POINTS DE FUITE / LIGNES DE FUITE

Retrouvez la ligne d'horizon de cette prise de vue.

Exercice I.a) et b)

MESURES AFFINES ET INFORMATIONS 3D

Fig. 8.20. Computing length ratios of parallel scene lines. (a) 3D geometry: The vertical line segments $\mathbf{L}_1 = \langle \mathbf{B}_1, \mathbf{T}_1 \rangle$ and $\mathbf{L}_2 = \langle \mathbf{B}_2, \mathbf{T}_2 \rangle$ have length d_1 and d_2 respectively. The base points $\mathbf{B}_1, \mathbf{B}_2$ are on the ground plane. We wish to compute the scene length ratio $d_1:d_2$ from the imaged configuration. (b) In the scene the length of the line segment \mathbf{L}_1 may be transferred to \mathbf{L}_2 by constructing a line parallel to the ground plane to generate the point $\widetilde{\mathbf{T}}_1$. (c) Image geometry: 1 is the ground plane vanishing line, and \mathbf{v} the vertical vanishing point. A corresponding parallel line construction in the image requires first determining the vanishing point \mathbf{u} from the images \mathbf{b}_i of \mathbf{B}_i , and then determining $\widetilde{\mathbf{t}}_1$ (the image of $\widetilde{\mathbf{T}}_1$) by the intersection of \mathbf{l}_2 and the line $\langle \mathbf{t}_1, \mathbf{u} \rangle$. (d) The line \mathbf{l}_3 is parallel to \mathbf{l}_1 in the image. The points $\widehat{\mathbf{t}}_1$ and $\widehat{\mathbf{t}}_2$ are constructed by intersecting \mathbf{l}_3 with the lines $\langle \mathbf{t}_1, \widetilde{\mathbf{t}}_1 \rangle$ and $\langle \mathbf{t}_1, \mathbf{t}_2 \rangle$ respectively. The distance ratio $d(\mathbf{b}_2, \widehat{\mathbf{t}}_1): d(\mathbf{b}_2, \widehat{\mathbf{t}}_2)$ is the computed estimate of $d_1:d_2$.

Exo I.c

HOMOGRAPHIES H_{3x3}

Fig. 1.1. The camera centre is the essence. (a) Image formation: the image points \mathbf{x}_i are the intersection of a plane with rays from the space points \mathbf{X}_i through the camera centre \mathbf{C} . (b) If the space points are coplanar then there is a projective transformation between the world and image planes, $\mathbf{x}_i = \mathbf{H}_{3\times3}\mathbf{X}_i$. (c) All images with the same camera centre are related by a projective transformation, $\mathbf{x}_i' = \mathbf{H}_{3\times3}'\mathbf{x}_i$. Compare (b) and (c) – in both cases planes are mapped to one another by rays through a centre. In (b) the mapping is between a scene and image plane, in (c) between two image planes. (d) If the camera centre moves, then the images are in general not related by a projective transformation, unless (e) all the space points are coplanar.

GENERER DES VUES SYNTHETIQUES

MOSAIQUER

Original vue dessus

Original vue oblique

Vue de dessus redressée

Proposez un algorithme pour estimer l'Homographie à appliquer

