POINTS DE FUITE / LIGNES DE FUITE Retrouvez la ligne d'horizon de cette prise de vue. Exercice I.a) et b) #### MESURES AFFINES ET INFORMATIONS 3D Fig. 8.20. Computing length ratios of parallel scene lines. (a) 3D geometry: The vertical line segments $\mathbf{L}_1 = \langle \mathbf{B}_1, \mathbf{T}_1 \rangle$ and $\mathbf{L}_2 = \langle \mathbf{B}_2, \mathbf{T}_2 \rangle$ have length d_1 and d_2 respectively. The base points $\mathbf{B}_1, \mathbf{B}_2$ are on the ground plane. We wish to compute the scene length ratio $d_1:d_2$ from the imaged configuration. (b) In the scene the length of the line segment \mathbf{L}_1 may be transferred to \mathbf{L}_2 by constructing a line parallel to the ground plane to generate the point $\widetilde{\mathbf{T}}_1$. (c) Image geometry: 1 is the ground plane vanishing line, and \mathbf{v} the vertical vanishing point. A corresponding parallel line construction in the image requires first determining the vanishing point \mathbf{u} from the images \mathbf{b}_i of \mathbf{B}_i , and then determining $\widetilde{\mathbf{t}}_1$ (the image of $\widetilde{\mathbf{T}}_1$) by the intersection of \mathbf{l}_2 and the line $\langle \mathbf{t}_1, \mathbf{u} \rangle$. (d) The line \mathbf{l}_3 is parallel to \mathbf{l}_1 in the image. The points $\widehat{\mathbf{t}}_1$ and $\widehat{\mathbf{t}}_2$ are constructed by intersecting \mathbf{l}_3 with the lines $\langle \mathbf{t}_1, \widetilde{\mathbf{t}}_1 \rangle$ and $\langle \mathbf{t}_1, \mathbf{t}_2 \rangle$ respectively. The distance ratio $d(\mathbf{b}_2, \widehat{\mathbf{t}}_1): d(\mathbf{b}_2, \widehat{\mathbf{t}}_2)$ is the computed estimate of $d_1:d_2$. Exo I.c # HOMOGRAPHIES H_{3x3} Fig. 1.1. The camera centre is the essence. (a) Image formation: the image points \mathbf{x}_i are the intersection of a plane with rays from the space points \mathbf{X}_i through the camera centre \mathbf{C} . (b) If the space points are coplanar then there is a projective transformation between the world and image planes, $\mathbf{x}_i = \mathbf{H}_{3\times3}\mathbf{X}_i$. (c) All images with the same camera centre are related by a projective transformation, $\mathbf{x}_i' = \mathbf{H}_{3\times3}'\mathbf{x}_i$. Compare (b) and (c) – in both cases planes are mapped to one another by rays through a centre. In (b) the mapping is between a scene and image plane, in (c) between two image planes. (d) If the camera centre moves, then the images are in general not related by a projective transformation, unless (e) all the space points are coplanar. ### GENERER DES VUES SYNTHETIQUES ## MOSAIQUER Original vue dessus Original vue oblique Vue de dessus redressée Proposez un algorithme pour estimer l'Homographie à appliquer