,\tau} + \frac{c_r \|K\|^2}{c_0 nh} \right\},
\]

where \( c_4 = 4c_0^2 c_r^2 \) and \( c_0 = c_0(p) \).

Consequently, for \( t \in [h, \tau-h] \), we have

\[
\mathbb{E}\left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p) \right] \leq \frac{c \log(n)}{n},
\]

where \( c \) is a positive constant.

**Lemma 6.** Under Assumptions 1 to 4, we have, for any \( p \in \mathbb{N} \)

\[
\int_h^{\tau-h} \mathbb{E}\left[ (\hat{\lambda}_h(t) - \bar{\lambda}_h(t))^2 I(\Omega_p) \right] dt \leq \frac{c_4 \log n}{n} \|K\|^2 \left\{ 2 \int_0^\tau \lambda^2(t) dt + \frac{c_r \Lambda(\tau)}{nh} \right\},
\]
where $\Lambda(\tau)$ is defined in Theorem 1. Consequently, we have
\[
\int_h^{\tau-h} \mathbb{E} \left[ (\hat{\lambda}_h(t) - \tilde{\lambda}_h(t))^2 I(\Omega_p) \right] dt \leq \frac{c \log(n)}{n},
\]
where $c$ is a positive constant.

Proof of Lemmas 5 and 6. First, use the facts that
- $1 - \hat{G}(t) = 1 - G(t) + G(t) - \hat{G}(t) \geq c_G/2$ on $\Omega_G$,
- $\|G(t) - \hat{G}(t)\|_{\infty} \leq c_0 \sqrt{n^{-1} \log n}$ on $\Omega^*_G$,

to write:
\[
\mathbb{E} \left[ (\hat{\lambda}_h(t) - \tilde{\lambda}_h(t))^2 I(\Omega_p) \right] \leq \frac{4c_0^2 \log n}{nc_G^2} \mathbb{E} \left[ \left( \frac{1}{n} \sum_{i=1}^{n} \int \frac{|K_h(t-s)|}{1-G(s-)} dN_i(s) \right)^2 \right].
\]
Then, we have:
\[
\left( \mathbb{E} \left[ \frac{1}{n} \sum_{i=1}^{n} \int \frac{|K_h(t-s)|}{1-G(s-)} dN_i(s) \right] \right)^2 \leq \left( \int \frac{|K_h(t-s)|}{1-G(s-)} \lambda(s) ds \right)^2 \leq (\|K\|_1 \|\lambda\|_{\infty, \tau})^2,
\]
and
\[
\mathbb{V} \left[ \frac{1}{n} \sum_{i=1}^{n} \int \frac{|K_h(t-s)|}{1-G(s-)} dN_i(s) \right] \leq \frac{c_\tau \|K\|_2^2 \|\lambda\|_{\infty, \tau}}{c_G nh},
\]
which follows from Proposition 1. Combining these two bounds gives the final result of Lemma 5.

The proof of Lemma 6 follows the same line. From a change of variables and the Cauchy-Schwarz inequality we have:
\[
\int_h^{\tau-h} \left( \mathbb{E} \left[ \frac{1}{n} \sum_{i=1}^{n} \int \frac{|K_h(t-s)|}{1-G(s-)} dN_i(s) \right] \right)^2 dt = \int_h^{\tau-h} \left( \int \frac{|K_h(t-s)|}{1-G(s-)} \lambda(s) ds \right)^2 dt \leq \left( \int_{-1}^{1} K^2(u) du \right) \int_h^{\tau-h} \int_{-1}^{1} \lambda^2(t - uh) du dt 
\leq 2\|K\|_2^2 \int_0^\tau \lambda^2(t) dt,
\]
where the last inequality is obtained with an other change of variables. On the other hand, from similar arguments as in the proof of Proposition 1, we have
\[
\int_h^{\tau-h} \mathbb{V} \left[ \frac{1}{n} \sum_{i=1}^{n} \int \frac{|K_h(t-s)|}{1-G(s-)} dN_i(s) \right] dt \leq \frac{c_\tau \Lambda(\tau)}{nh}\|K\|_2^2,
\]
and the result follows. □

Gathering the results of Lemmas 3 to 6 imply the result of Lemma 1. □

7.2. Proof of Theorem 2. First, for all \( h \in \mathcal{H}_n \), the following sequence of inequalities holds:

\[
(\hat{\lambda}(t_0) - \lambda(t_0))^2 \leq 3(\hat{\lambda}\hat{h}(t_0)(t_0) - \hat{\lambda}_{h,h}(t_0))^2 + 3(\hat{\lambda}_{h,h}(t_0) - \hat{\lambda}_h(t_0))^2 + 3(\hat{\lambda}_h(t_0) - \lambda(t_0))^2
\]

\[
\leq 3(A_0(h, t_0) + V_0(\hat{h}(t_0))) + 3(A_0(\hat{h}(t_0), t_0) + V_0(h)) + 3(\hat{\lambda}_h(t_0) - \lambda(t_0))^2
\]

\[
\leq 6A_0(h, t_0) + 6V_0(h) + 3(\hat{\lambda}_h(t_0) - \lambda(t_0))^2.
\]

Since \( V_0(h) \), see (5), and \((\hat{\lambda}_h(t_0) - \lambda(t_0))^2 \), see Theorem 1, (a), have the adequate order (with additional \( \log(n) \) for \( V_0 \)), we only study \( A_0(h, t_0) \). With obvious definition of \( \hat{\lambda}_{h,h'} = K_{h'} \ast \hat{\lambda}_h \), \( \lambda_h(t_0) = \mathbb{E}[\hat{\lambda}_h(t_0)] \) and \( \lambda_{h,h'}(t_0) = \mathbb{E}[\hat{\lambda}_{h,h'}(t_0)] \), \( A_0(h, t_0) \) can be decomposed into five terms:

\[
A_0(h, t_0) = \sup_{h' \in \mathcal{H}_n} \left\{ (\hat{\lambda}_{h'}(t_0) - \hat{\lambda}_{h,h'}(t_0))^2 - V_0(h') \right\}_+
\]

\[
\leq 5 \sup_{h' \in \mathcal{H}_n} \left\{ (\hat{\lambda}_{h'}(t_0) - \lambda_{h'}(t_0))^2 - V_0(h')/10 \right\}_+
\]

\[
+ 5 \sup_{h' \in \mathcal{H}_n} \left\{ (\hat{\lambda}_{h,h'}(t_0) - \lambda_{h,h'}(t_0))^2 - V_0(h')/10 \right\}_+
\]

\[
+ 5 \sup_{h' \in \mathcal{H}_n} \left( \hat{\lambda}_{h'}(t_0) - \hat{\lambda}_{h'}(t_0) \right)^2 + 5 \sup_{h' \in \mathcal{H}_n} \left( \hat{\lambda}_{h,h'}(t_0) - \hat{\lambda}_{h,h'}(t_0) \right)^2
\]

\[
+ 5 \sup_{h' \in \mathcal{H}_n} \left( \lambda_{h'}(t_0) - \lambda_{h,h'}(t_0) \right)^2
\]

\[
:= 5(T_{0,1} + T_{0,2} + T_{0,3} + T_{0,4} + T_{0,5}).
\]

We start with the last one:

\[
|\lambda_{h'}(t_0) - \lambda_{h,h'}(t_0)| = |K_{h'} \ast \lambda(t_0) - K_{h'} \ast K_h \ast \lambda(t_0)| = |K_{h'} \ast (\lambda - K_h \ast \lambda)(t_0)|
\]

\[
\leq \|K\|_1 \sup_{t \in [0, \tau]} |(\lambda - K_h \ast \lambda)(t)|.
\]

This yields to say

\[
T_{0,5} \leq \|K\|_1^2 \|\lambda - K_h \ast \lambda\|_{\infty, \tau}^2 \leq (\|K\|_1)^2 c_2 h^{2\beta},
\]

since \( \lambda - K_h \ast \lambda \) corresponds to the bias term in Proposition 1.
Then we decompose $T_{0,3}$ into two terms corresponding to $I(\Omega_p)$ and $I(\Omega_p^c)$ where $\Omega_p$ is defined by (17). First, from Lemma 3, we have

$$
E \left[ \sup_{h' \in H_n} (\hat{\lambda}_{h'} - \tilde{\lambda}_{h'})^2(t_0) I(\Omega_p^c) \right] \leq \sum_{k,h \in H_n} E \left[ (\hat{\lambda}_{hk} - \tilde{\lambda}_{hk})^2(t_0) I(\Omega_p^c) \right]
$$

using the fact that Card($\mathcal{H}_n$) $\leq n$. Consequently, this term is of order $1/n$ as soon as $p \geq 12$. On the other hand, the following sequence of inequalities holds:

$$
E \left[ \sup_{h' \in H_n} (\hat{\lambda}_{h'} - \tilde{\lambda}_{h'})^2(t_0) I(\Omega_p) \right]
$$

$$
\leq \frac{4c_3^2 \log(n)}{c_G} \frac{\log(n)}{n} \left[ \sup_{h' \in H_n} \left( \int \frac{|K_{h'}(t_0 - s)|}{1 - G(s-)} \left( \frac{1}{n} \sum_{i=1}^n dN_i(s) \right) \right)^2 \right]
$$

$$
\leq \frac{8c_3^2 \log(n)}{c_G} \frac{\log(n)}{n} \left[ \sup_{h' \in H_n} \left( \int \frac{|K_{h'}(t_0 - s)|}{1 - G(s-)} \left( \frac{1}{n} \sum_{i=1}^n dN_i(s) - \lambda(s)(1 - G(s-))ds \right) \right)^2 \right]
$$

$$
+ \frac{8c_3^2 \log(n)}{c_G} \frac{\log(n)}{n} \left[ \int |K_{h'}(t_0 - s)| \lambda(s)ds \right]^2
$$

$$
\leq \frac{8c_3^2 \log(n)}{c_G} \frac{\log(n)}{n} \left[ \frac{1}{n} \sum_{i=1}^n \int \frac{|K_{h_k}(t_0 - s)|}{1 - G(s-)} dN_i(s) \right] + \frac{8c_3^2 \lambda \log(n)}{n} \frac{\log(n)}{n} \left[ \int |K_{h_k}(t_0 - s)| dN_i(s) \right]
$$

$$
\leq \frac{8c_3^2 \log(n)}{c_G} \frac{\log(n)}{n} \sum_{k,h_k \in H_n} c_{\tau} \frac{\lambda}{n} \left[ \frac{1}{n} \sum_{i=1}^n \int \frac{|K_{h_k}(t_0 - s)|}{1 - G(s-)} dN_i(s) \right] + \frac{8c_3^2 \log(n)}{n} \frac{\log(n)}{n} \left[ \int |K_{h_k}(t_0 - s)| dN_i(s) \right]
$$

(20)

where the bound on the variance term comes from the proof of Proposition 1. Therefore $E[T_{0,3}] \lesssim \log^{1+a}(n)/n$ from Condition (9) and this ends the study of $T_{0,3}$.

The term $T_{0,4}$ can be handled in a similar way using the relation $\hat{\lambda}_{h,h'}(t_0) - \tilde{\lambda}_{h,h'}(t_0) = K_{h'} (\tilde{\lambda}_{h} - \tilde{\lambda}_{h})(t_0)$. Indeed, 

$$
E \left[ \sup_{h' \in H_n} (\hat{\lambda}_{h,h'} - \tilde{\lambda}_{h,h'})^2(t_0) I(\Omega_p^c) \right] = E \left[ \sup_{h' \in H_n} \left( K_{h'} (\tilde{\lambda}_{h} - \tilde{\lambda}_{h}) \right)^2(t_0) I(\Omega_p^c) \right]
$$

$$
\leq (\|K\|_1)^2 E \left[ \|\tilde{\lambda}_{h} - \tilde{\lambda}_{h}\|_{\infty,t}^2 I(\Omega_p^c) \right]
$$

$$
\leq 4c_3(\|K\|_1 \|K\|_{\infty})^2 n^{4-p/2},
$$
from Lemma 3 and
\[
\mathbb{E} \left[ \sup_{h' \in \mathcal{H}_n} (\hat{\lambda}_{h,h'} - \tilde{\lambda}_{h,h'})^2(t_0)I(\Omega_p) \right]
\leq \frac{8c_2^2 \log(n)}{c_G^2 n} \sum_{k,h \in \mathcal{H}_n} \mathbb{V} \left[ \frac{1}{n} \sum_{i=1}^{n} \int \frac{|K_{h_k} \ast K_{h}(t_0 - s)|}{1 - G(s-)} dN_i(s) \right] + \frac{8c_2^2 \|\lambda\|_{\infty,\tau} \log(n)}{n} \left( \sup_{h' \in \mathcal{H}_n} \|K_{h'} \ast K_h\|_1 \right)^2.
\]

Then, using the property
\[(21) \quad \|f \ast g\|_q \leq \|f\|_1 \|g\|_q \quad \text{for} \quad q \geq 1,
\]

it is easy to see that
\[
\mathbb{V} \left[ \frac{1}{n} \sum_{i=1}^{n} \int \frac{|K_{h_k} \ast K_{h}(t_0 - s)|}{1 - G(s-)} dN_i(s) \right] \leq \frac{c_r}{n c_G} \|\lambda\|_{\infty,\tau} \|K_{h_k} | K_h\|_2^2 \leq \frac{c_r}{n c_G} \|\lambda\|_{\infty,\tau} \|K_{h_k}\|_2 \|K_h\|_2 \leq c_r \|\lambda\|_{\infty,\tau} \|K\|_2 \|K_h\|_2 \leq (\|K_{h'} \ast K_h\|_1)^2 \leq (\|K_h\|_1)^2 = \|K\|_1^4.
\]

We conclude as previously that \(\mathbb{E}[T_{0,4}] \lesssim \log^{1+a}(n)/n\).

Finally, let us study the terms \(T_{0,1}\) and \(T_{0,2}\). We start by recalling the following concentration inequality.

**Lemma 7.** [Bernstein inequality] Let \(\xi_1, \ldots, \xi_n\) be independent and identically distributed random variables and \(S_n(\xi) = \sum_{i=1}^{n} \xi_i\). Then, for \(\eta > 0\),
\[
\mathbb{P} \left( |S_n(\xi) - \mathbb{E}[S_n(\xi)]| \geq n\eta \right) \leq 2 \max \left( \exp \left( -\frac{n\eta^2}{4w} \right), \exp \left( -\frac{n\eta^2}{4b} \right) \right),
\]

where \(w\) and \(b\) are such that \(|\xi_1| \leq b\) almost surely and \(\mathbb{V}(\xi_1) \leq w\).

Now, we want to apply this result to \(\xi_i = \int K_h(t_0 - s)dN_i(s)/(1 - G(s-))\). First, we need to establish the values of the bounds \(b\) and \(w\). We have
\[
|\xi_1| \leq (c_r\|K\|_\infty)/(c_G h) := b \quad \text{and} \quad \mathbb{V}(\xi_1) \leq c_r\|\lambda\|_{\infty,\tau} \|K\|_2^2/(c_G h) := w.
\]
Thus, Inequality (22) can be written in the following way: for some $x > 0$,
\[
P\left[|\tilde{\lambda}_h(t_0) - \lambda_h(t_0)| \geq \sqrt{V_0(h)/10 + x}\right]
\leq 2 \max\left(\exp(-n(V_0(h)/10 + x)/(4w)), \exp(-n\sqrt{V_0(h)/10 + x}/(4b))\right)
\leq 2 \max\left(\exp(-n(V_0(h)/10 + x)/(4w)), \exp(-n\sqrt{V_0(h)/5}(8b)) \exp(-n\sqrt{x}/2/(4b))\right).
\]

Then, we set $\kappa_0 \geq 80$, in order to have
\[
\frac{nV_0(h)}{40w} = (\kappa_0/40) \log(n) \geq 2 \log(n).
\]
On the other hand,
\[
\frac{n\sqrt{V_0(h)}}{8b\sqrt{5}} = \frac{||K||\sqrt{c_G\kappa_0||\lambda||_{\infty,\tau}}}{8\|K\|_{\infty,\sqrt{5}c_\tau}} \sqrt{nh \log(n)} := \kappa_2\sqrt{nh \log(n)}.
\]
Then taking $\kappa_1 \geq 4\kappa_2^{-2}$ in Condition (8) gives,
\[
\frac{n\sqrt{V_0(h)}}{8b\sqrt{5}} \geq 2 \log(n).
\]
Therefore, we have
\[
P\left[|\tilde{\lambda}_h(t_0) - \lambda_h(t_0)| \geq \sqrt{V_0(h)/10 + x}\right] \leq 2n^{-2} \max\left(e^{-\kappa_3nhx}, e^{-\kappa_4nh\sqrt{x}}\right),
\]
where
\[
\kappa_3 = \frac{c_G}{4c_\tau||\lambda||_{\infty,\tau}\|K\|^2}
\quad \text{and} \quad
\kappa_4 = \frac{c_G}{4c_\tau\|K\|_{\infty,\sqrt{2}}.}
\]
This yields
\[
E\left[\left\{ |\tilde{\lambda}_h(t_0) - \lambda_h(t_0)|^2 - V_0(h)/10 \right\}_+\right] \leq \int_0^{+\infty} \mathbb{P}\left[|\tilde{\lambda}_h(t_0) - \lambda_h(t_0)| \geq \sqrt{V_0(h)/10 + x}\right] dx
\leq 2n^{-2} \max\left(\int_0^{+\infty} e^{-\kappa_3nhx} dx, \int_0^{+\infty} e^{-\kappa_4nh\sqrt{x}} dx\right)
\leq 2n^{-2} \max\left(\frac{1}{\kappa_3nh}, \frac{2}{\kappa_4^2(nh)^2}\right) \leq \kappa_5n^{-2},
\]
for some positive constant $\kappa_5$. Finally,
\[
E[T_{0,1}] = E\left[\sup_{h' \in \mathcal{H}_n} \left\{ (\tilde{\lambda}_{h'} - \lambda_{h'})^2(t_0) - V_0(h')/10 \right\}_+\right]
\leq \sum_{k,h \in \mathcal{H}_n} E\left[\left\{ (\tilde{\lambda}_{h_k} - \lambda_{h_k})^2(t_0) - V_0(h_k)/10 \right\}_+\right]
\leq \kappa_5 \text{Card}(\mathcal{H}_n)n^{-2},
\]
and since \( \text{Card}(\mathcal{H}_n) \leq n \), we conclude that \( \mathbb{E}[T_{0,1}] \lesssim n^{-1} \).

The last term is \( T_{0,2} \) which can be treated in a similar way. Write

\[
\mathbb{E}[T_{0,2}] = \mathbb{E} \left[ \sup_{h' \in \mathcal{H}_n} \left\{ (\hat{\lambda}_{h,h'} - \lambda_{h,h'})^2(t_0) - V_0(h')/10 \right\} \right] 
\leq \sum_{k,h \in \mathcal{H}_n} \mathbb{E} \left[ \left\{ (\hat{\lambda}_{h,h_k} - \lambda_{h,h_k})^2(t_0) - V_0(h_k)/10 \right\} \right].
\]

Then the sequel is the same as for the proof of \( T_{0,1} \) except that all \( h \) vanish because \( \|K_h \ast K_{h'}\|_{\infty} \leq \|K_h\|_{\infty}\|K\|_1 \).

Gathering the bounds of the five terms gives the result of Theorem 2. \( \square \)

### 7.3. Proof of Theorem 3.

Following the lines of the proof of Theorem 2, we have, for all \( h \in \mathcal{H}_n \),

\[
\|\lambda^* - \lambda\|^2 \leq 3\|\hat{\lambda}_h - \hat{\lambda}_{h,h}\|^2 + 3\|\hat{\lambda}_{h,h} - \lambda_h\|^2 + 3\|\hat{\lambda}_h - \lambda\|^2 
\leq 3(A(h) + V(\hat{h})) + 3(A(\hat{h}) + V(h)) + 3\|\hat{\lambda}_h - \lambda\|^2 
\leq 6A(h) + 6V(h) + 3\|\hat{\lambda}_h - \lambda\|^2.
\]

Here again, \( V(h) \) and \( \|\hat{\lambda}_h - \lambda\|^2 \) (see Theorem 1, (b)) have the adequate order and we only need to study \( A(h) \). Recall that \( \hat{\lambda}_{h,h'} = K_{h'} \ast \hat{\lambda}_h \), \( \lambda_h(t) = \mathbb{E}[\hat{\lambda}_h(t)] \), \( \hat{\lambda}_{h,h'}(t) = \mathbb{E}[\hat{\lambda}_{h,h'}(t)] \) and write:

\[
A(h) = \sup_{h' \in \mathcal{H}_n} \left\{ \|\hat{\lambda}_{h'} - \hat{\lambda}_{h,h'}\|^2 - V(h') \right\} 
\leq 5 \sup_{h' \in \mathcal{H}_n} \left\{ \|\hat{\lambda}_{h'} - \lambda_{h,h'}\|^2 - V(\hat{h}')/10 \right\} + 5 \sup_{h' \in \mathcal{H}_n} \left\{ \|\hat{\lambda}_{h,h'} - \lambda_{h,h'}\|^2 - V(h')/10 \right\} 
+ 5 \sup_{h' \in \mathcal{H}_n} \|\hat{\lambda}_{h,h'} - \lambda_{h,h'}\|^2 + 5 \sup_{h' \in \mathcal{H}_n} \|\lambda_{h,h'} - \lambda_{h,h'}\|^2 
:= 5(T_1 + T_2 + T_3 + T_4 + T_5).
\]

We start with \( T_5 \):

\[
\|\lambda_{h'} - \lambda_{h,h'}\|^2 = \|K_{h'} \ast (\lambda - K_h \ast \lambda)\|^2 \leq (\|K_{h'}\|_1)^2\|\lambda - K_h \ast \lambda\|^2,
\]

where we used the property (21) with \( q = 2 \). This yields to

\[
T_5 \leq (\|K\|_1)^2 \tau c_1^2 h^{2\beta},
\]

since \( \|\lambda - K_h \ast \lambda\| \) corresponds to the bias term in Proposition 1.
Now, the same kind of arguments can be applied to $T_4$:

$$
\lambda_{h,h'} - \tilde{\lambda}_{h,h'} = K_{h'} \ast (\hat{\lambda}_h - \tilde{\lambda}_h),
$$

and so,

$$
\mathbb{E}[T_4] \leq \|K\|_2^2 \mathbb{E}\left[\|\hat{\lambda}_h - \tilde{\lambda}_h\|^2\right] \leq c'(\|K\|_1^2) \log(n)/n,
$$

where the last inequality was obtained from Lemma 1.

The term $T_3$ can be dealt with in the same way as $T_0,3$ in the proof of Theorem 2. First, from Lemma 4,

$$
\mathbb{E}\left[\sup_{h' \in H_n} \int (\lambda_{h'} - \tilde{\lambda}_{h'})^2(t)I(\Omega^c_p)dt\right] \leq \sum_{j,h_j \in H_n} \mathbb{E}\left[\sup_{h' \in H_n} \int (\hat{\lambda}_{h_j} - \tilde{\lambda}_{h_j})^2(t)I(\Omega^c_p)dt\right]
$$

$$
\leq \sum_{j,h_j \in H_n} 4c_3\|K\|^2 n^{3-k/2} \leq 4c_3\|K\|^2 n^{4-k/2},
$$

and this term is of order $1/n$ as long as $p \geq 10$. Then, using similar inequalities as in (20) yields

$$
\mathbb{E}\left[\sup_{h' \in H_n} \int_{h}^{\tau} (\lambda_{h'} - \tilde{\lambda}_{h'})^2(t)I(\Omega_p)dt\right]
$$

$$
\leq \frac{8c_2^2 \log(n)}{c_G^2} \sum_{k,h_k \in H_n} c_G \Lambda(\tau) \|K\|^2 + \frac{16c_2^2 \log(n)}{c_G^2} n \|K\|^2 \int_{0}^{\tau} \lambda^2(t)dt,
$$

and we conclude from Equation (9) that $\mathbb{E}[T_3] \lesssim \log^{a+1}(n)/n$.

We finish the proof with $T_1$ and $T_2$. As in Theorem 2, these two terms can be treated using a concentration inequality. First, we need to express each of them as a centered empirical process. For $T_1$, write

$$
\mathbb{E}\left[\left\{\sup_{h' \in H_n} \|\hat{\lambda}_{h'} - \lambda_{h'}\|^2 - V(h')/10\right\}_+\right] \leq \sum_{k,h_k \in H_n} \mathbb{E}\left[\left\{\|\tilde{\lambda}_{h_k} - \lambda_{h_k}\|^2 - V(h_k)/10\right\}_+\right],
$$

and recall that

$$
(23) \quad \|\tilde{\lambda}_{h_k} - \lambda_{h_k}\|^2 = \sup_{f \in L^2(h_k, \tau - h_k), \|f\|=1} (\hat{\lambda}_{h_k} - \lambda_{h_k}, f)^2.
$$

Now, we introduce the following centered empirical process:

$$
\nu_{n,h_k}(f) = \langle \tilde{\lambda}_{h_k} - \lambda_{h_k}, f \rangle = \frac{1}{n} \sum_{i=1}^{n} \int_{h_k}^{\tau-h_k} f(u) \left( \int K_{h_k}(u-s) \left( \frac{dN_i(s)}{1 - G(s) - \lambda(s)ds} \right) ds \right) du.
$$
As \( f \mapsto \nu_{n,h_k}(f) \) is continuous, the supremum in (23) can be taken over a countable dense subset of \( \{ f \in L_2([1, \tau - 1]), \| f \| = 1 \} \), which we denote by \( \mathcal{B}_r(1) \). Therefore,

\[
\mathbb{E}[T_1] \leq \sum_{k,h_k \in \mathcal{H}_n} \mathbb{E}\left[ \left\{ \sup_{f \in \mathcal{B}_r(1)} \nu_{n,h_k}^2(f) - V(h_k)/10 \right\}^+ \right]
\]

and the expectation here can be bounded using the following concentration inequality.

**Theorem 4.** (Talagrand Inequality) Let \( \xi_1, \ldots, \xi_n \) be independent random values, and let \( \nu_{n,\xi}(f) = (1/n) \sum_{i=1}^n \{ f(\xi_i) - \mathbb{E}[f(\xi_i)] \} \). Then, for a countable class of functions \( \mathcal{F} \) uniformly bounded and \( \varepsilon > 0 \), we have

\[
\mathbb{E}\left[ \left\{ \sup_{f \in \mathcal{F}} \nu_{n,\xi}^2(f) - 2(1 + 2\varepsilon^2)H^2 \right\}^+ \right] \leq \frac{4}{d} \left( \frac{W}{n} e^{-d\varepsilon^2 nH^2} + \frac{98M^2}{d n^2 \varphi^2(\varepsilon)} e^{-\frac{2\varphi(\varepsilon) \varepsilon nH}{M}} \right).
\]

with \( \varphi(\varepsilon) = \sqrt{1 + \varepsilon^2} - 1 \), \( d = 1/6 \) and

\[
\sup_{f \in \mathcal{F}} \|f\|_\infty \leq M, \quad \mathbb{E}\left[ \sup_{f \in \mathcal{F}} \|\nu_{n,\xi}(f)\| \right] \leq H, \quad \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \mathbb{E}[f(\xi_i)] \leq W.
\]

To apply this result, we first need to compute appropriate values of the bounds \( H, M, W \) and the constant \( \varepsilon \). Clearly,

\[
\mathbb{E}\left[ \sup_{f \in \mathcal{B}_r(1)} \nu_{n,h_k}^2(f) \right] \leq \mathbb{E}\left[ \|\tilde{\lambda}_{h_k} - \lambda_{h_k}\|^2 \right] = \int_{h_k}^{\tau - h_k} \mathbb{V}[\tilde{\lambda}_{h_k}(t)] \, dt = V(h_k)/\kappa
\]

and thus we require \( H^2 = V(h_k)/\kappa \). Then we set \( \varepsilon^2 = 1/2 \) and \( \kappa = 40 \) in order to have \( 2(1 + 2\varepsilon^2)H^2 = V(h_k)/10 \).

Now to find the bound \( M \), use the Cauchy-Schwarz inequality and the fact that \( \|f\| = 1 \) on \( \mathcal{B}_r(1) \) to write:

\[
\left| \int_{h_k}^{\tau - h_k} f(u) \int_{h_k}^{\tau - h_k} K_{h_k}(u-s) \, \frac{dN(s)}{1-G(s-)} \, du \right| = \left| \int \left( \int_{h_k}^{\tau - h_k} f(u) K_{h_k}(u-s) \, du \right) \frac{dN(s)}{1-G(s-)} \right|
\]

\[
\leq \|f\| \int \left( \int_{h_k}^{\tau - h_k} K_{h_k}^2(u-s) \, du \right)^{1/2} \frac{dN(s)}{1-G(s-)} \leq \frac{c_r\|K\|}{c_G} \sqrt{h_k} := M.
\]
Lastly, we need to determine the adequate bound $W$. Introduce the notation $K_h^-(s) = K_h(-s)$ and write:

$$
\mathbb{V} \left[ \int_{h}^{\tau - h} f(u) \int K_h(u - s) \frac{dN(s)}{1 - G(s)} \, du \right]
\leq \mathbb{E} \left[ \left( \int_{h}^{\tau - h} K_h(u - s) f(u) du \frac{dN(s)}{1 - G(s)} \right)^2 \right]
\leq \mathbb{E} \left[ \left( \int K_h^*(s) \frac{dN(s)}{1 - G(s)} \right)^2 \right]
\leq c_\tau \left( \int (K_h^*(s))^2 \frac{\lambda(s) ds}{1 - G(s)} \right)
\leq \frac{c_\tau \|\lambda\|_{\infty, \tau}}{c_G} \|K_h^* f\|^2 \leq \frac{c_\tau \|\lambda\|_{\infty, \tau} (\|K_h^-\|_1)^2 \|f\|^2}{c_G} = \frac{c_\tau \|\lambda\|_{\infty, \tau} (\|K\|_1)^2}{c_G} := W,
$$

where we used Lemma 9 and the property (21) for $q = 2$. Therefore, $W$ is a constant and we can now apply Talagrand Inequality:

$$
\mathbb{E} \left[ \sup_{f \in \mathcal{B}_r(1)} \nu^2_{n,h}(f) - V(h)/10 \right] \leq \frac{\vartheta_1}{n} \left( \exp(-\vartheta_2/h) + \frac{1}{nh} \exp(-\vartheta_3 \sqrt{n}) \right),
$$

for some positive constants $\vartheta_1$, $\vartheta_2$ and $\vartheta_3$. Then, from conditions (9), (15) and the fact that $\text{Card}(\mathcal{H}_n) \leq n$, we conclude:

$$
\mathbb{E}[T_1] \leq \frac{\vartheta_1}{n} \sum_{k,h \in \mathcal{H}_n} \left( \exp(-\vartheta_2/h) + \frac{1}{nh} \exp(-\vartheta_3 \sqrt{n}) \right) \lesssim \frac{1}{n}.
$$

The proof for $T_2$ follows the same line as for $T_1$. First,

$$
\mathbb{E}[T_2] \leq \sum_{k,h \in \mathcal{H}_n} \mathbb{E} \left[ \left\| \hat{\lambda}_{h,k} - \lambda_{h,k} \right\|^2 - V(h)/10 \right]_+
$$

and the Talagrand inequality needs to be applied to the centered process $(\hat{\lambda}_{h,k} - \lambda_{h,k}, f)$, where $f \in \mathcal{B}_r(1)$. Since $\hat{\lambda}_{h,k} = K_h * \hat{\lambda}_{h,k}$ and $\lambda_{h,k} = K_h * \lambda_{h,k}$ the same bounds $H, M$ and $W$ can be used, up to a constant. Indeed, using the inequalities

$$
\|K_h * K_h\|_2 \leq \|K\|_1 \|K\|_2 (h)^{-1/2} \quad \text{and} \quad \|K_h * K_h^-\|_1 \leq (\|K\|_1)^2
$$

it can be shown that Theorem 4 can be applied with

$$
H^2 = \frac{V(h)(\|K\|_1)^2}{\kappa}, \quad M = \frac{c_\tau \|K\|_1 \|K\|}{c_G \sqrt{h}} \quad \text{and} \quad W = \frac{c_\tau \|\lambda\|_{\infty, \tau}}{c_G} (\|K\|_1)^4.
$$
Finally, we obtain again $\mathbb{E}[T_2] \lesssim 1/n$.

Gathering the bounds of the five terms gives the result of Theorem 3.

8. Technical Lemmas

In order to give a proof of Lemma 2, we first need to introduce the following result which is a direct consequence of Theorem 1 in [4].

**Lemma 8.** For all $k \in \mathbb{N}^*$, there exists a positive constant $c_k$ depending on $k$ such that

$$
\mathbb{E} \left[ \| \hat{G} - G \|_{\infty, \tau}^{2k} \right] \leq \frac{c_k}{n^k}.
$$

**Proof.**

We use a nonasymptotic exponential bound for the Kaplan-Meier estimator which can be formulated as follows (see Bitouzé et al., [4]): there exists a positive constant $\eta$ such that for any positive constant $\varepsilon$,

$$
P \left[ \sqrt{n} \| (1 - F) (\hat{G} - G) \|_{\infty, \tau} > \varepsilon \right] \leq 2.5 e^{-2\varepsilon^2 + \eta \varepsilon}
$$

and so

$$
\mathbb{E} \left[ \| \hat{G} - G \|_{\infty, \tau}^{2k} \right]
\leq 2k \int_0^{+\infty} u^{2k-1} P \left[ \| \hat{G} - G \|_{\infty, \tau} > u \right] du
\leq 2k \int_0^{+\infty} u^{2k-1} P \left[ c_F^{-1} \| (1 - F) (\hat{G} - G) \|_{\infty, \tau} > u \right] du
\leq 2k \int_0^{+\infty} u^{2k-1} P \left[ \sqrt{n} \| (1 - F) (\hat{G} - G) \|_{\infty, \tau} > c_F \sqrt{n} u \right] du
\leq 5ke^{\eta^2/8} \int_0^{+\infty} u^{2k-1} \exp \left\{ -2c_F^2 n \left( u - \frac{\eta}{4\sqrt{n}c_F} \right)^2 \right\} du
\leq \frac{5ke^{\eta^2/8}}{2^{2k}c_F^{2k}} \int_{-\eta/(2\sqrt{2})}^{+\infty} \left( z + \frac{\eta}{2\sqrt{2}} \right)^{2k-1} e^{-z^2} dz n^{-k} := c_k n^{-k}.
$$

$\square$

**Proof of Lemma 2.** Since $P[\Omega^c] \leq P[\Omega_G^c] + P[(\Omega_G^*)^c]$, we bound each term separately. For any $k > 0$, we have

$$
P \left[ \Omega_G \right] \leq P \left[ \| G - \hat{G} \|_{\infty, \tau} > c_G/2 \right] \leq \frac{4k}{c_G^{2k}} \mathbb{E} \left[ (\| G - \hat{G} \|_{\infty, \tau})^{2k} \right].$$
Thus, Lemma 8 implies that
\begin{equation}
\mathbb{P} \left[ \Omega_{G}^{c} \right] \leq d_{k} n^{-k}, \text{ where } d_{k} > 0.
\end{equation}

Next, we use (24) and write:
\begin{align*}
\mathbb{P} \left[ \| \hat{G} - G \|_{\infty, \tau} > c_{0} \sqrt{n^{-1} \log(n)} \right] \\
\leq \mathbb{P} \left[ \| (1 - F)(y) \hat{G} - G \|_{\infty, \tau} > c_{0} c_{F} \sqrt{n^{-1} \log(n)} \right] \\
\leq 2.5 \exp(-2c_{F}^{2}c_{0}^{2} \log(n) + \eta c_{F} c_{0} \sqrt{\log(n)}) \leq 2.5 \exp((-2c_{F}c_{0} + \eta)c_{0} c_{F} \log(n)).
\end{align*}

Thus, for \( c_{0} \geq (\eta + \sqrt{\eta^{2} + 8k})(4c_{F})^{-1} \) we have
\begin{align*}
\mathbb{P} \left[ \Omega_{c}^{c} \right] &= \mathbb{P} \left[ \| G - \hat{G} \|_{\infty, \tau} > c_{0} \sqrt{n^{-1} \log n} \right] \\
&\leq 2.5 n^{-k}.
\end{align*}

This result and Equation (25) imply \( \mathbb{P}[\Omega^{c}] \leq (d_{k} + 2.5)n^{-k} \).

We conclude this section with a very useful inequality concerning integrals with respect to the counting process \( N \).

**Lemma 9.** (Cauchy-Schwarz) For every bounded function \( h \) on \([0, \tau]\), we have
\begin{align*}
N(\tau) \int_{\tau_{1}}^{\tau_{2}} h^{2}(s) dN(s) &\geq \left( \int_{\tau_{1}}^{\tau_{2}} h(s) dN(s) \right)^{2},
\end{align*}
where \( 0 \leq \tau_{1} \leq \tau_{2} \leq \tau \).

**Proof.** We have
\begin{align*}
0 &\leq \int_{\tau_{1}}^{\tau_{2}} \left( h(s) - \int_{\tau_{1}}^{\tau_{2}} h(s) dN(s) \right)^{2} dN(s) \\
&\leq \int_{\tau_{1}}^{\tau_{2}} h^{2}(s) dN(s) - 2 \left( \int_{\tau_{1}}^{\tau_{2}} h(s) dN(s) \right)^{2} + \left( \int_{\tau_{1}}^{\tau_{2}} h(s) dN(s) \right)^{2} \\
&\leq \frac{1}{N(\tau)} \int_{\tau_{1}}^{\tau_{2}} h^{2}(s) dN(s) - 2 \left( \int_{\tau_{1}}^{\tau_{2}} h(s) dN(s) \right)^{2} + \left( \int_{\tau_{1}}^{\tau_{2}} h(s) dN(s) \right)^{2} \\
&\leq \int_{\tau_{1}}^{\tau_{2}} h^{2}(s) dN(s) - \left( \int_{\tau_{1}}^{\tau_{2}} h(s) dN(s) \right)^{2}.
\end{align*}

Then, notice that \( \int_{\tau_{1}}^{\tau_{2}} dN(s) \leq N(\tau) \) to obtain the desired result. \( \square \)

**References**


