RECONNAISSANCE DE FORMES

Une Courte Introduction
Qu ’est-ce qu ’une forme ?
Qu ’est-ce que reconnaître une forme ?

Localiser \[\text{Nommer}\]

Interpréter
Système de Reconnaissance de Formes :

Monde Physique → Codage → Pré-traitements → Analyse

Apprentissage → Décision

Interprétation
Espace des Formes Analogique \[\overset{\text{Codage}}{\rightarrow} \] Espace des Représentations Discret
Pré-traitements

- Normalisation, Seuillage, Réhaussement de Contraste...
- Morphologie Mathématique (érosion, ouverture, amincissement...)
- Filtrage
- Suppression des redondances
- Elimination du bruit
Introduction - Codage - Analyse - Apprentissage & Décision

Détermination et Extraction des Indices

Espace des Représentations

Analyse

Calcul des Caractéristiques

Espace des Paramètres
Exploitation de la Connaissance \textit{a priori}

Espace des Paramètres

Extraction de Prototypes de Classe ou Modèles

Espace des Noms

Apprentissage
Classement :
- définitif,
- ambigu avec score
- ou rejet

Espace des Paramètres \(\rightarrow \) Décision \(\rightarrow \) Espace des Noms

Interprétation en fonction du contexte
Ensemble des Formes

A = Ensemble d ’échantillons pour chaque classe

$A = \emptyset \Rightarrow$ Apprentissage Non Supervisé

$A \neq \emptyset \Rightarrow$ Apprentissage Supervisé
• Principe de Réduction de dimension des espaces successifs :
 • Importante lors de la phase d ’Analyse
 • Finale lors de la phase de Décision

• Une Histoire de Projections Successives

• Choix Déterminant des Caractéristiques lors de l ’Analyse
• Commande Vocale
• Dictée Automatique
• Traduction Temps Réel de Langues Etrangères
• Rééducation de Mal-Entendants
• Indexation de films

Discipline :
• Décodage Acoustico-phonétique
• Reconnaissance de Mots, de Phrases, de Locuteurs
• Compréhension du Dialogue Oral Homme-Machine
• Tri Automatique de Courrier par Lecture et Reconnaissance des Adresses
• Authentification de chèques bancaires
• Saisie et Archivage de Documents
• Reconnaissance de Signatures
• OCR
• Traitement, Analyse et Interprétation des Images
• Reconnaissance des Empreintes Digitales
• Analyse d ’Images de Radiographie ou d ’Echographie
• Analyse de Défauts de Pièces d ’Usinages
• Surveillance de Processus en Robotique
• Géophysique : Analyse d ’Images de Satellites pour les Prévisions Météorologiques
• Analyse du Sol en Pétrographie
• Indexation
Reconnaissance
de Formes

Intelligence
Artificielle

Perception
(Organes Sensoriels)

Interprétation
(Connaissances)
Introduction → Codage → Analyse → Apprentissage & Décision

2 Voies pour la Reconnaissance

Statistique
Théorie de la décision
Approche holistique
Extraction de mesures caractéristiques globales
ou « features »
Partitionnement d ’espaces de paramètres

Structurelle
Théorie des langages
Approche par décomposition
Décomposition en un ensemble de composants
ou « pattern primitives »
Analyse grammaticale selon des règles syntaxiques
Globale
Formes Simples

Structurelle
Formes Riches en Informations Structurelles

Description en Formes Primitives et Agencement Relatif de ces Sous-Formes

2 Voies pour l’Analyse

Numérique ou Quantitative
Logique ou Qualitative
2 Voies pour la Décision

Statistique
- Classification Automatique
- Discrimination Fonctionnelle
- Méthodes Connexionnistes
- Méthodes Statistiques Bayésiennes
- Les k Plus Proches Voisins

Structurelle
- Structures de Graphes
- Structures Syntaxiques
- Programmation Dynamique
- Méthodes Stochastiques
Reconnaissance de chiffres manuscrites :

2. Définition des caractéristiques discriminantes.

3. Extraire l’ensemble de ces attributs caractéristiques sur un ensemble d’apprentissage.

4. Déterminer les séparatrices des classes sur l’ensemble d’apprentissage ou entraîner un réseau de neurones...

5. Lancer la décision (affectation à une des 10 classes) sur les formes présentées à l’aide du processus de décision choisi pour l’analyse : traitement de l’image pour segmenter les chiffres, les prétraiter, extraire les caractéristiques...
Codage → Prétraitement → Analyse

Filtrage du bruit
Normalisation
Squelettisation
Segmentation

Apprentissage & Décision

« 3 »
avec un score de 0.6
• Problème de la segmentation de mots en caractères ou graphèmes

\[\text{Pu} \]

\[\text{v} \]

\[\text{w} \]

\[\text{F} \]

\text{Figure 6.45. Emplacement de la ligature par projection verticale, daprès [Kah87].}

⇒ Approche holistique de la reconnaissance de mots
⇒ Programmation Dynamique
Un format portable : *pgm* ou *ppm* ou *pbm*

Logiciels libres de manipulation: *gimp* et *imageJ*
Exercice : http://sip-crip5.org/lomn/ti.html

Création des biomorphes par fractales

Noir et blanc
Pour chaque point du plan imaginaire \((z=x+iy)\)
On lance une boucle de 10 itérations :
 On calcule \(z=f(z)\)
 Si \((|x|>10 \text{ ou } |y|>10 \text{ ou } |z|>10)\),
 on quitte la boucle.
En fin de boucle :
 Si \((|x|>10 \text{ ou } |y|>10)\),
 on marque un pixel noir sur fond blanc.

Couleur
La couleur dépend du nombre d'itérations et de la valeur de \(|x|, |y|, |z|\).

Fonction \(f(z)\)
\[
f(z) = z^{\text{Exposant}} + C
\]

<table>
<thead>
<tr>
<th>Ensembles de Julia</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c=0.3+0.6i)</td>
</tr>
<tr>
<td>(c=-0.0519+0.688i)</td>
</tr>
<tr>
<td>(c=0.32+0.43i)</td>
</tr>
<tr>
<td>(c=-0.986-0.65186i)</td>
</tr>
<tr>
<td>(c=0+0)</td>
</tr>
<tr>
<td>(c=-0.4+0.7i)</td>
</tr>
<tr>
<td>(c=-0.7+0.3i)</td>
</tr>
<tr>
<td>(c=-1.77+0.01i)</td>
</tr>
<tr>
<td>(c=-0.15+0.45i)</td>
</tr>
</tbody>
</table>
Qu’est-ce que la parole :

- Parole = Onde

- Intensité : débit du flot d’air +
 ouverture des cordes vocales

- Hauteur : fréquence de vibration des cordes vocales
 pour les sons voisés

- Timbre : modulation de l’onde
 par la forme du conduit vocal
Travail du phonéticien :

• Isoler l’onde continue en « segments » phonétiques
• Classifier les sons d’une langue
• Utilisation d’une unité sonore minimale : le phonème
Caractéristiques Générales des Voyelles du Français :

- Vibrations des Cordes Vocales
- Lieu de l’articulation
- Stabilité des Articulateurs
- Deux classes : voyelles orales et voyelles nasales
Caractéristiques Articulatoires des Voyelles du Français :

- Aperture Vocalique (petite, moyenne et grande)
- Lieu d’Articulation (antérieure, postérieure)
- Intervention des Lèvres (labiales et non labiales)
Classement Articulatoire des Voyelles Orales du Français :

<table>
<thead>
<tr>
<th>Voyelles</th>
<th>Fermées</th>
<th>Semi-Fermées</th>
<th>Semi-Ouvertes</th>
<th>Ouvertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antérieures non labiales</td>
<td>i</td>
<td>e</td>
<td>ε</td>
<td>a</td>
</tr>
<tr>
<td>Antérieures Labiales</td>
<td>y</td>
<td>φ</td>
<td>θ</td>
<td>œ</td>
</tr>
<tr>
<td>Postérieures Labiales</td>
<td>u</td>
<td>o</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aigu

Grave

Diffus ←------------------------→ Compact
Caractéristiques Acoustiques des Voyelles du Français :

- Sons Voisés
- Résonance de l’onde glottique dans la cavité orale
- Formants $F_i = $ Maxima du spectre d’énergie par ordre décroissant
Schéma de Production d'une Voyelle :

- Flux d'air
- Poumons
- Cordes vocales
- Onde glottique
- Conduit vocal (résonateur)
- Son émis

Courbes en fréquence du conduit vocal:
- $F1$
- $F2$
- $F3$

Spectre de raie:
- Amplitude
- Fondamental

Spectre
Classement Acoustique des Voyelles Orales du Français selon les deux premiers formants F1 et F2 :
Signal Temporel Brut

Modèles de Représentation

Spectrogramme
Une image peut être modélisée de plusieurs façons :
• une fonction continue de deux variables \(f(x,y) \)
• une matrice 2D, discrétisant la fonction \(f(x,y) \)
• la réalisation d'une Variable Aléatoire

-> modèle de traitement mathématique, algorithmique, physique
• Suppression du Bruit (hautes fréquences ou bruit blanc)
• Correction des Erreurs
• Homogénéisation des Données
• Réduction des Données
Figure IV.2 : Image de Neuroblastomes de souris différenciés et son histogramme

Figure IV.40 : Image de neuroblastomes de souris différenciés pré-traitée et son histogramme sur lequel on a placé la valeur du seuil déterminée automatiquement
Analyse d'images

Indices Visuels ou Primitives :

- Régions
- Contours

Primitives
Duales
Paramètres calculés sur les Indices Visuels:

• **Topologiques** : *Surfaces, Périmeters, Concavités, Trou*

• **d ’Orientations** : *Moments d ’Inertie du Second Ordre*

• **de Formes** : *Compacité, Allongement*

• **Statistiques** : *Histogrammes, Moyennes, Variances, Entropie, Dissymétrie, Applatissement*

• **Relationnelles** : \(f(Ri, Rj) : f = \text{Plus-Grand, Au-dessus, Adjacent} \ldots \)
Indices Visuels :

• Frontières Homogènes

Image de contour par Deriche

Figure IV.22 : Deriche (α = 1) sur l'image originale suivi d'un seuillage par hystérésis ($S_b = 25, S_h = 5$)

Figure IV.23 : Fermeture de contours sur l'image de la figure IV.22
Figure IV.41 : Image obtenue par le seuillage automatisé

Figure IV.43 : Image des germes

Figure IV.44 : Superposition de l'image des germes et de l'image originale
• Approximation polygonale
• Codage de Freeman ...

Figure 3.17 : Exemple de code de Freeman
Paramètres :

• Convexité

• Abscisse Curviligne

• Courbure
Indices phonétique ou linguistique ou Primitives :

- Mots
- Syllabes
- Phonèmes

Paramètres d ’analyse :

- Temporelle, Fréquentielle
- Cepstrale
- Segmentation : clé de voûte de l’Analyse d’Image ou de Parole

- Segmenter - Reconnaître : Paradoxe et Confusion
a) Image 1.a bruitée : SNR = 5dB

Image « segmentée » = abus de langage ?

According to Nica, there is no way to go through customs at Atlanta without changing
Figure III.7 : Segmentation en régions par seuillage

Figure III.8 : Classification des points dans l'espace des attributs
(3 classes, dimension 2 de l'espace)
Segmentation, souvent égale à de la **classification automatique de pixels** dans un espace \(\mathbb{R}^n \)

Quantification en niveau de gris dans \(\mathbb{R}^1 \) ou en couleur dans \(\mathbb{R}^3 \)
Exemples :

a - image initiale

b - quantification couleur par la méthode des nuées dynamiques. (7 classes)

Applications :

Cosmétique, Diagnostic, quantification couleur.
• Cadre typique de la classification non supervisée, cad sans exemples.

• Notion de Proximité dans un espace métrique

• **Principe** : Classification et Décision par la Distance

• Propriétés d ’une Classification Idéale :
 • Compacité
 • Séparabilité

• Dans la pratique, Défaillance de Formes (« floues »)
• Distance Point-Point:

\[d(p,m) = \text{Hamming, Euclidienne} \]

• Distance Point-Classe :

\[d(p,C) = \inf \{d(p,m); m \in C\} \]

• Distance Classe-Classe :

\[d(C1,C2) = \inf \{d(p,m); p \in C1 \text{ et } m \in C2\} \]
• RF ⇔ Définition de Distances Adaptées

• Attribution de x à C_k ⇔ $C_k = \text{Argmin}_{C_i} d(x, C_i)$
Arbre de Longueur Minimale

Le Graphe des Distances :

![Diagram of Minimal Length Tree]
Arbre de Longueur Minimaire

Algorithme de Prim :

Initialiser le graphe résultat à un point quelconque

pour i de 2 à n (nombre de points du graphe) faire

 Chercher une arête (x,y) de coût minimal joignant un point du graphe résultat à un point extérieur au graphe résultat

 L ’ajouter au graphe résultat : g ← g ∪ (x,y)

fin pour
Arbre de Longueur Minimale

Arbre de Longueur Minimale et Application à la Classification :
Arbre de Longueur Minimaïe

• Lié au groupement hiérarchique et à la notion de distance ultramétrique
• Sensibilité au choix de la distance
• Instabilité Structurelle ou Effet de Chaîne
Nuées Dynamiques ou k-Means

• Partition en K classes d’un ensemble E :
 • Minimisant un critère global J :
 • A partir d’éléments suffisamment représentatifs de chaque classe ou noyau

• Algorithme à convergence rapide vers des minima locaux pour classer plusieurs milliers d’objets
« Clustering »
« Clustering »

Nuées Dynamiques

Algorithme
ISODATA

C-moyennes floues
« Clustering »

Principe des Nuées Dynamiques

DIDAY
Algorithme itératif de type ISODATA

- Nombre de groupements C connu
- Minimisation itérative d'une fonctionnelle $J(V)$
- V est un vecteur de paramètres de forme : on peut prendre par exemple le barycentre m_C d'un nuage de points C.
Principe des C-moyennes

Minimisation de la fonction objective :

\[J_m(U;V) = \sum_{j=1}^{C} \sum_{i=1}^{N} u_{ij}^m d(x_i, V_j) \]
Cas « Crisp » : \(u_{ij} \in \{0, 1\} \)

Nuées Dynamiques ou K-Means ou C-moyennes

Algorithme :

1. Choisir au hasard \(C \) Noyaux \(\{Y_1^0, Y_2^0, \ldots, Y_K^0\} \)

2. \(n \leftarrow 0 \)

3. \(n \leftarrow n+1 \)

4. **Pour chaque** valeur de \(k \) (de 1 à \(C \)), calculer

 \[
 \omega_k^n \leftarrow \{x \in E \mid \forall j \neq k, f(x, Y_k^{n-1}) \leq f(x, Y_j^{n-1})\}
 \]

 Calcul de \(Y_k^n \) **à partir de** \(\omega_k^n \)

 Fin pour

5. **Si** \(\omega_k^n \neq \omega_k^{n+1} \) **et** \(n \leq n_0 \), **retourner en 3**

 Sinon arrêt

 Fin Si
Clustering Cas « Fuzzy » : $u_{ij} \in [0,1]$

Coefficient d’appartenance u_{ij} dans $[0,1]$

Dans le cas où $m=2$, minimisation de la fonctionnelle suivante :

$$J(U;V) = \sum_{j=1}^{C} \sum_{i=1}^{N} u_{ij}^2 d(x_i, V_j)$$
En utilisant la formulation lagrangienne, on montre que minimiser J revient à résoudre ce système couplé :

$$\begin{align*}
\sum_{i=1}^{N} u_{ij}^2 \frac{\partial d(x_i,V_j)}{\partial V_j} &= 0 \\
 u_{rs} &= \frac{1}{\sum_{s=1}^{C} d(x_i,V_s)} \sum_{j=1}^{N} d(x_i,V_j)
\end{align*}$$
Système résolu par le schéma algorithmique itératif suivant :

1. Choisir au hasard C Noyaux V_j
2. $t \leftarrow 0$ /* Iteration*/
3. $t \leftarrow t+1$
4. Répéter
 - Pour chaque valeur de i (de 1 à N),
 - Pour chaque valeur de j (de 1 à C), calculer $u_{ij}(t) = \frac{1}{\sum_{k=1}^{C} \frac{d(x_i,V_j)}{d(x_i,V_k)}}$
 - Fin pour
 - t = t+1
 - Pour chaque valeur de j (de 1 à C),
 - Résoudre $\sum_{i=1}^{N} u_{ij}(t-1) \frac{\partial d(x_i,V_j)}{\partial V_j} = 0$
 - Fin pour
 - Tant que un critère d’arrêt n’est pas atteint
Dans le cas classique où on utilise la distance classique

\[d(x_i, V_j) = (x_i - V_j)^T A (x_i - V_j) \]

On met à jour les prototypes par l’équation suivante :

\[V_j(t) = \frac{\sum_{i=1}^{N} u_{ij}^2(t-1)x_i}{\sum_{j=1}^{N} u_{ij}^2(t-1)} \]

Il s’agit de l’algorithme du Fuzzy C-Means classique
« Clustering » Cas « Fuzzy » : $u_{ij} \in [0,1]$

Ajoutons que pour $m=1$, il n’y a pas de clustering flou meilleur que le meilleur des « crisp clustering ».

Mais pour $m=2$ (le cas étudié), il y a des cas pour lesquels le clustering flou a de plus petites valeurs pour $J_2(U;V)$
Algorithme des C-Moyennes Floues Exponentielles (CMFE)

⇒ Prototypes : centroïdes V_j et matrices de covariance floue F_j

\[
F_j = \sum_{i=1}^{N} u_{ij}^2 (x_i - V_j)(x_i - V_j)^T \bigg/ \sum_{i=1}^{N} u_{ij}^2
\]

⇒ Distance : exponentielle d_e

\[
d_e^2(x_i, v_j) = \left[\frac{\text{det}(F_j)}{P_j} \right]^{1/2} \exp \left[\frac{1}{2} (x_i - v_j)^T F_i^{-1} (x_i - v_j) \right]
\]
« Clustering »

Algorithme des C-Moyennes Floues Exponentielles (CMFE)
« Clustering »

Comment déterminer le nombre de groupements C optimal ?

Critère numérique : la Densité Moyenne de Partition (DMP) ?
Critère numérique : la Densité Moyenne de Partition

\[DPM(C) = \frac{1}{C} \sum_{j=1}^{C} \frac{S_j}{V_j} \]

Avec

\[X_j = \{ x \in X : (x - V_j)F_j^{-1}(x - V_j) < 1 \} \]

\[S_j = \sum_{x_i \in X_j} u_{ij} \]

et l’hypervolume flou de chaque cluster

\[V_j = \left| F_j \right|^{1/2} \]
Clustering

Regroupement en famille de gènes
Nuées Dynamiques ou k-Means

- Fonction de dissemblance f :
 $$\forall x \in E, \forall \omega \in \mathcal{P}(E) \Rightarrow f(x, \omega) \in \mathcal{R}^+$$

- Critère à Minimiser Théorique :
 $$J(\mathcal{P}) = \sum_{\omega \in \mathcal{P}} \sum_{x \in \omega} f(x, \omega)$$

- Critère à Minimiser Pratique à l’aide d’un noyau Y_ω par classe :
 $$J(\mathcal{P}) = \sum_{\omega \in \mathcal{P}} \sum_{x \in \omega} f(x, Y_\omega)$$
Nuées Dynamiques ou k-Means

Algorithme :

1. Choisir au hasard K Noyaux \(\{Y_1^0, Y_2^0, \ldots, Y_K^0\} \)
2. \(n \leftarrow 0 \)
3. \(n \leftarrow n + 1 \)
4. Pour chaque valeur de \(k \) (de 1 à K), calculer
 \[\omega_k^n \leftarrow \{x \in E \mid \forall j \neq k, f(x, Y_k^{n-1}) \leq f(x, Y_j^{n-1})\} \]
 Calcul de \(Y_k^n \) à partir de \(\omega_k^n \)

Fin pour

5. Si \(\omega_k^n \neq \omega_k^{n+1} \) et \(n \leq n_0 \), retourner en 3

Sinon arrêt

Fin Si
Nuées Dynamiques ou k-Means

Exemples :

- \(Y_\omega = \text{Centre de Gravité de la classe } \omega = \frac{1}{\text{card}(\omega)} \sum_{x \in \omega} x \)
- \(f(x, Y) = d(x, Y_\omega) \)
Nuées Dynamiques ou k-Means

Amélioration :

• Prendre en Compte la forme des Classes en Création :
 ➡ Distance à l ’axe principal d ’inertie par exemple

• Gérer le recouvrement des Classes
 ➡ Attribution floue par exemple
Nuées Dynamiques ou k-Means

Exemple du Fuzzy K-Means :

(a)

(b)

(c)
Apprentissage et Décision

Apprentissage et Décision
Objectifs

1. Classification automatique
2. Programmation Dynamique
3. Discrimination Fonctionnelle
4. Connexionisme
5. Statistiques bayésiennes
6. K-ppv
7. Méthodes stochastiques
8. Approches syntaxiques et structurelles
Apprentissage (automatique ou artificiel) : **Machine Learning**

Cette notion englobe toute méthode permettant de construire un modèle de la réalité à partir de données.

Il existe deux tendances principales :
- Celle issue de l’IA qualifiée de symbolique
- Celle issue des statistiques qualifiée de numérique

Fouille de données (Extraction de connaissances à partir des données) : **Data Mining (Knowledge discovery in data)**

La fouille de données prend en charge le processus complet d’extraction de connaissances : stockage dans une BD, sélection des données à étudier, nettoyage de ces données, puis utilisation des apprentissages symboliques et numériques afin de proposer des modèles à l’utilisateur, enfin validation des modèles proposés.
Précision vs. Généralisation

Le grand dilemme de l’apprentissage.

La précision est définie par un écart entre une valeur mesurée ou prédite et une valeur réelle. Apprendre avec trop de précision conduit à un “sur-apprentissage”, comme l’apprentissage par cœur, pour lequel des détails insignifiants (dûs au bruit) sont appris.

Apprendre avec trop peu de précision, conduit à une surgénéralisation telle que le modèle s’applique même quand l’utilisateur ne le désire pas.

Il existe des mesures de généralisation, et l’utilisateur peut fixer le seuil de généralisation qu’il juge optimal.
Classification :

La classification (voire Analyse de données) consiste à regrouper des ensembles d’exemples non supervisés en classes.

Ces classes sont souvent organisées en une structure (clustering). Si cette structure est un arbre, alors on parle de taxonomie ou de taxinomie (taxonomy).

Il s’agit par exemple de prévoir l’appartenance d’un oiseau observé à la classe “canard” ou “oie”.

Deux champs industriels de l’Apprentissage :

1. La Reconnaissance des Formes (image, parole, signaux bio-médicaux)
2. La Fouille de Données
Exemples d’apprentissage :

Oiseaux Observés par un débutant

Données Étiquetées par un expert (superviseur)
Exemples d’apprentissage :

Apprentissage d’une règle de décision simple

Apprentissage d’une règle de décision complexe
Exemples d’apprentissage :

- Oie
- Canard

Test en Décision sur d’autres oiseaux à partir de la règle de décision simple
Principe :
définir les fonctions de discrimination f permettant de séparer partiellement ou totalement les classes représentées par les vecteurs paramètres x de leurs échantillons. L’ensemble des x exemples représente l’ensemble d’apprentissage S.
Objectifs :

• Il s’agit d’apprendre un concept sous la forme géométrique la plus simple : celle d’un hyperplan.

• Apprentissage de surfaces séparatrices linéaires dans un espace de représentation nécessairement numérique.

• Lien avec les Réseaux de Neurones et les SVM
(d₁) minimise le nombre d’erreurs dans l’ensemble d’apprentissage

(d₂) minimise le risque bayésien d’erreurs par rapport à l’ensemble d’apprentissage
Dans \mathbb{R}^n, une surface linéaire est un hyperplan f :

$$f(x) = \mathbf{w}_0 + \mathbf{w}_1 x_1 + \mathbf{w}_2 x_2 + ... + \mathbf{w}_n x_n = W^t \cdot X = 0$$

avec $$X = (1, x_1, x_2, ..., x_n)^t = (1, x)^t$$

et $$W = (w_0, w_1, w_2, ..., w_n)^t = (w_0, w)^t$$

Hypothèses :

Les classes sont linéairement séparables.

Remarque : hypothèse pas plus injustifiée que la classique hypothèse statistique a priori gaussienne
Dans \mathbb{R}^2, une droite est définie par :

$$f(x) = \omega_0 + \omega_1 x_1 + \omega_2 x_2 = 0$$

que l’on va écrire $\quad \text{ avec } x = (x_1, x_2)^t$

$$f(x) = \omega_0 + w^t x = 0 \quad \text{ et } w = (w_1, w_2)^t$$

Remarque : Δ est une distance signée
Apprentissage :

• Déterminer les coefficients W de ces fonctions discriminantes à partir de formes connues

• Algorithme du **Perceptron** : le plus ancien et le plus simple
Cas de 2 classes :

\[f(X) = W^t . X \begin{cases} > 0 & \text{si } X \in C_1 \\ < 0 & \text{si } X \in C_2 \end{cases} \]

On pose

\[\begin{cases} \forall X \in C_1, & Y = X \\ \forall X \in C_2, & Y = -X \end{cases} \]

Alors

\[W^t . Y > 0 \iff \begin{cases} W^t . X > 0 & \text{si } X \in C_1 \\ W^t . X < 0 & \text{si } X \in C_2 \end{cases} \]
Cas de 2 classes :

Si on range maintenant les \(m \) vecteurs \(X \) comme colonnes d'une matrice \(M \), le problème de séparation linéaire revient à la recherche d'un vecteur \(W \) dans \(\mathbb{R}^{n+1} \), tel que:

\[
W^t M = B^t
\]

où \(B \) est un vecteur positif inconnu de \(\mathbb{R}^{m+1} \)

Comme en général \(M \) n’est pas inversible et que les données ne sont pas réellement complètement linéairement séparables, il faut trouver l’hyperplan \(W \) le meilleur possible selon par exemple le critère :

\[
J(W, B) = \frac{1}{2} \left\| W^t M - B^t \right\|^2
\]
Cas de 2 classes :

Or, si W et B minimisent bien \(J(W, B) \) :

\[
J(W, B) = \sum_{x \in S \text{ mal classés par } W} \Delta(x, W)^2
\]

Ce qui revient à se placer dans le cadre du critère aux moindres carrés.

Donc dans l’hypothèse que les distances entre W et les points mal classés par W sont répartis selon une distribution gaussienne, et que ceux-ci sont les seuls à compter dans le positionnement de W, la minimisation de \(J(W, B) \) est la recherche du meilleur hyperplan \textit{a posteriori} au sens bayésien, cad l'ensemble probable connaissant les données.
Cas de 2 classes :

\[J(W, B) = \frac{1}{2} \| W^t M - B^t \|^2 \]

\[\nabla_A J(W, B) = (W^t M - B^t)M^t \]

qui atteint son minimum pour

\[(W^t M - B^t) = 0 \]

soit

\[W^t = B^t M^+ \]

où \(M^+ \) est la pseudo-inverse de \(M = M^T(MM^T)^{-1} \) (user de la SVD si nécessaire)

Comme on ne connaît pas \(B \), l'algorithme doit réaliser une minimisation de \(J(W, B) \) sous la contrainte \(B \) positif ou nul
Cas de 2 classes :

Méthode globale basée sur une descente de gradient :

Algorithme de Ho et Kashyap

INPUT : B_0 et α positifs quelconques

- $t \leftarrow 0$
- Tant que *critère d’arrêt non satisfait* faire
 - $W_{(t)}^T \leftarrow B_{(t)}^T M^+$
 - $B_{(t+1)}^T \leftarrow B_{(t)}^T + \alpha W_{(t)}^T M - B_{(t)}^T$
 - $t \leftarrow t+1$
- Fin tant que

OUTPUT : l’hyperplan optimal W

\[W_{(t)}^T = B_{(t)}^T M^+ \] puis trouver $B_{(t+1)}$ tel que $J(W(t),B(t+1)) \leq J(W(t),B(t))$

or

\[\nabla_{B_{(t)}} J(W_{(t)},B_{(t)}) = -2(W_{(t)}^T M - B_{(t)}^T) \]

d’où

\[B_{(t+1)}^T = B_{(t)}^T + \alpha (W_{(t)}^T M - B_{(t)}^T) \]

or $B \geq 0$, d’où \[\langle W_{(t)}^T M - B_{(t)}^T \rangle = 0 \] si $W_{(t)}^T M - B_{(t)}^T < 0$. De plus on peut avoir $\alpha_{(t)}$
Cas de 2 classes :

Méthode itérative historique :

Algorithme du Perceptron

INPUT : $w_{(0)}$ et α positifs quelconques

- $t \leftarrow 0$
- Tant que $t \leq t_{\text{max}}$ faire
 - $\text{modif} \leftarrow 0$
 - Pour chaque donnée d'apprentissage x faire
 - Si x est mal classé alors
 - Si $x \in C_1$ alors
 - $\text{modif} \leftarrow \text{modif} + \alpha x$
 - Sinon
 - $\text{modif} \leftarrow \text{modif} - \alpha x$
 - Fin si
 - Fin pour
- $w_{(t+1)} \leftarrow w_{(t)} + \text{modif}$
- $t \leftarrow t + 1$
- Fin tant que

OUTPUT : l'hyperplan optimal W
• Convergence, mais lente et loin de l’optimum

\[W_{t+1} Y_{t+1}^T = W_t Y_{t+1}^T + \|Y_{t+1}\|^2 \]

• Minimisation de \(J(W) = - \sum_{x \in S \text{ mal classés par } W} W^T x \)

• La base S peut être parcourue plusieurs fois

• Version stochastique mais meilleure généralisation de Ho et Kashyap
Cas général : M classes $C_1, C_2, ..., C_M$

Chaque classe est séparée des autres classes par un hyperplan : au total $M(M-1)/2$ hyperplans

Les classes sont séparées deux à deux : au total $M(M-1)/2$ hyperplans
Lien avec les réseaux de Neurones

Echec sur le Problème du XOR
• Neurones Formels et Réseaux de Neurones :

\[s = f \left(\sum_{k=1}^{n} w_k x_k \right) \]

Figure 5.35. Neurone formel et deux fonctions de seuillage.

• Un Neurone Formel effectue une discrimination linéaire

• Un réseau de Neurones effectue **une discrimination linéaire par morceaux**
Succès sur le Problème du XOR avec une couche cachée :
Divers Points de Vue sur les Réseaux de Neurones :

• Point de Vue Informatique :
 Parallélisme à grains très fins;
• Point de Vue de la Classification :
 Discriminateur Linéaire Complexé;
Avantages Principaux :

- Inclus dans son traitement Analyse et Prétraitement
- Grande Capacité Autonome d’Apprentissage

Algorithme de Rétropropagation

- Problème de la Généralisation
- Extension non linéaire et bien fondée théoriquement donnée par les SVM : Séparateurs à Vastes Marges ou Support Vector Machines -> kernel-based machine learning
• Modèle Probabiliste de Représentation des Formes ?
• Assure en théorie le Minimum d’Erreur en Classification

Propriété :
La règle de décision bayésienne est la règle de décision optimale au sens où elle minimise le risque réel en utilisant l’information disponible de manière optimale.

Étant donné que l’on m’a fourni un échantillon de données, comment cela doit-il modifier mes croyances antérieures sur le monde ?
Règle de Bayes de révision des probabilités :

- x: représentation de la forme, ω: classe

\[
P(x / \omega) = \frac{P(x, \omega)}{p(\omega)}
\]

\[
p(\omega / x) = \frac{P(x, \omega)}{P(x)}
\]
Cas de 2 classes :
\(\omega_1 = \text{oiseau} \) et \(\omega_2 = \text{canard} \) après observation de la variable \(x=\text{couleur_aile} \)

\[
p(\text{oiseau} = \text{canard} \mid \text{couleur_aile} = \text{noire}) = \frac{P(\text{couleur_aile} = \text{noire} \mid \text{oiseau} = \text{canard})}{P(\text{couleur_aile} = \text{noire})} \times p(\text{oiseau} = \text{canard})
\]
Risque bayésien :

Le but de l’agent est de prendre une décision (faire un diagnostic vital par exemple) minimisant l’espérance de risque.

On définit une fonction de décision $S : X \to H$, où H est vu comme un ensemble de décisions à prendre.

Dans le cas de N classes, H peut comprendre les N classes possibles Ω en décision de classification plus une classe de rejet quand l’incertitude est trop forte et ne permet pas de prendre de décision.

Avant toute observation sur le monde, et en prenant seulement en compte les connaissances a priori, l’espérance de risque associée à une décision h peut s’écrire :

$$ R(h) = \sum_{\omega \in \Omega} l(h|\omega) p(\omega) $$

où $p(\omega)$ dénote la probabilité a priori que le monde soit dans l’état ω, tandis que $l(h|\omega)$ est le coût ou perte encouru lorsque la décision h est prise alors que l’état du monde est ω.
En général,

\[
l(h|\omega) = \begin{cases}
0 & \text{si } h = \omega \text{ (décision correcte)} \\
1 & \text{si } h \neq \omega \text{ (décision incorrecte)} \\
r & \text{si } h = \text{rejet (doute trop important)}
\end{cases}
\]

Mais, le coût de ne pas diagnostiquer à tort une tumeur est bien plus élevé que de faire un faux diagnostic. Le coût de la décision incorrecte est ajustable.
Principe de la Décision Bayésienne :

Choisir pour l’observation x la classe ω qui minimise l’espérance de risque.

$$h^* = \text{ArgMin}_{h \in H} \sum_{\omega \in \Omega} l(h|\omega)p(\omega)P(x|\omega)$$
Principe de la Décision Bayésienne : cas particuliers

Règle du Maximum A Posteriori (MAP) :
Lorsque les coûts de mauvaise classification sont égaux, la règle de décision bayésienne de risque minimal devient la règle du MAP :

\[h^* = \underset{h \in \Omega}{\text{ArgMax}} \ p(\omega)P(x|\omega) \]

Remarque : cette règle minimise le nombre d'erreurs en classification
Règle du Maximum de Vraisemblance
Maximum Likelihood (ML) :

Si de plus toutes les hypothèses ont la même probabilité
a priori, alors la règle du MAP devient la règle du
Maximum de Vraisemblance :

$$h^* = \text{ArgMax } P(x | \omega)$$

$h \in \Omega$
Principe de la Décision Bayésienne : cas particuliers
Principe de la Décision Bayésienne : cas particuliers

Nous supposons maintenant que la tâche d'apprentissage consiste à discriminer les formes observées x en 2 classes : $H = \Omega = \{\omega_1, \omega_2\}$

Etant donnée l’observation x, les espérances de risque associés à chaque décision sont respectivement en notant $l(\omega_i|\omega_j)=l_{ij}$:

$$R(\omega_1)=l_{11}p(\omega_1|x) + l_{12}p(\omega_2|x)$$

$$R(\omega_2)=l_{21}p(\omega_1|x) + l_{22}p(\omega_2|x)$$

La règle de Bayes stipule de choisir l’hypothèse d’espérance de risque minimal. Il faut donc attribuer la forme x à la classe ω_1 ssi :

$$(l_{21}-l_{11})p(\omega_1|x) \geq (l_{12}-l_{22})p(\omega_2|x),$$

Que l’on peut écrire en appliquant la formule de Bayes de révision des probabilités :

$$(l_{21}-l_{11})p(x|\omega_1)p(\omega_1) \geq (l_{12}-l_{22})p(x|\omega_2)p(\omega_2),$$

soit :

$$d(x) = \log \frac{p(x|\omega_1)}{p(x|\omega_2)} + \log \frac{(l_{21}-l_{11})p(\omega_1)}{(l_{12}-l_{22})p(\omega_2)} \geq 0$$
Principe de la Décision Bayésienne : cas particuliers

La règle de décision bayésienne se traduit ainsi par une fonction de discrimination ou de décision décrivant une frontière ou surface de décision dans l’espace X.

On peut donc essayer d’apprendre directement cette frontière de décision plutôt que les probabilités, plus difficiles à estimer -> voire les méthodes de classifications fonctionnelles et le connexionnisme.
Dans le cas particulier de la discrimination entre deux classes, de distribution normale gaussienne de moyennes μ_1 et μ_2 avec des matrices de covariances égales Σ, la fonction de décision $d(x)$ est une fonction linéaire :

$$d(x) = (x - \frac{1}{2(\mu_1 - \mu_2)})^T \Sigma^{-1} (\mu_1 - \mu_2) + \log \frac{(l_{21} - l_{11})p(\omega_1)}{(l_{12} - l_{22})p(\omega_2)}$$
Validation de l’apprentissage

Critère de décision x

Probabilité de la classe p

Tous de la Classe A

Tous de la Classe B
Validation de l’apprentissage

Classe B
- **Vrais positifs** (90 %)
- **Faux négatifs** (10 %)

Classe A
- **Vrais négatifs** (60 %)
- **Faux positifs** (40 %)

Critère de décision

Probabilité de la classe p
Validation de l’apprentissage

Construction et signification de la courbe ROC
Apprentissage :

- $X_n = \{x_1, x_2, \ldots, x_n\}$: échantillons d’une même classe

- $f(x/\omega) = f(x, \Theta)$ où $\Theta = \{\Theta_1, \Theta_2, \ldots, \Theta_m\}$ paramètres

- Choisir Θ tel que
 $$f(X_n, \Theta) = \prod_{k=1}^{n} f(x_k, \Theta) = \sum_{k=1}^{n} \log(f(x_k, \Theta)) \text{ Maximum}$$

- f est supposée Gaussienne
 $$\Rightarrow \Theta = \{\mu, \sigma\} \quad \text{et} \quad \begin{cases} \bar{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k \\ \bar{\sigma} = \frac{1}{n} \sum_{k=1}^{n} (x_k - \bar{\mu})^2 \end{cases}$$
Inconvénients :

⇒ Difficulté d ’Estimation
⇒ Hypothèse Gaussienne trop Simple
⇒ Nécessité de Beaucoup d ’Echantillons
• « k plus proches voisins » à rapprocher :
 ⇒ de la Classification Automatique (notion de « Proximité »)
 ⇒ des Techniques Bayésiennes (hypothèses sur la forme des classes en moins)
• Convergence « remarquable » quand nb échant. → ∞
• Simplicité et Qualité ⇒ Méthode de référence pour l'évaluation des méthodes connexionnistes
Principe :

Déterminer la classe de chacun des \(k \) points les plus proches de \(x \) dans \(\mathbb{R}^n \) parmi les formes d ’apprentissage et affecter \(x \) à la classe la plus représentée
Inconvénients :

• Temps de calcul en Décision

 ⇒ Calcul de N distances dans un espace à m dimensions

• Organiser l ’espace de représentation des formes (pavage, tri, hiérarchie...)}
• Prise en Compte du Contexte

• Chaînes de Markov

• Modèles de Markov Caché

• En Parole et Ecriture Cursive
• Réaliser un appariement élastique

• Trouver le prototype nécessitant le minimum de déformation

• Vocabulaire limité

• Utilisées en reconnaissance de la parole (recalage temporelle) et en reconnaissance de l ’écriture cursive (recalage spatiale)
Figure 5.2. Comparaison entre les mots “masses” et “mashes” donnée dans [Lev84].

Figure 5.3. Exemple de chemin de recalage.

Figure 6.53. Appariement entre les mots “cime” et “orne”.
Comparaisons de Chaînes

- Programmation Dynamique
- Distances de Chaînes

Grammaires de Langages

- Noam Chomsky

Isomorphismes de Graphe

Approches Syntaxique et Structurelle
• Taille de l ’ensemble d ’apprentissage / Dimension de l ’espace de représentation ?

• Choix des Traits Caractéristiques ou des Primitives ?
• Tests et Validations :
 ➔ Resubstitution
 ➔ « Hold-out »
 ➔ « Leave-one-out »
 ➔ « Bootstrap »

• Type d ’Erreurs :
 ➔ Faux Rejet
 ➔ Fausse Reconnaissance
 ➔ Confusion
• Taux d ’erreur = taux de rejet (faux rejet) + taux de confusion (fausses reconnaissances et confusions)
• Taux de reconnaissance = 100% - taux d ’erreur

• Bornes d ’erreurs (avec un nombre de formes infini)

\[\text{err}_B << \ldots E_k << E_{k-1} \ldots << E_2 << E_1 << 2 \text{err}_B \]