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Figure 1: We introduce an algorithm to compute a small bilinear texture cateedon that summarizes the frequency content of an input
texture imageTexton noiseis a simple sparse convolution noise using the texton texture, producing output visually close to any input
Gaussian texture even for a very sparse Poisson point process. This results in an unprecedented evaluation speed for noise by example wt
allowing for high-quality on-the- y anisotropic Itering by simply invoking existing GPU hardware solutions for texture fetches.

Abstract

Designing realistic noise patterns from scratch is hard. To solve this problem, recent contributions have proposed involved
spectral analysis algorithms that enable procedural noise models to faithfully reproduce some class of textures. The aim of
this paper is to propose the simplest and most ef cient noise model that allows for the reproduction of any Gaussian texture.
Texton noisas a simple sparse convolution noise that sums randomly scattered copies of a small bilinear texturexadled

We introduce an automatic algorithm to compute the texton associated with an input texture image that concentrates the input
frequency content into the desired texton support. One of the main features of texton noise is that its evaluation only consists to
sum thirty texture fetches on average. Consequently texton noise generates Gaussian textures with an unprecedented evaluation
speed for noise by example. A second main feature of texton noise is that it allows for high quality on-the-y anisotropic
Itering by simply invoking existing GPU hardware solutions for texture fetches. In addition, we demonstrate that texton noise
can be applied on any surface using parameterization-free surface noise and that it allows for noise mixing.

Categories and Subject Descript¢ascording to ACM CCS) [Computer Graphics]: Image manipulation—Texturing

1. Introduction as terrains, surface bumps, and so on. The classical approach for
o o generating a procedural texture is to combine several procedu-

Procedural noise IS now a three-decades Old teChanue |ntr0duceq'a| noises with tweaked non linear functions (eg C0|Ormap and

by Perlin [Per85] and widely used today for the generation of coordinate perturbation of a sinewave to create marble-like tex-

textures, the main focus of this paper, but also for the genera- tyres [Per85, LLC10]).

tion of other random contents involving spatial correlation such
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2 B. Galerne, A. Leclaire & L. Moisan / Texton Noise

However, recent contributions addressimgpise by exam- noise allows for spatial noise mixing relying on recent contributions
ple[LVLD10,GLLD12,GSV 14] demonstrated that a fair amount in Gaussian texture mixing [XFPA14].
of textures can be produced directly using a single procedural noise.
The main advantage of this new noise by example approach is to
propose algorithms that automatically estimate the noise parame-
ters instead of relying on creative non linear tweaks. However, to 2.1. Gaussian textures
achieve thelrgoal, these papers use qmte.compleg procedural NOISGhe richness of the Gaussian texture model was demonstrated
models with many parameters, accompanied with involved spectral . . .
- ) . . : in [vVW91]. The author introduces the spot noise model that con-
analysis for parameter setting and non trivial evaluation algorithm _. . " L : . .
. : e . sists in the addition of randomly shifted copies of a geometric ker-
involving probabilistic sampling of precomputed frequency tables. -
. . nel, and demonstrates that this model can produce a large class of
As acknowledged in [LLC10], all standard procedural noise func- : . .
. . . . . microtextures by varying the kernel. The study of Gaussian tex-
tions produce approximately Gaussian outputs since they all mix

. : . tures has recently seen several developments in the eld of im-
linearly independent random inputs. Hence, a natural class of tex-a e processing. In [GGM11], the asymptotic discrete spot noise
tures for procedural noise is the class of Gaussian textures, which ge p 9 ! ymp P

. . model was clearly expressed as a stationary Gaussian random eld.
are textures solely de ned by their power spectrum (see Section 3 - . .
. ; . The authors also proposed an automatic analysis/synthesis algo-
for a discussion on Gaussian textures).

rithm based on the discrete Fourier transform (DFT) for the syn-

The main motivation of this work is to propose the simplest thesis by example of Gaussian texture images. Gaussian texture
possible (and thus most ef cient) noise model that allows for the images correspond to microtexture images whose perception is not
reproduction of any Gaussian texture. We preseston noise  affected by random shufing of the Fourier phase. A Gaussian
which is asparse convolution noisgew84] that uses a single  texture is thus characterized by its Fourier modulus. Desolneux
kernel, calledtexton This means that our noise simply consists et al. [DMR12] introduced a compact representation of a Gaus-
in summing randomly positioned copies of the texton. This tex- sian texture by considering the image with same Fourier modu-
ton kernel determines alone the power spectrum of the noise. It|ys and zero Fourier phase, called “canonical texton”. Galerne et
can be seen as a compact summary of the input texture, and thusil. [GLM14] showed that this compact “canonical texton” is not
provides an “inverse texture synthesis” [WHXB, SCSI08] so-  suited for direct spot noise synthesis, and introduced an algorithm
lution for Gaussian textures. To ensure a fast evaluation and afor the computation of a “synthesis-oriented texton” that can be
compact representation of the noise, the texton is modeled as aused for low-intensity spot noise synthesis of Gaussian texture im-
generic bilinearly-interpolated function having a small support, that ages, which is faster than Fourier simulation and allows for parallel
is, a small GPU texture. Our main contribution is to show that |ocal evaluations. Furthermore, as demonstrated in [XFPA14], it is
this simple noise model is suf cient to reproduce any Gaussian possible to rigorously solve the problem of texture mixing for the
texture, with a texture analysis and a procedural evaluation that Gaussian model using optimal transport barycenters between prob-
are several orders of magnitude faster than recent competing ap-ability distributions. We demonstrate in this paper that texton noise
proaches [GLLD12, GSV14] since they do not rely on the usual  also allows for noise mixing. To nish, let us also mention that
spectral decomposition/frequency sampling approach. The mainthe Gaussian model is also convenient for dynamic texture model-
features otexton noiseare the following: ing [DCWS03, XFPA14].

1. Arbitrary spectrum: The_ noise can apprqximate any general Except for [WW91], all these image processing papers only con-
spectrum and the evaluation cost does notincrease with the Com-gjyered Gaussian textures on discrete pixel grid. By using a sim-
plexity of the spectrum that is summarized within the texton. Itis ji5r probabilistic approach, we demonstrate with texton noise that
naturally d(_a3|gned for noise by example and is able to reproduce ; ig possible to extend the results of [GLM14] and [XFPA14] to
any Gaussian texture. the continuous framework of procedural noise functions while ful-

2. Very fast evaluation: The cost for evaluating texton noise at & |jing speci ¢ technical requirements such as fast evaluation and
point is the one of 30 texture fetches on average, without any ,n_the- y Itering.

GPU evaluation of trigonometric function.
3. On-the-y antialiasing: Texton noise allows for simple and _
very ef cient antialiasing Itering by simply invoking existing ~ 2.2. Noise by example

2. Related Work

GPU hardware SQ"ftiO”S for texton texture fetches. ~ Asrecalled in the introduction, procedural noise is a three-decades
4. Automatic analysis: The texton computation is fully automatic g technique introduced in [Per85]. Several procedural noise func-
and fast. tions have been proposed and we refer to the survey [LIOTfor

5. Simple noise storageTexton noise is represented by two pa- 5 complete discussion. Let us just mention again that texton noise
rameters, the noise mean color and the texton stored as a GPUg 5 gparse convolution noise [Lew84] which is also called spot
texture. The noise hence have ac_ontrolled compa(_:t memory cost,gige [VWO1]. This paper tackles the noise by example problem,
(size of the texton) and does not involve any speci ¢ data Struc- hat i, producing a noise that is visually similar to an input texture
ture. image. This subject has seen several developments in these past ve

In addition, texton noise generates textures directly in RGB space years, and we refer to the papers [GLLD12] and [G$¥] for de-

without using any colorspace transformation and allows for surface scription of related works previous to 2010. The main idea of noise

noise, that is, noise on surface without surface parameterization.by example is to nd noise parameters that match the power spec-

An additional contribution of the paper is to demonstrate that texton trum of the input image. The limitations of existing methods are
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threefold: non fully automatic analysis requiring manual interven- user can drop (and edit) texture sprites (i.e. small patterns) which
tion, model limitation, slow procedural evaluation. can be assembled with a customized blending principle. Vanhoey
et al. [VSLD13] suggest to break the repetitions of a periodic tiling

Gilet et al. [GDS10] proposed a segmentation approach of the :
. . . by random replacements of well-chosen interchangeable patches.
power spectrum using ellipses to determine the parameters of a Ga-

bor noise model [LLDD09]. However, their method requires signif-  In all these methods, each pixel or each cell is covered by one
icant manual intervention and trial for each exemplar. dominant texture pattern, and thus, they are more adapted to macro-
textures. In contrast, with texton noise each point is covered by
several randomly shifted copies of the texton which are simply
summed. We will see on the results that when covering a point with
30 textons, individual textons are not distinguishable and that the
With Gabor noise by example (GNBE), Galerne etal. [GLLD12] noise patterns only result from the noise spectrum. In short, the
demonstrated that any Gaussian texture could be obtained with aféxton is not a precomputed piece of texture but a small texture
Gabor noise [LLDDO09] using several bandwidths. The resulting summarizing the frequency content of a Gaussian texture.
noise is visually indistinguishable from the targeted Gaussian tex-

ture, but the proposed automatic analysis procedure takes severag packground on Gaussian Textures and Shot Noise
minutes and the procedural evaluation is relatively slow.

Lagae et al [LVLD10] estimated frequency bandwidth energies
to set the parameters of a wavelet noise [CDO05]. Their analysis is
fully automatic but the approach is limited to isotropic textures.

3.1. Gaussian Texture Synthesis
Lately, Gilet et al [GSV 14] introducedlocal random phase

noise (LRP noise). This new noise uses a regular spatial grid to
sum localized cosines with random or deterministic phases. The no- 9 ! )
table contribution of this work is to generate noise with structured color mgal(mu), one sample; the (iaussmn versmruqsﬁmply by
patterns by preserving some local phases of the input texture, mak-COnVOIVIng the normalized mageW(u mear{u)) with a stan-

ing it the state of the art method. However, when applied to Gaus- dard Gaussian white noise (the pixel values are independent and
sian textures, the output noise is slightly different from the targeted have Gaussian distribution with mean 0 and variance 1), and then
Gaussian texture due to a slightly approximate spectral analysis ang@dd mea(u) to each pixel [GGM11]. By de nition, Gaussian tex-

the use of therincipal variation color spacéVSLD13] based on tures are the texture images that are visually well-reproduced by
color clustering. this simple convolution-based procedure, and they are character-

ized by their mean color and their covariance or power spectrum.

In comparison, texton noise is theoretically guaranteed to pro- several pairs of textures and their Gaussian counterparts are shown
duce Gaussian textures, the parameter setting is fast, simple andn the two rst rows of Figure 7 and demonstrate that the Gaussian
automatic, and the evaluation speed is unprecedented for noise bymodel is realistic for various fabrics, wood, rocks,... Still Gaussian
example. Texton noise allows for the faithful reproduction of any textures form a limited class of textures since they do not contain
Gaussian texture, but, similarly to GNBE [GLLD12] it is strictly  sharp contours. However this limitation is counterbalanced by the
limited to Gaussian textures, and thus cannot produce more struc-fact that their precise probabilistic de nition enables to derive al-
tured textures contrary to LRP noise [GSM]. In short, texton  gorithms with theoretical guarantee of success for texture synthe-
noise improves signi cantly the state of the art for noise by ex- gjg [GGM11] as well as for texture mixing [XFPA14]. The goal of
ample applied to Gaussian textures, while LRP noise remains thenis paper is to achieve both these tasks with an ef cient procedural
unchallenged state of the art for noise by example for structured pojse function. This is challenging since one cannot use grid-based
textures. FFT convolutions in a continuous framework. This is the reason
why we now turn to approximate Gaussian simulations using high
2.3. Texture Tiling and Texture Bombing intensity shot noise-
Let us recall that many procedural methods consist in assembling3_2_ Discrete Shot Noise Associated with an Image
texture pieces on the synthesis domain. The chaos mosaic tech-
nique [GSX00] shuf es the blocks of the tiled input texture and The previous section describes the Gaussian texture synthesis on
next solves ef ciently the mismatched features on the block bound- @ hite pixel grid Wwhile we would like to achieve Gaussian tex-
aries. Similarly, the algorithm of [CSHDO3] assembles precom- ture synthesis on the domaR?. The difference is twofold: 18* is
puted Wang tiles (with matching boundaries) in order to progres- in nite; 2) R?is continuous. The second point deserves more atten-
SiVer Il the Synthesis domain. An improvement was later sug- tion Since de ning a Gaussian texture model on the in nite diSCI‘ete
gested in [Wei04] allowing for hardware implementation by pack- domainZ? is straightforward. Given an image2 RM N as in the
ing the Wang tiles in a texture map. We refer to [LKI8] for previous section, one de nes the normalized version ektended
further details about tiling applications in graphics. The method t© Z%bytu(K) = pjlfw(u(k) mearfu)) if k2 W, and O otherwise,
of [LNO3] consists in throwing prede ned patterns in the cells of a g that the auto-correlation afcan be written
mosaic in a randomized manner. Texture bombing [Gla04] samples . 1 o
textures in the dead leaves model [Mat68] which means that sev-  tu?tu(k) = W a (u() mearfu))(u(l + k) mearfu))
eral prede ned patterns are thrown on the synthesis domain with 12w
an occlusion principle. Lefebvre et al. [LHNO5] proposed an opti- with the convention that(l + k) mearfu) = 0 if | + k2 W, where
mized method allowing for interactive animated texture design: the ? denotes convolution betwe&tf-indexed sequences, and where
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fu(k) = tu( K). Then the discrete shot noise (DSN) of intensity This key theorem furnishes the recipe faise by exampleith
| > 0 associated with is de ned onz? [GLM14] by a single kernel shot noise: given a Gaussian texture imaggein-

RO= Atk k) k2Z% put,
j 1. Analysis step:Estimate the input discrete covariar@e= f, ?ty
and determine a kernblsuch thatCy ' h h,
2. Evaluation step: Generate the normalized shot nogpé€x) with
a suf ciently highl .

wheref Kkjg Z? is a Poisson process of intensit)overzz. This
DSN has expectation zero and its covarianckfig?ty, and when
the Poisson intensitly tends to+ 1 the variance-normalized DSN

pL Ry tends towards a Gaussian random eld oZérwith mean 0 . . . .
I Shot noise evaluation costA critical feature of a procedural noise

and cpvariancem ?l whic_h is called_Asymptotic DSN (ADSN). is the computational cost of its evaluation. Let us stress that the rel-
Expenment; shgw that ifis a Gaussian texture, then bOth A_DSN evant quantity regarding the shot noise evaluation cost is not the
and DSN with high generate textures that are visually similar to Poisson process intensitybut the mean number of kernéicov-

the Gaussian input, while de ned on the in nite domatd. Our ering a point (that is the mean number of non null terms in the

goal in what follows is to propose a procedural texture model, de- ,;5)'(1)) that we call mean number of impacts (MNI). For a kernel

ned.on the continuous domaiR“, that produces the same visual with a square suppoBof sizer r, the MNI is| r2. On the oppo-

quality. site, if the support of the kernel does have in nite area, the MNI is
in nite and the evaluation is not feasible.

3.3. Single Kernel Shot Noise

Strictly speaking, the texton noise model is not new since it is a 4. Texton Noise

sparse convolution noise with a single kernel. The novelty of our As said in the introduction, we model the kemel functioas a

approach consists in the computation of a speci ¢ kerel whose generic bilinearly-interpolated function so that it can be stored in

corresponding noise can approximately reproduce any Gl’leSSianGPU texture memory and evaluated using standard GPU fetch al-
texture or any desired noise spectrum in a very ef cient way.

gorithm. Hence,

hiy)= & a(Ky(y K; y2R% 3)
k2 z2

The sparse convolution noise [Lew84,LLDD09], also called spot
noise in graphics [VW91], is what is denominated a shot noise pro-
cess in applied probability [Pap71, Ric77]. It simply consists in the ) ) ) )
sum of several copies of a kerrielthat are randomly shifted all ~ Where the interpolation coef cients should be 0 outside a small
over the plan®? according to a Poisson process of intenkity 0 nite domain andy is the usual 2D bilinear interpolation kernel,

denoted byP| . The resulting shot noise is thus the random eld ~ 1-€-Y (Y1;y2) =(1 | ya)* (1] yai)" wherex" :2Xif>f ~0and0
otherwise. Remark that(k) = h(k) for all k2 Z< but it is prefer-

fi= & h(x x); x2 R% 1) able to differentiate the notation between the stored coef ciants
X2Py and the continuous functidm(also,a(k) = h(k) is not valid if one
where the kerneh: R2!1 R is such that both integraIsth(x)jdx uses higher ordeB-spline interpolation, see the discussion in sup-

plementary material). From now on, the bilinearly-interpolated ker-
nel h will be calledtexton the interpolation coef cients will be
calledtexton interpolation coef cientsaand the corresponding nor-
malized shot noisg, de ned by (2) will be calledtexton noise
Remark that a texton noise is solely determined by its interpolation
coef cientsa. The main problem is to determine the texton interpo-
lation coef cientsa that enable to reproduce an exemplar Gaussian
Proposition 1 (Shot noise mean, covariance and power spec- texture imagei2 RM N

trum) The random eldf, de ned by (1) is well-de ned, station-
ary and has a nite variance. Its expectation is giverggy, (x)) =

I gz h(ydy: Its covariance function is equal to7! | C(t) where
C(t)= gz2h(y+ t)h(y)dy= h h(t) is the autocorrelation df, its As said above, our goal is to de ne a texton nogpethat produces
the same visual quality as the ADSN associated with the input tex-

ture imageu. However, these two random objects are different in

Single kernel shot noise are well suited for the generation of n51yre since a shot noise is de ned over the continuous doRA&in
Gaussian textures Fhanks to the following Gaussian convergenceynile an ADSN is de ned over the discrete lattiz®. The prob-
theorem (provee.g.in [Pap71]). lemis to nd a continuous covariance functi@: R*! R of the
Theorem 2 (Shot noise Gaussian convergencés the Poisson formC= h h(see Proposition 1) that extends the discrete covari-
point process intensity tends to+ 1 , the normalized random eld  ance functiorCy = f, 2ty : Z%!  R. This is of course an ill-posed

problem. We claim that the requirement that the procedural noise
g (x)= w ) g should be visually similar to the ADSN model ov&f asso-
' ciated withu translates in the following constrairthe sampling
converges in distribution towards a Gaussian random eld with over Z? of g, must have the same covariance as the ADSN as-

mean 0 and covariance functi@+= h h. sociated with u. We call this conditiorthe sampled covariance

and h2(x)dx are nite. We will speak of single kernel shot noise
since the functionh is xed and deterministic. Let us clarify

some notation. For a functiog: R>! R, § denotes the sym-

metric FEunctiong(y) = g( Y), § denotes its Fourier transform
g(x)= gr2h(y)e 2phxyi gy, and  denotes the convolution prod-
uct between functions de ned dR?.

4.1. Sampled Covariance Consistency

power spectrum is thu&x) = | &) = | h(x) °:
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consistency Note that sinceg, is stationary oveR?, the distribu-
tion of the sampled eld(g, (K)o 72, ¥ 2 R?, is the same as the ' >
one of any discrete eldg, (y+ K)o 72 sampled on some trans- u de ned on the (_jomalrW and the hat symbol fefers to the
lated gridy + Z2. The sampled covariance consistency condition DFT onW(which is computed by FFT).

writesC(k) = Cy(k) for all k 2 Z2, that is, Input: Imageu de ned onW, coef cients supporS W
Compute spectral constraint:

Within this algorithm, all images have the same size as the |nput

h hi= & @2y y)(k =&2t(k); k2Zz%
® |2azz( YD Ik D=2 Computety = pjl—w(u mear{u)) and its DF T,
Compute the sampling of thB-spline of order 3b in W

where, again, denotes the convolution between continuous func- ’ RS . i X
(with the DFT periodicity convention) and its DR

tions and? denotes the convolution between discrete functions. Let

us denote byb : 22_! R the sampling ovez? szthe_ function Random initialization: Initializea 2 RW as a standard white
Yy y=y y,thatisb(k)=y y(K forallk2 Z=. bis simply Gaussian noise image
the discrete sampling of tHB-spline kernel of order 3: its coef - Iterative constraint projection: Do n= 50 times
: ix 1 2 1T 1 2 1 .
cients arethe one of the 33 matrix z 5 5 5 5 § on £,
f 1;0;1g? and zero outsidé 1;0; 1g%. Taking the Fourier trans- 1. Impose power spectrumof p*b
form overz? of the above equation gives the translation of the sam-
pled covariance consistency condition in terms of power spectrum, a. ComputeAtheADF'ﬁ
b. Setd t”i%
A N2E TS 192, b
ja(0i“b(x) = jlu(i*; x2[ 331 4

¢. Computea by backward DFT
Hence an ideal solution would be to nd interpolation coef cients

(a(k)) k2 z2 such thatjé(x)j2 = jf;)((’;))jz. However the ideal story

stops here. Indeed,Zf-indexed sequence has nite support if and
only if its Fourier transform is a trigonometric polynomial. Hence, ~ Algorithm 1. Computation of the texton interpolation coef -

both jfu(x)j> and b(x) are trigonometric polynomials, and unless ~ Cl€nts

the input imagau has been especially designed, there is no reason

for B(x) to be a divisor ojfu(x)j2 Hence, any solutiofa(k)) ., 22

to ’[he equa’“oma(x)J = JtU(X)J X2 [ 2]2 Corresponds to a se- The main mOtivation Of thIS procedure (Wh|Ch iS Strongly in'
spired by the computation of the discrete synthesis-oriented tex-
ton [GLM14]) is to de ne coef cientsa that have the targeted spec-

2. Impose supportS Seta 1s a

Output: Returna

quence with in nite support This observation is rather disappoint-
ing: the ideal interpolation coef cienta for the kernel functiorh £
would result in a noise with in nite memory footprint and in nite  trum p--, with supportSand with a DFT phase as random as pos-
evaluation cost! This leads us to turn to an approximation of the
sampled covariance consistency condition with a controlled mem-
ory budget, that is, with a prescribed support for the coef cients

sible (oBtained with the Gaussian white noise initialization). As a
preprocess for Algorithm 1, if the input images not strictly pe-
riodic it is replaced by its periodic component [Moill] as in previ-
ous work on Gaussian texture synthesis. Figure 2 displays a texton
4.2. Texton Computation Algorithm along with texton noise simulation with varying MNI. As can be
observed from this gure, texton noise is visually close to the tar-
Since there is no exact solution of the spectral equation (4) that haSgeted Gaussian texture for a MNI of 30, which enables for a very
a nite support, we turn to an approximate solution for this equa- fast noise evaluation (see Section 9 for performance discussion). By
tion that has a user-de ned support. The smaller the support, the construction texton noise is a sum of bilinearly-interpolated textons
compacter the noise, although too small support would generally that are translated by the continuous vectgrsf (1). However
impact the noise visual quallty (see discussion in Section 9). Given texton noise does not suffer from the usual bilinear interpolation
a small square domaf®  Z2, we search for the best texton inter-  “plocky” artefacts since these translation vectors live in the contin-
polation coef cients(a(k)) » z2 such that uous domairR? (see discussion and illustration in the supplemen-

1. a has support IS for allkz s a(k) = tary material).
2. jA()j%b(x) j fujforallx2 [ % 2]2

The second point leaves room for interpretation. Since both 4-3: Color Texton Noise

ja(x)j?b(x) andjfu(x)j? are trigonometric polynomials, and thus  Texton noise is naturally de ned for Gaussian color textures simply
smooth functions, it is arguably enough to enforce that all their val- by allowing the kerneh of (1) to be a bilinear RGB texture image
ues on a regular grld are close. This leads to a practical numericalh with coef cientsa = (aR,aG,aB) Hence color texton noise is
solution, smcqtu(x)j is easily evaluated on a regular grid by Fast generated directly in RGB space with a single Poisson point pro-
Fourier Transform (FFT). We propose the alternating projection al- cess, the computation cost of color texton noise is thus the same
gorithm described in Algorithm 1 to compute the texton interpola- as the one of its gray-level counterpart. In addition, since we gen-
tion coef cientsa. erate directly the texture in RGB space without using non-linear
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Input texture MNI =3 MNI = 10 MNI = 30 MNI =100 MNI = 1000

Texton

Figure 2: Left column: Input texture and texton of size 12828. Subsequent columns: Texton noises with various MNI with corresponding
Poisson processes. Remark that the texton noise textures are visually close to the Gaussian limit as soon as MNI equals 30.

colormaps, our anisotropic ltering procedure (see Section 5) ap- noise these linear Itering techniques are possible only when using

plies directly to color texton noise. a linear color space (e.g. RGB or PCA-like). Using any non-linear
colormap to obtain a color noise requires to use more involved (and
Computation of Color Texton Interpolation Coef cients Re- more costly) Itering procedures [LLCLO, GSV 14].

lying on previous work on RGB Gaussian textures, we can
adapt the computation of the texton interpolation coef cients
a=( aR;aG;aB)T to take into account the color channel correla-
tions of the RGB inputl. For that, one simply replaces the spectral

According to the survey [LLC10], a major drawback of proce-
dural noises is that classical Itering technigues for GPU textures
such as MIP-mapping are not available. One important feature of
e _ A 1 f,a . texton noise is that it can be ltered using these standard tech-
projection of step 1.b of Algorithm 1 by  p— tu, where niques. Indeed, as can be seen from (1), texton noise is simply a

p fud i inear-
denotes the conjugate transpose of a complex vector and the Fouriet " of randomly scattered copies of the textohience, by linear

. . . - . Ity of the convolution, locally Itering texton noise can be achieved
transform of an RGB image is obtained by applying the Fourier . - ; -
by locally Itering the textonh. Since the texton is a bilinear texture
transform to each color channel (Please refer to supplementary ma- : )
. . T stored in classical texture memory, we can apply standard MIP-
terial for a rigorous justi cation). . . . ) . .
mapping lookup and anisotropic Itering to it when fetching the

texture values. This results in a high-quality anisotropic Itering of
2. of Algorithm 1) that puts some coef cients to zero, the variance our _noi§e for only a_slight add_itional cqm.putat_ion cost since tl_wese
of each color channel is always smaller than the one of the orig- _Iterlng |mple_mentat|ons_ are hlghly Opt'm'ZEd in GPU. Regarding
inal image. This loss of variance translates visually into textures 'mp'eme”tat.'on' our anisotropic _[tering sFrategy comes fqr free
with less contrast and is not desirable. We thus perform the sim- since it only involves a few OpenG_L code lines when declaring the
ple linear color correction proposed in [GLM14, DMR15] once the texton texture properties (generating MIP-map levels and enabling

coef cients are computed (Please refer to the supplementary mate-gn'dS.OtrtOF:j'Ct It;erlrsg) W'th zero rlnof.l catlontof;he fragrrt1hentt shader Id
rial for technical details and illustrations). This ensures that the co- edicated to texton noise evaluation (note however that one cou

variance of the color texton noise is equal to the cross-correlation use any ltering ”_‘e““’d. for b"'?‘ear textures instead of the stan-
of the input texture. Note that this color correction is done at the dard implementation). Figure 3 illustrate that our proposed on-the-

analysis step, and once the corrected coef cients are computed y ltering is vis_ually_ close to an ideal hypersampled npise. Fig-
there is no need to store the cross-correlation matrices. Contraryur_e 1'and the V|_deo in the supplementa_ry material also illustrate the
to previous work relying on adapted color spaces such as PCA- aliasing correction. We ob§erveq experimentally that the speed per
like color space [LVLD10, GLLD12] oprincipal variation color formance of the anisotropic Itering depends on the viewing con-

spacelGSV 14], the generation of texton noise is done directly in ditions, from being as fast as un Itered texton noise to being twice

the standard RGB space and thus gains in both speed and simplic-3|ower’ while the hypersampling scheme presented in Figure 3 is
ity 400 times slower than un Itered texton noise. Hence, texton noise

allows for high-quality on-the- y anisotropic ltering with limited
additional computational cost.

Color Correlation Correction Due to the support projection (step

5. Filtering Texton Noise

Filtering noise according to the viewing condition is crucial to limit
aliasing. The main issue is to avoid a costly hypersampling proce-
dure. State of the art noises allow for either isotropic [CD05] or Quoting the survey [LLC10], there are three different ways to
anisotropic [GZDO08, LLDDOQ9] ltering by frequency attenuation obtain noise on surfaces: 1) mapping a 2D noise onto the sur-
or clamping adapted to the distance to camera. Besides, for colorface using a planar parameterization, which is straightforward but

6. Surface Noise
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Ideal hypersampled noise Filtered texton noise Un Itered texton noise

Figure 3: Anisotropic Itering: Left: Ideal image obtained by hypersampling with a factor 400 (each pixel is the avera@@ of0
evaluations), Middle: Texton noise Itered on-the-y by using MIP-mapping and anisotropic Itering of the texton, Right: Un Itered texton
noise (each pixel is a single evaluation). The middle row displays close-up views delimited by the squares where the three left (resp. right
images correspond to the three top (resp. bottom) inner frames. Observe that the proposed on-the- y ltering technique gives results which
are visually very close to the ideal hypersampled noise.

has limitations €.g. compute the parameterization, deal with dis- value fls(y) at pointy is obtained by projecting into the tangent
tortion), 2) de ne a noise directly on the surface usisigrface plane ofS at pointy all the points of a 3D Poisson point process
noise[LLDDO09], 3) sampling a solid noise. Solutions 1) and 2) P|3 that are at distance less thgnand attaching to the projected
are competitive while solution 3) is complementary to the rsttwo point a kerneh with orientation(us; ué). This leads to the equation
solutions. Indeed, some textures such as paint correspond to 2D _ . 5. oy Ly Ly
textures applied on surfaces while other textures such as wood or T = a (1 Fihy xiugii) h((y xiugishy  xi;u5i))
stone correspond to 3D solid textures. In what follows we discuss 2P}

the adaptation of surface noise for texton noise. Note that there is
theoretically no obstacle to adapt texton noise to solid noise by
example. Since the generation of such 3D texture examples from
2D images is challenging in itself, we left solid texton noise as a
promising future work.

where the brackets; i stand for the dot product iR3. The aim

of the weight(1 %jhy x;;u‘éij)J' is to favor the points that are
closer to the tangent plane and that are more likely to be active for
points close tg.

] o For texton noise synthesis, it is crucial to be able to normalize
Surface noisgas de ned by [LLDDO09] and originally developed  gyrface noise. Our main contribution regarding surface noise is to

by [Cha07], is an elegant construction that enables to apply a 2D proyide the following general formulae (the proof is given in Sec-
sparse convolution noise of the form tion A in appendix).

fi(x) = é h(x x); Proposition 3 (Surface noise mean and variancd)ith the above
%2 P? notation,
r VA r VA
with P? a 2D Poisson point process andR?! RY,d= 1 or 3, E(fi(y)) = | 3 h(dz Var(f(y)) = | 3w h(2)dz

a (possibly varying) kernel with small support, to a 3D surf&ce
provided the surface curvature variation scale is larger than the ker-and if h has supporf %; %]2, the MNI, i.e. the mean number of

nel support. To do so, one supposes that at each p@i& of the non zero terms in the sum de ninif(y), isl r3.
surface a local orthonormal bagis); u}; u%) is known where the .
third basis vector, is the normal té5 at pointy 2 S . Additionally, The practical consequence of the above formulae are as follows.

the mapy 7! (W; 332/; u%) must vary continuously if the surface is Since the surface noise must havgthe same variance than the usual

; : . 2
continuous (As continuous as possible since e.g. there is no contin-Normalized 2D noisg; (2), thatis, g.h"(z)dz the properly nor-
uous direction eld on a sphere...). The main advantage of surface Malized surface noise is

S . . e z
noise is that it does not require surface parameterization and does ) 15 h@dz fS5y) 15 & aK
not involve any topological assumption on the surf8&c&uppose e )= ' 2 R? _ . ks .
that the support dfi is the squar¢ §; 512 Then, the surface noise ' TTE "TT
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Figure 4: Surface noise:Two examples of surface noise with tex-

non-zero sum, for each poirf of the Poisson point process we in-
troduce a random weiglg with uniform distribution orf  1; 1g.
Since we can use eithéror h in the shot noise without affect-
ing the limiting covariance, introducing these random weights is an
easy way to force a null expectation in the output random eld with-
out changing the texture model. Given the marked Poisson point
processP M of intensity ; onR? f  1;1g, we de ne the mixed
shot noise

fiw= @4 a eh(x x)lx2p,;

(xj:6)2 PIM 16 r6 R
wherelyzp, = 1if x; 2 Dr and 0 otherwise. This non-stationary
shot noise has null expectation, and one can showghat Jk'r

converges to a Gaussian random eld [Pap71]. Therefore, one can
obtain a progressive mixing afandv by dividing the synthesis do-
main intoR vertical stripg(Dr) 16 1 r COrresponding to the textons
(hr) 16 r6 r @ssociated witf(t %11)16 r6 R- The noise mixing is then

obtained by samplingf'Pr and adding a linear interpolation of the

ton noise and the original texture image. Surface noise permits to mean values af andv.

apply a noise texture on a surface without texture coordinates. This

is of special interest for surfaces acquired by 3D scanner which
are hard to parameterize due to irregularities (outlier, holes,...)
like the example on the right (mesh obtained from a fraction of the
Tanagra point set of [DAL11]).

Such results of noise mixing are shown in Figure 5 viRth 21
kernel functions. One can see that this method gives a convincing
progressive mixing of the texturasandv and still keeps all the
bene ts of the texton noise simulation. In the case wheendv
belong to the same texture subclass (like the wood textures of the
rst example), the intermediate texture pieces are likely to appear
plausible samples of this texture subclass. Notice that, even if the

Let us observe that due to the weight varying with the distance t0 texton choices are discretized in space, there is no undesirable dis-
the tangent plane, one needs to use a larger MNI to get a textoncontinuity in the output texture because the kernel functions are

noise visually close to the theoretical Gaussian texture. Figure 4 il-
lustrates surface noise for texton noise where we used a MNI of 60.

7. Noise Mixing

locally blended. This mixing experiment takes prot of the spot
noise exibility and illustrates the interesting possibilities offered
by local variations of the kernel functions.

In this section, we show that texton noise can be used to obtain syn-8- Procedural Evaluation

thetic textures that progressively mix two texture samplesdv.

Since texton noise is a sparse convolution noise with a single ker-

Spatially varying synthesis is an issue of interest for procedural nel having a nite supporf %; %]2, evaluating the noise at a point
noise [LLD11] but has never been achieved in the context of noise y 2 R2 simply requires to simulate the Poisson point process on

by example where noise spectra are more complex.

Following [XFPA14], two exemplars can be mixed by relying

on barycenters of Gaussian texture models for the optimal trans-

port distance. More precisely, for a mixing paramete2 [0;1],

the domainx+[ 5; %]2. To do so, we simply use a standard grid-
based approach [Wor96, LLDDQ9]. Let us recall that it consists in
partitioningR? into grid cells of the forn€y = ak+[0;a)%, k2 Z?,

de ne a pseudo-random number generator PRIfE each cellCy

the barycenter of the ADSN models associated with the kernels by using a seed depending on the coordinaté,cind simulate

tu= pjl—w(u mearfu)) andty = pjl—w(v mearfv)) is the ADSN
model associated with the kerrtel de ned by

tr=(1 r)to+nrty with fg= ——

Once the kerndl; is computed, one can derive the corresponding
texton interpolation coef cients with Algorithm 1. Let us re-
mark that using the same white noise initialization in Algorithm 1

allows to compare the different textons associated with the interpo-

lated models. Our main contribution in noise mixing is to show that

these interpolated models can be embedded in shot noise synthe-

sis with spatially varying textons. For that, we consider a partition

the Poisson process with@y using PRNG. Then, to evaluate the
noise atx one simulates on-the- y the Poisson process on the cells
that intersectsc+[  5; %]2. The cell sizea is generally taken to

be equal tar [LLDDO09, LLC 10]. Sincex+[ &;5]? always in-
tersects 4 grid cells of size this results in evaluating in average

41 r2 = 4MNI points while only MNI points actually contribute to

xin average. Using cells smaller thalimits the number of unused
points but also increases the number of Poisson variate simulations
for the number of points within a cell. A cell size= 0:6r was
found to be a good compromise for our implementation. This ac-
celeration is also valid for the 3D Poisson point process used for
surface noise.

We experimented correlation issues with the linear congruential
generator used in [GLLD12]. Following [Ree13], we used Xorshift
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Figure 5: Noise mixing: We show three examples of progressive texture mixing obtained by spot noise synthesis with varying textons. The
different textons are obtained as optimal transport barycenters between Gaussian texture models. For each example, in the rst row, we shov
ve textons (with respective mixing parameter 0, 0:25, 0:5, 0:75, 1) among the 21 involved in the synthesis result shown in the second
row. Notice that the texture variation appears continuous even if the texton choices are discretized.

RNGs [Mar03] and processed the grid seed with a hash function. as a trade-off between texture detail and memory storage, but for
For the Poisson variate generation, since we only use high inten-some textures with simple small patterns, increasing the texton size
sity Poisson processes, we used the same Gaussian approximatiodoes not improve the noise visual quality (see e.g. the rst column
as [GLLD12]. of Figure 7). Let us stress that the support size does not in uence
the performance of the texton noise evaluation (30 texture fetches

by evaluation points on average) as discussed below.
9. Results

Implementation and reproducibility We provide as supplemen-
tary material: 1) Matlab source codes for texton computation (see
Algorithm 1); 2) an OpenGL implementation for texton noise eval-  Synthesis resultsFigure 7 shows that any input Gaussian tex-
uation (for which we used parts of the implementation of [LD11]); ture can be visually reproduced with a texton noise (see also Fig-
3) all the input textures and texton les used to produce the gures. yres 1, and 4). We compare texton noise with Gabor noise by ex-
ample [GLLD12] and Local Random Phase noise [G$¥] in the
Mean number of impacts Except for Figure 2, all the results are  supplementary material. This comparison shows that texton noise
obtained with a MNI of 30 for 2D texton noise and a MNI of 60 for  allows to synthesize Gaussian textures in the most precise and ef-
surface noise. cient way, while only LRP allows to synthesize more structured
textures. Let us recall that texton noise is by construction limited
Texton support Figure 6 illustrates the in uence of the texton sup- to Gaussian textures (e.g. see the loss of details in the last exam-
port size regarding texton noise quality and spectral approximation. ple of Figure 7). Although let us add that texton noise outputs do
The quality of the noise always increases with the size of the texton, not contain any repetition contrary to most tiling procedures (see
but for some textures the quality improvement is negligible once the the supplementary material for a comparison with the patch-based
texton is large enough. Hence the support of the texton can be seerimage quilting algorithm [EF01]).
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Input Texture Texton noise
r=16 r=232 r=64 r=128 r= 256

Figure 6: In uence of the texton support:The support of the texton is a trade-off between texture detail and memory storage. Left column:
Original image (512 512) and its power spectrum. Subsequent columns: Texton with suppoytcorresponding texton noise, estimated
power spectrum obtained by averaging 10 independent texton noise realizations. Remark that the power spectrum is closer and closer to tt
original one as the support size increases.

641 427 128 128 128 128 256 256 768 512 256 256

Input texture

Gaussian version

4 64 256 256 128 128
64 64 64 6 32 32 64 64

Texton

Texton noise

Figure 7: Synthesis resultsTexton noise enables to reproduce any Gaussian texture. First row: Input texture (with size); Second row:
Gaussian version of the texture (see Section 3.1); Third row: Computed texton (with size); Fourth row: Texton noise.
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Qutput size Texton 64 64 | Texton 256 256 1186822.1073264 . 3,6

1024 1024 204 fps /4.9 ms| 189 fps/5.3 ms [Cha07] QHAINAIS P.: In nitely divisible cascades to model the statistics
HD (1920 1080) | 102 fps/9.8 ms| 98 fps/10.1 ms of natural imageslEEE Trans. Pattern Anal. Mach. Intell. 282 (2007),
4K (3840 2160) | 27 fps/36.9 ms| 26 fps/38.9 ms 2105-2119d0i:10.1109/TPAMI.2007.1113 .7

. . . [CSHDO3] GCoHEN M., SHADE J., HLLER S., DEUSSENO.: Wang
Table 1: Performance of 2D texton noise evaluation (fps stands for * Tjles for image and texture generation. SIGGRAPH '03(New

frame per second and ms for millisecond). York, NY, USA, 2003), SIGGRAPH '03, ACM, pp. 287-294.
URL: http://doi.acm.org/10.1145/1201775.882265 ,
doi:10.1145/1201775.882265 .3

. L . [DAL 11] DIGNE J., AUDFRAY N., LARTIGUE C., MEHDI-SOUZANI
Performance One important feature of texton noise is thatits eval- "~ o0 e 5 v Farman institute 3d point sets - high precision 3d

uation speed does not depend on the texture spectrum complex- gata setsimage Processing On Line(2011).doi:10.5201/ipol.
ity contrary to existing noise by example approaches [GLLD12,  201l.dalmm_ps . 8
GSV 14]. We reproduce in Table 1 the performance of 2D texton [DCwS03] DoRETTOG., CHIUSO A., WU Y., SOATTO S.: Dynamic
noise evaluation run on a Quadro K5000 (1536 Cuda cores). These  textureslnternational Journal of Computer Vision 52 (2003), 91-109.
gures show that texton noise allows for real time evaluation of ~ d0i:10.1023/A:1021669406132 -2
a full HD screen. These performances are two orders of magni- [DMR12] DESOLNEUXA., MOISAN L., RONSIN S.: A compact repre-
tude faster than Gabor noise by example [GLLD12] and one order ~ Sentation of randorﬁcphe;se and Gaussian teXtUgeerdcﬁed”&gé of thle
. . IEEE International Conference on Acoustics, Speech and Signal Pro-
of magnitude faster than LRP noise [GSM]. (these two refer- cessing2012), pp. 1381-1384. 2
ences reported performance for small 12B28 images; extrapola- ]
tion and weighting with the CUDA cores number of used graphics [DMR15] DESOLNEUXA., MOISAN L, RONSIN . A texton for ran-
4s qi ?h fg” ) d ; itude f 1024)249_ p dom phase and Gaussian textures. 2015. 6

cards gives the following order of magnitude for im- ) -

' . EF01] ErFROSA.A., F W. T.: | Iting f -
ages: 2 fps for Gabor noise by example and 20 fps for LRP noise). [EFO1] ROS P PREEMAN mage quilting for texture syn

o A thesis and transfer. IBIGGRAPH '01(New York, NY, USA, 2001),
One can also observe that the texton size in uences only slightly  ACM, pp. 341-346doi:10.1145/383259.383296 -9

the evaluation (texture fetches are presumably slower). [GDS10] GLET G., DISCHLER J.-M., SOLER L.: Procedural descrip-

Regarding texton computation, our Matlab implementation of “;nls of g”iso”o"ic noisy textures by example.Buarographics (Short)
Algorithm 1 runs in 0.5 sec. for an RGB 128128 image and (2010).

; ; : [GGM11] GALERNE B., GOUSSEAUY., MOREL J.-M.: Random phase
in about 5 sec. for a 768 512 image. In comparison, the Gahor textures: Theory and synthesiEEE Trans. Image Process. 2D(2011),

noise by example parameter computation takes about 2 min. for a - 357 _ 767.doi:10.1109/TIP.2010.2052822 2.3
12_8 128 image. Performance for parameter computation of LRP [Gla04] GLANVILLE R.: Texture bombing. IGPU GemsFernando R.,
noise has not been reported. (Ed.). Addison-Wesley, 2004, pp. 323-338. 3
[GLLD12] GALERNE B., LAGAE A., LEFEBVRE S., DRETTAKIS G.:
10. Conclusion Gabor noise by exampleACM Trans. Graph. 314 (jul 2012), 73:1-
73:9.d0i:10.1145/2185520.2185569 .2,3,6,8,9,11

This paper introduced a new noise model that allows for the repro- [GLM14] GALERNE B., LECLAIRE A., MOISAN L.: A texton for fast
duction of any Gaussian texture image. Since the texton summa-" and exible Gaussian texture synthesis Aroceedings of the 22nd Euro-
rizes the whole content of an image (or a prescribed power spec- pean Signal Processing Conference (EUSIPCZD)L4), pp. 1686—1690.
trum), texton noise produces visually good results with only 30 tex- 2,4, 5,6

ture fetches per fragment in average. This makes texton noise the[GSV 14] GILET G., SAUVAGE B., VANHOEY K., DISCHLER J.-M.,
most ef cient technique for noise by example, with a gain of one or GHAZANFARPOUR D.: Local random-phase noise for procedural tex-
two orders of magnitude in comparison with existing algorithms. In turing. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH ASIA

o o . - . 2014) 33 6 (nov 2014), 195:1-195:11d0i:10.1145/2661229.
addition, texton noise is easily Iltered on-the-y by simply Itering 2661249 . 2,3, 6,9, 11

the texton texture with standard MIP-mapping and anisotropic |- GSX00] GuO B., SHUM H., XU Y.: Chaos mosaic: Fast and memory
tering while existing algorithms use involved frequency attenuation  ef cient texture synthesisMicrosoft research paper MSR-TR-2000-32
procedures with non-negligible additional cost. We also demon-  (2000). 3
strated that texton noise allows for noise mixing, which can PO- [GzD08] GOLDBERG A., ZWICKER M., DURAND F.: Anisotropic
tentially be of interest for texture artists. noise. INSIGGRAPH '08(New York, NY, USA, 2008), ACM, pp. 1-
W . ising fut K ditecti ding text 8. d0i:10.1145/1399504.1360653 .6
. € see wo _promlsmg uture wor . rections "?gar .Ing exton [Kin93] KINGMAN J. F. C.:Poisson Processe©®xford Studies in Prob-
noise. The rstis to expand texton noise to 3D solid noise as well ability. Oxford University Press, 1993. 12
as dynamic tgxtgrgs. The second mo.re Challepglng. dlrgct!on IS to [LD11] LAGAE A., DRETTAKIS G.: Filtering solid Gabor noiseACM
tackle the main limitation of texton noise (that is, being limited to Transactions on Graphics (Proceedings of ACM SIGGRAPH 2011) 30
Gaussian textures) by proposing new similar models that enable to 4 (July 2011), 51:1-51:6d0i:10.1145/1964921.1964946 .9
generate more structured textures as done by local random phas@ ewg4] Lewis J.-P.: Texture synthesis for digital painting. G-
noise [GSV 14]. GRAPH '84(New York, NY, USA, 1984), ACM, pp. 245-252doi:
10.1145/800031.808605 . 2,4
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Appendix A: Proof of Proposition 3

As one can see from its expression (Glf(y) is a sum of the
values of a function over a 3D Poisson point process. Thus
its mean and variance are easily computed thanks to Campbell
theorem [Kin93]. Using the (orthonormal) change of variable

(tzz)=(hy xulishy xuwlishy xui),
z
E(f5(y) = | 2y x;uii)Th((hy xuishy  xuli))dx
Z Z rZ
=1 - h(2)dz= 1 >

R3(1

(1

Zit)* dt h(2)dz
R R2

and similarly,
Var( f%(y))
Z

2
= | (1 dx

2y x;ubii)Th((hy  xufishy  xudi))
P VA

dt
RZ

3
ZR

= | h@dz=11  n(2dz

R 3 R
Finally a point x; corresponds to a non-zero term
(1 Zjhy x;uwi) hthy  x;ulishy X|,Uyl)) if it belongs to
the cube of side length centery and aX|s(uy, Uy, u>3') This set has

volumer? and thus the MNI ig r3.

1 )"
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