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ABSTRACT

Computer aided diagnosis of breast cancers often relies on
automatic image analysis of histopathology images. The au-
tomatic region segmentation in breast cancer is challenging
due to: i) large regional variations, and ii) high computational
costs of pixel-wise segmentation. Deep convolutional neural
network (CNN) is proven to be an effective method for im-
age recognition and classification. However, it is often com-
putationally expensive. In this paper, we propose to apply a
fast scanning deep convolutional neural network (fCNN) to
pixel-wise region segmentation. The fCNN removes the re-
dundant computations in the original CNN without sacrificing
its performance. In our experiment it takes only 2.3 seconds
to segment an image with size 1000× 1000. The comparison
experiments show that the proposed system outperforms both
the LBP feature-based and texton-based pixel-wise methods.

1. INTRODUCTION

Breast cancer is one of the leading cancers worldwide. Mean-
while, it is the principle cause of death among women who
are diagnosed cancers [1]. Pathological analysis plays a
critical role in diagnosis, prognosis, and therapy planning for
breast cancer. However, manual inspection of the histopathol-
ogy images is not only time consuming, but also subjective.
Computer-aided diagnosis (CAD) systems are promising
technology for ensuring a standardized, objective pathology
specimen analysis. In most CAD systems, region of interest
(ROI) delineation is a prerequisite step [2].

ROI segmentation in pathological images has been widely
studied. In [3], glandular components and their geometri-
cal layout information are exploited for gland segmentation.
ROI segmentation methods based on color-texture feature us-
ing expectation maximization (EM) algorithm are proposed in
[4, 5]. In [6], an efficient GPU implementation of the method
in [4] is presented. Foran et al. [7] propose to segment out
the tumor region using texton features and logistic boosting.
These existing methods mostly rely on hand-crafted features.
The recent development of deep learning methods has shown
that in many cases, handcrafted features are outperformed by
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the features learned from a large data set for particular tasks
[8, 9, 10]. For some applications, it even achieves human-
level performance [11].

In this paper, we propose a ROI segmentation scheme
using a fast scanning deep convolutional neural network
(fCNN) [12]. In our system, we adopt a pixel-wise classifi-
cation method. An optimized forward-propagation network
is utilized for classification. The raw pixel values are con-
sidered as the input. The features are learned by the network
in a supervised manner. A common challenge in using CNN
for pixel-wise segmentaiton is its efficiency. In the proposed
system, the computational burden is significantly relieved by
avoiding redundant computations in the convolutional and
max-pooling layers. For our dataset, it takes only 2.3 seconds
to segment an image with resolution 1000× 1000.

2. METHOD

2.1. CNN Structure

An overview of the structure of the training network is shown
in Fig.1. To perform pixel-wise classification, we take a small
patch centered on the pixel as the input of the classifier. A
convolutional layer with a kernel of size 5 × 5 is used to de-
tect the low level features (i.e., edges). Following the first
convolutional layer a max-pooling layer with scale 2 is de-
ployed to down-sampling the data. Next, a second convo-
lutional layer followed by a max-pooling layer is deployed
for detecting higher level image structures. The rest of the
network consist of two fully connected layers with one hav-
ing 64 neurons and the other having 2 neurons as the network
output. In all the convolutional layers rectifier function [13] is
used as the activation function. In the fully connected layers,
dropout probability is set to 0.5 to prevent over fitting [14].
The convolutional layers and the max-pooling layers function
as the feature extractors. The fully connected layers collec-
tively behave as a classifier. We choose such structure because
the computational cost in pixel-wise segmentation framework
needs to be controlled carefully. The selected structure is
moderately complex such that it provides sufficient classifica-
tion performance yet introduces moderate computational cost.
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Fig. 1. A deep neural network with 7 layers. The input of the network is a 28× 28 patch centered on the pixel to be classified.
Besides the input layer, the network consists of two convolution layers, two max pooling layers, and two fully connected layers.

2.2. Fast Scanning CNN

Although the network model we choose has lower complex-
ity than the model in AlexNet [14], it takes almost 1 minute to
scan through an image of size 400×400 that contains 160,000
patches. Actually there is significant redundancy in the com-
putation of the convolutional layers and the max-pooling lay-
ers when the network is used for a sliding window based seg-
mentation task. The repeated convolutional computations and
max-pooling operations reside in the overlapping region of
one sliding window and its successive windows.

The strategy to avoid redundancy is to process the entire
image directly. For example, the redundancy in one convo-
lutional layer can be removed by applying the convolutional
kernel to the entire image or the output of previous layers. The
obtained feature map is called extended feature map. How-
ever, directly applying max-pooling to the entire extended
feature map will lead to loss of information after the down-
sampling. This problem is depicted in Fig.2. An extended
feature map is shown on the left hand side. A max-pooling
output by applying a 2 × 2 max-pooling kernel to the entire
extended feature map is shown on the right hand side. The
color boxes correspond to sliding windows in the original im-
age. The same color denotes the same sliding window. As
one can tell that in the max-pooling output, the information
in the green box is lost, i.e., no pixels in the maxpooling out-
put are generated from the green box in the extended map.
In general, all the windows with their upper left most pixels
located in the coordinates containing even indexes are lost in
this direct max-pooling approach. This loss of information
aggregates in the successive max-pooling layers in the CNN.

To preserve all the necessary information for each slid-
ing window without redundancy, the max-pooling layer needs
to be rearranged. The rearranged max-pooling layer con-
sists of a set of fragments. Each fragment contains max-
pooling results corresponding to a set of sliding windows.
Assume the size of an input extended feature map F l

ext is
dlext,v × dlext,h at layer l and the max-pooling kernel size
is k such that mod(dlext,v, k)= 0 and mod(dlext,h, k)= 0.
The output of the max-pooling layer contains k2 fragments.
Each fragment is obtained as a result of max-pooling opera-
tions starting with k2 different locations (pixels) in the upper
left corner of F l

ext. These locations can be represented by

Fig. 2. A demonstration of the problem of loss of information
in max-pooling layer when the downsampling is applied to
the entire extended feature map directly. An extended feature
map is shown on the left hand side. The max-pooling output
is shown on the right hand side. The color boxes correspond
to sliding windows in the original image. The same color
indicates the same sliding window. As one can observe that
in this approach, the information of the green box is lost after
the max-pooling.

a set of 2D offsets defined by {O(v, h) = {0, 1, · · · , k −
1}

⊙
{0, 1, · · · , k − 1}}, where

⊙
denotes Cartesian prod-

uct of location indices. These offsets are with respect to the
upper left most pixel of F l

ext. For k = 2, the offsets are
O(v, h) = {(0, 0), (0, 1), (1, 0), (1, 1)}, and the correspond-
ing starting locations are marked out in the upper left corner
in Fig.3(a) (the coordinates start with 1). A pixel at (i, j) in a
fragment corresponding to the offset O(v, h) is the maximum
value of the pixels {i′, j′} in F l

ext. The correspondence can
be calculated by:

(i− 1)k + 1 +O(v)≤ i′ ≤ (i− 1)k +O(v) + k, (1)
(j − 1)k + 1 +O(h)≤ j′ ≤ (j − 1)k +O(h) + k, (2)

where O(•) = {0, 1} for k = 2. The size of a fragment
(fmp,v, fmp,h) depends on its offset and can be calculated by:

fmp,v = floor[
dlext,v −O(v)

k
], (3)

fmp,h = floor[
dlext,h −O(h)

k
]. (4)

An example of a pair of convolution-max-pooling layers is
shown in Fig.3. Fig.3(a) is the extended feature map F l

ext.
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(a) (b) (c) (d) (e)
Fig. 3. An illustration of the structure of max-pooling layer in fCNN. A 2 × 2 max-pooling kernel is used for illustration
purpose. (a) The 12 × 12 extended feature map computed by the previous convolutional layer. Note that this extended feature
map contains all the information of the entire input map rather than just one sliding window. The color square boxes correspond
to 5 sliding windows selected for this illustration; (b) A fragment that contains information of all the sliding windows whose
first pixels locate in odd coordinates in (a) (numbering starting with 1). All the locations are marked with red triangle; (c)-(e)
Each fragment contains all the information of the sliding windows starting with the locations marked by green circles, blue
diamonds, and orange stars, respectively.

The bold boxes in Fig.3(b)-(e) are fragments obtained by the
proposed max-pooling operation based on a 2 × 2 kernel. In
Fig.3(a), the markers indicate locations of the pixels. For ex-
ample, all the pixels with coordinates {(i, j)‖ mod(i,2)=1,
mod(j,2)=1}, where i indexes the rows and j for the columns,
are considered as red triangle pixels. Similarly all pixels with
coordinates { (i, j)‖mod(i,2)=1, mod(j,2)=0} are considered
as green circle pixels. To avoid information loss in max-
pooling, the output are stored in different fragments depend-
ing on the location of the first pixel of the sliding window.
For the sliding windows starting with red triangle pixels, the
output is in the fragment shown in Fig.3(b). For the windows
starting with green circle pixels, the output is in Fig.3(c). The
windows corresponding to blue diamond and orange star pix-
els are in Fig.3(d) and (e). Two sample windows are shown
in each fragment. They correspond to the eight sliding win-
dows starting with the marked pixels in Fig.3(a). The size
of the fragment varies because of the floor(·) operation. All
fragments except for the one with (0, 0) offset tend to ignore
some outermost rows and columns. This does not affect the
performance because if the maximum value appears in these
locations they are included in the fragment with (0, 0) offset.

The spatial relationships described above are determinis-
tic for a pair of extended map and its following max-pooling
layer. Such deterministic property ensures that a stacked fast
scanning implementation can generate the same result as the
original CNN used in sliding window framework.

3. EXPERIMENTS
3.1. Data

We conducted experiment with 92 images cropped from 20
patients in The Cancer Genome Atlas (TCGA) breast cancer
data set. 75 are used for training and 17 are used for testing.
Each image patch has the size of 1000× 1000. For each pixel
used for training, four gray scale patches at different scales
(i.e., 22× 22, 28× 28, and 40× 40, and 48× 48) are cropped
and resized to the size 28 × 28 to increase the robustness.
In total about a half million training samples are generated.

A CNN with the architecture shown in Fig.1 is trained and
converted into the fast scanning structure for testing. We con-
ducted the experiment on a workstation with Xeon E5-1650
3.5GHz processor and 128 GB memory.

3.2. Experimental Results

The proposed framework is compared against three texture
classification methods, including raw pixel patch with large
scale support vector machine (RPLSVM) [15], local binary
pattern feature with large scale SVM (LBPLSVM) ,and texton
histogram with logistic booting (THLB) [7]. In RPLSVM,
patches of size 28 × 28 are cropped. In LBPLSVM, LBP
feature of a 3 × 3 neighborhood is calculated. In the above
two methods, about half million sample are used for training.
In the experiment with THLB, 32 textons are generated by
applying K-means clustering on the output of 38 root filter
set (RFS) filters of size 5. More than a half million training
samples are used for training over 20 epoches. The sliding
window size of all the experiments is set to 28.

We evaluate the accuracy, efficiency, and scalability of the
proposed method. In the accuracy evaluation, we compare the
methods both qualitatively and quantitatively. In Fig.4, the
comparison of one randomly selected images is displayed. It
can be seen that due to the intra-class variation, RPLSVM,
LBPLSVM and THLB cannot produce correct ROI segmen-
tation. Our method is robust to such variations. In quanti-
tative comparison the performance is measured by precision
P = TP

TP+FP , recall R = TP
TP+FN and F1 = 2PR

P+R score,
where TP is true positive, FP denotes false positive, and
FN represents false negative. The comparison is shown in
Table 1. Our method achieves an average F1 = 0.85. A
box plot of F1 score is shown in Fig.5(a). It can be seen that
the three methods are sensitive to the intra-class variations
present in different images. Ours is consistently robust for
various testing images.

To show the excellent efficiency and scalability of fCNN,
we conducted experiments with the original implementation
of CNN and the proposed method using images with different
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(a) (b) (c) (d) (e) (f)
Fig. 4. The qualitative comparisons of several automatic ROI (epithelial regions inclosed by green contours in (b)) segmentation
results. (a) Original images; (b) The ground truth annotation; (c) RPLSVM; (d) LBPLSVM; (e) THLB; (f) fCNN.

Table 1. The quantitative comparison. Mean and variance of
the precision, recall, and F1 score are evaluated.

Pavg Ravg F1avg Pvar Rvar F1var
RPLSVM 0.60 0.47 0.52 0.03 0.04 0.04
LBPLSVM 0.62 0.83 0.70 0.02 0.03 0.023
THLB 0.74 0.81 0.75 0.04 0.05 0.03
fCNN 0.91 0.82 0.85 0.015 0.02 0.01
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Fig. 5. (a): The box plot of F1 score of different automatic
ROI segmentation methods. (b) The evaluation of scalability
of standard CNN and fCNN.

sizes. A CNN with the same parameter is implemented using
C++ while the fCNN is implemented in MATLAB. The time
cost along increase of image size is shown in Fig.5(b). It can
be observed that fCNN is at least 20X faster than the original
CNN. In addition, as we can see in Fig.5(b), fCNN shows
much better scalability as the size of images increases.

4. CONCLUSION

In this paper, we proposed a robust, efficient and scalable
method based on fast scanning deep neural network for re-
gion segmentation in histopathological breast cancer images.
The proposed method is comprehensively evaluated in terms
of performance, efficiency and scalability. It outperforms the
three texture classification methods in segmentation accuracy
and its time cost is sufficiently low to make it a desirable tool
for practical biomedical image analysis.
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