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ABSTRACT
Summary: We report a novel, proof-of-concept, computa-
tional method that models a type of brain cancer (glioma)
only by using the topological properties of its cells in the tis-
sue image. From low-magnification (80×) tissue images of
384 × 384 pixels, we construct the graphs of the cells based
on the locations of the cells within the images. We generate
such cell graphs of 1000–3000 cells (nodes) with 2000–10 000
links, each of which is calculated as a decaying exponential
function of the Euclidean distance between every pair of cells
in accordance with the Waxman model. At the cellular level,
we compute the graph metrics of the cell graphs, including the
degree, clustering coefficient, eccentricity and closeness for
each cell. Working with a total of 285 tissue samples surgic-
ally removed from 12 different patients, we demonstrate that
the self-organizing clusters of cancerous cells exhibit distinct-
ive graph metrics that distinguish them from the healthy cells
and the unhealthy inflamed cells at the cellular level with an
accuracy of at least 85%. At the tissue level, we accomplish
correct tissue classifications of cancerous, healthy and non-
neoplastic inflamed tissue samples with an accuracy of 100%
by requiring correct classification for the majority of the cells
within the tissue sample.
Contact: gunduz@cs.rpi.edu

1 INTRODUCTION
Numerous mathematical models of cancer have been
developed till date. A large set of these models success-
fully simulates the time evolution of cancerous cells in a
tumor by statistically modeling their cell behavior (Anderson
and Chaplain, 1998; Dormann and Deutsch, 2003; Drasdo
et al., 1995; Qi et al., 1993; Sherratt and Chaplain, 2001;
Turner and Sherratt, 2002). Such statistical models typically
make use of Monte-Carlo algorithms (Drasdo et al., 1995;
Turner and Sherratt, 2002), coupled continuous differen-
tial equations and probability-generating functions (Anderson
and Chaplain, 1998; Sherratt and Chaplain, 2001) and cellu-
lar automata (Dormann and Deutsch, 2003; Qi et al., 1993).
Despite their impressive ability to simulate cancer invasion,
the computational complexity of the reported models impedes
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their large-scale use. Furthermore, the use of such cellular-
level models has been limited to the analysis of cancer growth;
their use has not been intended for the classification of a cancer
tumor.

Among a smaller set of the remaining cellular-level mod-
els are those that are developed for the detection of cancer
(Bockholt et al., 2003; Stotzka and Walla, 2000, http://fuzzy.
fzk.de/~rainer/new/work/node5.html, Tasoulis et al., 2003).
These models typically apply texture analysis and neural
networks on the tissue images for classification. However,
they either require high-magnification images to resolve
the details of a cancerous cell such as the shape and
size of its nucleus (Stotzka and Walla, 2000, http://fuzzy.
fzk.de/~rainer/new/work/node5.html, Tasoulis et al., 2003),
or they require a macroscopic textural change in the tissue
image such as the fluorescence of the cancer tissue under
optical excitation (Bockholt et al., 2003). Additionally,
there are other mathematical models that rely on com-
pletely different phenomena such as the gene expression
(Ben-Dor et al., 2000; Furey et al., 2000; Golub et al.,
1999; Guyon et al., 2002; Rifkin et al., 2003) and mass
spectroscopy (Wu et al., 2003) to detect a cancer tumor.
These approaches, though, require high-technology hard-
ware, such as micro-arrays (Guyon et al., 2002; Rifkin
et al., 2003) or mass spectrometers (MALDI, http://info.med.
yale.edu/wmkeck/prochem/procmald.htm).

This paper reports a novel, proof-of-concept, computational
model that relies solely on the topological features of cancer-
ous cells in a tumor. Despite their complex dynamic nature,
the self-organizing clusters of cancerous cells exhibit distinct-
ive graph properties that distinguish the cancerous tissue (as
in Fig. 1a) from non-cancerous tissues; e.g. from a healthy
tissue (as in Fig. 1b) or an inflamed tissue (as in Fig. 1c). It is
difficult to distinguish a cancerous tissue sample as in Figure
1a visually from an inflamed one as in Figure 1c, as both of the
images are taken with a low magnification of 80×. However,
the graph metrics computed from the cell graphs of these two
figures are distinguished with a high accuracy, despite their
visual resemblance.

In this paper, we demonstrate that it is possible to construct
a graph of the cells based on the location of the cells in
the low-magnification image of a tissue sample surgically
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(a) (b)

(c)

Fig. 1. Microscopic images of tissue samples surgically removed
from human brain: (a) a brain tumor sample (i.e. glioma), (b) a
healthy tissue sample and (c) a tissue sample of an inflammatory
process.

removed from a human patient. We show that such cell graphs
feature distinguishing graph metrics that we compute from the
generated cell graphs. This approach differs from the previ-
ously demonstrated models that also use tissue images such
that the details of a cancerous cell does not need to be resolved,
and a specific textural change in the image is not required. To
the best of our knowledge, this paper is the first proposal for
the use of cell graphs to extract the generic organizational
principles of cancerous cells from the tissue images for the
purpose of classifying the cancer tumor.

Real-world graphs (Watts and Strogatz, 1998) of varying
types and scales have also been extensively investigated in
man-made (Albert et al., 1999; Broder et al., 2000; Faloutsos
et al., 1999), social (Liljeros et al., 2001; Milgram, 1967;
Newman, 2001; Wasserman and Faust, 1994) and biological
systems (Jeong et al., 2000; Jeong et al., 2001; Wagner and
Fell, 2001; Wuchty et al., 2003). In spite of their different
domains, such self-organizing structures unexpectedly exhibit
common classes of descriptive topological features. These
graph properties are quantified with the definition of graph
metrics. The graph metrics computed for different graphs
distinguish one graph from the other and, thus, allow for
their classification under a single framework. The biological
graphs that have been studied include the neural network
of the worm Caenorhabditis elegans with 282 nodes (neur-
ons) and 2461 links (neural connections) (Watts and Strogatz,
1998), the protein–protein interaction graph of the bacteria

Saccharomyces cerevisiae with 1870 nodes (proteins) and
2240 links (direct physical interactions) (Jeong et al., 2001),
and metabolic graphs of 43 different organisms with hundreds
of nodes (substrates) and thousands of links (actual metabolic
reactions) (Jeong et al., 2000).

In this paper, we present cell graphs of a type of brain cancer
called glioma with 1000–3000 nodes (cells) and 2000–10 000
links (Euclidean distance between cells) generated with the
Waxman model (Waxman, 1988) from the tissue images of
384 × 384 pixels. There is no direct biological link between
the cells in a human tissue image, as opposed to the previously
studied biological graphs where the ‘link’ such as a neural
connection is obvious from the structure of the graph. The only
information available from a low magnification tissue image
is the distance between the cells. In this work to make use
of this spatial information, we apply the Euclidean distance
method to define a link between every pair of nodes (cells),
as was demonstrated in Waxman (1988).

Using the graph metrics defined for each node of the cell
graph, i.e. local metrics, the cancerous cell clusters can be
detected at the cellular level in principle. Such an ability to
classify cell clusters in a tissue makes it possible to classify
the different phases of the cancer, depending on the distribu-
tion and density of cancerous cell clusters within the tissue.
Moreover, this allows for quantitatively examining the dynam-
ics and progress of the cancer simply by computing the
corresponding metrics at different phases. With the extraction
of such graph metrics from the real tissue images, artificial
cancer graphs can also potentially be generated synthetically
using the same graph metrics. Such synthetic graphs can fur-
ther be useful to investigate the biological behavior of the
cancer and its progress over time.

The remaining of this paper is organized as follows. In
Section 2, we describe our methodology to generate a cell
graph from a tissue image. We explain the definitions of the
metrics that quantify the topological properties of the gen-
erated cell graphs in Section 3. In Section 4, we present
experimental results. We provide a summary of our work and
a future perspective for our research in Section 5.

2 METHODOLOGY
Our technique relies on the use of distinct properties of
‘cluster’ formation in cancer cells: how cancer cells are
stacked and distributed in the tissue. We generate cell graphs
from the tissue images according to the location of the cells
within the tissue, and represent the tissue as a graph (mesh) of
nodes (cell). We utilize the resulting cell graphs to extract use-
ful topological information and identify their distinguishing
graph properties.

A cell graph is obtained after the following steps, which are
also visualized on a sample tissue image in Figure 2:

(1) The first step is to learn how to distinguish cells
from their background by using k-means algorithm
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(d) (e) (f)

Fig. 2. The steps for extracting a cell graph from a cancerous tissue sample are as follows: (a) start with the original tissue image; (b) obtain
the class information for each pixel (here the class information is presented with the black pixels, i.e. binary 1, corresponding to the ‘cell’
class and with the white pixels, i.e. binary 0, corresponding to the ‘background’ class); (c) apply a grid on the processed image of the white
and black pixels with a grid size of four pixels; (d) average the pixel values of 1 and 0 for each grid entry to compute the probability of being
a cell (here different gray levels indicate the probability values); (e) apply a threshold to the probability of being a cell for each grid entry with
a threshold value of 0.25, and obtain node information for each grid entry; and (f) determine the links between the nodes using the Waxman
model with α = 1, β = 0.01 to generate a cell graph.

(Hartigan and Wong, 1979) under a human expert-
ise. To do so, we cluster the pixels of training images
according to their color information, and learn the
clustering vectors. Subsequently, the pathology expert
assigns these clustering vectors to be either ‘cell’ or
‘background’ class. These clustering vectors and their
corresponding classes (‘cell’ or ‘background’) are also
used later for the images in the test sets. Figure 2b
illustrates the processed image with the black and the
white pixels that correspond to ‘cell’ and ‘background’
classes, respectively, after processing the original tis-
sue image shown in Figure 2a as described. Since we
observe that a k-value >13 does not introduce a signi-
ficant change in the resulting processed images due to
the limited resolution of our original tissue images, we
use a k-value of 13 for all the samples.

(2) The next step is to translate the class information
obtained in Step 1 to node information of a cell graph.
For this, we put a grid on the image with black and
white pixels of Figure 2b, and compute the probab-
ility of being a cell for each grid entry, as illustrated
in Figure 2c. Assigning 1 to the black pixels of ‘cell’
classes and 0 to the white pixels of ‘background’
classes, we compute the probability of being a cell for
every grid entry as the average of the values of the
pixels located in the particular grid entry of interest.
Subsequently, we compare the probability of every grid
entry against a threshold value. We consider a grid entry
with a probability greater than that of the threshold to
be a node of the graph (Fig. 2c–e). At the end of this
step, the spatial information of the cells is translated to
their locations in the two-dimensional grid.
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This step can also be considered as downsampling
of an image. We have two control parameters in this
step: (i) the size of the grid and (ii) the threshold value.
In our experiments, we use the grid size of four and a
threshold value of 0.25. The grid size determines the
downsampling rate, i.e. the resolution of the processed
image. Depending on the grid size, a node can rep-
resent a single cell, a part of a cell or bunch of cells.
For the magnification we use in our imaging system to
take tissue sample images, a grid size of four matches
the size of a typical cell. Increasing the threshold value
toward 1 produces sparser graphs, whereas decreasing
the threshold value toward 0 makes it sensitive to the
noise that arises from misassignment of black pixels
in Step 1. Thus, we choose a reasonable threshold
value of 0.25 that conveniently eliminates the noise
while yielding dense enough graphs. This approach
does not require to resolve the details of a cell to invest-
igate the shape of the cell or its nucleus. Therefore, it
does not require high magnification unlike the previous
approaches aforementioned in the Introduction section.

(3) In the last step, we set the links between the nodes
found in Step 2 to generate a graph (Fig. 2f). We make
use of the Waxman model (Waxman, 1988), where the
probability of being a link between any two nodes expo-
nentially decays with the Euclidean distance between
them. The distance between the nodes (hence, the link
probability) describes the prevalence of cancer, quanti-
fying the possibility for these nodes to be infected by
each other. For a given set of two nodes u and v, the
link probability, P(u, v) is defined as:

P(u, v) = α · e−d(u,v)/(β·L), (1)

where d(u, v) is the Euclidean distance, and L is the
largest possible Euclidean distance between two nodes
of the grid.

The Waxman model parameters of α and β must be
chosen between 0 and 1. These parameters affect the
number of the links and the connectivity of the graphs.
Selecting smaller values of these parameters results in a
smaller number of links. In this case, it is not possible to
extract the organizational characteristics of the nodes as
there are only a few links. On the other hand, selecting
larger values for these parameters produces very dense
graphs, with almost every node being connected to each
other. In this case, it is not possible to distinguish the
topological properties of the nodes from the cell graphs
as they are all almost connected. In our experiments, we
choose α to be unity, the maximum value it can take,
while we choose β to be 0.01 to compensate for the
effect of α. Such a choice of α–β combination leads to
a dense enough cell graph that bears useful topological
information.

After obtaining the cell graph, we define cell-graph metrics
for each node to quantify their cell-network characteristics
including cell degree, clustering coefficient and eccentricity.
These graph metrics give distinguishing characteristics for
the cell graphs of different types. They can also be used as the
feature set for the classification of the nodes of the cell graph.
In classification, we use artificial neural networks (Bishop,
1995; Jain et al., 1996), where the inputs are the graph metrics
and the output is whether a given node of a graph is cancerous,
healthy, or inflamed. The summary of our methodology is
presented in Figure 3.

3 METRICS
The metrics of a graph reflect the topological properties of the
graph, providing information about its organizational charac-
teristics. The metrics defined in this section are commonly
used in analyzing graphs, e.g. for the Internet and C.elegance
worm. These metrics are defined for each node; hence, they
are local. By using statistics, these local metrics can also
provide global information for the graph.

(1) The degree of a node is defined as the number of its
links. The degree of a node is high if the node represents
a cancer cell. However, a high degree is not always
an indicator for cancer, because the degree of a node
representing an inflamed cell is also high.

(2) The clustering coefficient reflects the connectiv-
ity information in the neighborhood of a node
(Dorogovtsev and Mendes, 2002). The clustering coef-
ficient of a particular node quantifies the connectivity
between every pair of two nodes that are both connected
to this node. Formally, a clustering coefficient Ci of a
node i is defined as

Ci = 2 · Ei

k · (k − 1)
, (2)

where k is the number of neighbors of node i and Ei is
the existing connections between its neighbors.

(3) The last three metrics are related to the path lengths
between the nodes. We compute the path length as
the shortest path length between two nodes, taking the
weight of each link as a unit length.

Eccentricity of a node i is defined as the maximum
of the shortest path lengths between the node i and
other nodes. We define a special case of the eccentricity,
which we call eccentricity 90: it is the minimum of
the shortest path lengths for the node i that requires
to reach at least 90% of the reachable nodes around
the node i. Our last metric is the closeness of the node i

that is defined as the average of the shortest path lengths
between the node i and all the reachable nodes around
it. Although these metrics look very similar to each
other, they actually provide different information in the
classification.

i148

 at SC
D

 U
niversitÃ

©
 Paris 5 on June 25, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


The cell graphs of cancer

Tissue images

Image processing
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Fig. 3. A schematic presentation of our methodology. The image is taken from a tissue sample surgically removed from a patient. Subsequent
image processing enables the cells to be distinguished from their background in the image. After a cell graph is generated, the metrics are
computed. By classifying the computed metrics, different types of cells are categorized into the classes of cancerous, healthy and inflamed cells.

These metrics reflect the centrality of the node. The
smaller value of these metrics indicate that the node is
close to the center of the cell graph, and hence, to the
center of the cancer invasion.

4 EXPERIMENTS
The experiments are conducted on the microscopic images
of tissue samples surgically removed from different human
brains. Each image is taken with a magnification of 80×
and consists of 384 × 384 pixels. The data set consists of
a total of 285 images taken from 12 different patients. The
data set includes a mixture of cancerous (glioma), inflamed
and healthy tissue samples. For the training set, we use only 68
images from the first six patients. For the patient-dependent
test set, we use the remaining 82 images taken from the same
six patients. For the patient independent test set, we use 135
images taken from the remaining six patients; these images
are not used in the training set at all.

In our experiments, we compute the graph metrics of degree,
clustering coefficient, eccentricity, eccentricity 90 and close-
ness for every node in all the 285 cell graphs, each of which
is generated from one of the 285 tissue images. We train our
system by using multilayer perceptrons with five hidden units.
We choose the number of hidden units to be five because a
larger value for the hidden units does not change the perform-
ance of the classifiers significantly. In Table 1, we present

Table 1. The average accuracy values and their SDs of cell graph node
classification for 10 different runs

Training set Patient-dependent
set

Patient-independent
set

Overall 93.58(±1.44) 85.74(±0.30) 94.04(±1.59)
Cancerous 86.34(±0.95) 86.75(±3.14) 88.93(±0.56)
Healthy 98.19(±2.82) 98.39(±4.24) 98.76(±3.19)
Inflamed 86.19(±0.81) 83.05(±0.82) 84.05(±0.61)

the average accuracy values and their SDs on the training,
patient-dependent and patient-independent test sets, averaged
over the nodes of the graphs and, in turn, averaged over 10
different runs. In addition to the overall accuracy values, we
report the accuracy values for each class type. We demonstrate
that it is possible to detect the cancerous cells with an accuracy
of at least 85% from the healthy cells with sparse cell graphs,
and from the inflamed cells with dense cell graphs similar to
the cancerous cell graphs.

In Table 1, we present the accuracy value that is the average
of the accuracy values computed for every cell in the tissue
image. Instead of determining whether a cell is cancerous
on the average in the tissue, it is also possible to determine
whether the tissue itself is cancerous by examining the cell
classification results in the tissue. To measure the accuracy
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Table 2. The average accuracy values and their SDs of tissue classification for 10 different runs (our approach classifies all the tissue images correctly)

Training set Patient-dependent test set Patient-independent test set
N = 75 N = 50 N = 75 N = 50 N = 75 N = 50

Overall 96.8(±0.6) 100.0(±0.0) 86.9(±0.9) 100.0(±0.0) 94.9(±0.6) 100.0(±0.0)
Cancerous 93.7(±2.2) 100.0(±0.0) 85.5(±1.0) 100.0(±0.0) 90.3(±0.9) 100.0(±0.0)
Healthy 100.0(±0.0) 100.0(±0.0) 100.0(±0.0) 100.0(±0.0) 100.0(±0.0) 100.0(±0.0)
Inflamed 87.5(±0.0) 100.0(±0.0) 87.1(±1.3) 100.0(±0.0) 75.0(±8.8) 100.0(±0.0)

of cancer classification at the tissue level rather than at the
cellular level, we examine the percentage of the cells that are
classified with the correct class. If this percentage is larger
than an assumed N%, we consider that the tissue is classi-
fied correctly, or else we consider that it is misclassified. In
Table 2, we present the average and SD of accuracies calcu-
lated for the whole tissue images with an N of 50 and 75%.
From these results, we observe that classification at the tissue
level is more successful than classification at the cellular level.
For example, in the case of N = 50 when the majority of the
cells are correctly classified, the tissue classification is 100%
correct.

5 CONCLUSION
This work introduces a novel approach for computational
modeling of cancer based on graph theory. In this work, we
present how to construct cell graphs from tissue images, how
to quantify the organizational characteristics of the generated
cell graphs, and how to use these characteristics for the cancer
detection.

We use 285 images of brain tissue samples surgically
removed from 12 patients. We demonstrate that the metrics of
the cancerous cells are distinguished from those of the other
types of cells (healthy cells and unhealthy inflamed cells) at
the cellular level with an accuracy of at least 85%. To validate
our approach, we use both sparse cell graphs such as those
of the healthy tissues, and dense cell graphs such as those of
the inflamed tissues in our data set, and we successfully dis-
tinguish the dense cell graphs of the cancerous tissues from
both the healthy tissues and the inflamed tissues. Furthermore,
requiring the majority of the cells (>50% of the cells) to be
classified correctly in a given tissue image, we accomplish to
classify all of the tissue images correctly with an accuracy of
100%.

One of the future research directions is to examine the
global metrics computed for these cell graphs and to use
these metrics as a new feature set of the tissue classific-
ation. Moreover, another research opportunity of interest
is to generate synthetic cancer cell graphs using both
local and global metrics and to simulate the behavior of
cancer.
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