Computational Biology What for ?

Protein family

Gene sequence

420 440 460 HS-RPL3-I3 : AATGCGTGTAACTTAA-ATTAACCTTGTGGACCTCTGCTCAGCTCCGCTCGGCTCTGCC : 45 Mm-RPL3-I3 : TATATTTGTGGCTTAT-ATTAACCT-GTGGACCTCTGCTCAGCTCCGCTCGGCTCTGCC : 42 Bt-RPL3-I3 : GAATGTTGTGTTTCATTATTAACCTTGTGGACCTCTGCTCAGCTCCGCTCGGCTCTGCC : 39 At tTGTg cTtAt ATTAACCTtGTGGACCTCTGCTCAGCTCCGCTCGGCTCTGCC 500 520 480 Hs-RPL3-I3 : CGATGAGCTCCATCCAGGCTCCGCTGCCGGTGGAAAAGGCTCCTTAGAAGCCGGCAAT : 51 Mm-RPL3-I3 : CGATGAGCTTCATCCAGGCTCCGCTTGCCGGTGGAAAAGGCTCCTTAGAAGCCGGCAAT : 47 Bt-RPL3-I3 : CGATGAGCTCCATCCAGGCTCCGCTGCCGGTGGAAAAGGCTCCTTAGAAGCCGGCAAT : 45 CGATGAGCTCCAGGCTCCGCTTGCCGGTGGAAAAGGCTCCTTAGAAGCCGGCAAT 540 560 580 HS-RPL3-I3 : GAGCTCCATCCCCACGCGGTGCCAGTGTGCCTTCCGCTCACCCCTCGGAGGGGTGATGA : 57 Mm-RPL3-I3 : GAGCCCCATCCCCAAATGGTGCCAGTCTGCCTTCCTCTCACCTGTTGCAAGGGTGATGA : 53 GAGCCCCATCCCCAcacGGTGCCaGTgTGCCTtCC CTCACCcgTtGgAgGGgTGATGA 600 620 HS-RPL3-I3 : AGGCCTGCACC-TGGTCCCCCCCCAACTCTGCTCTGCTCCTGAAG : 619

AGGCetGCACC gGGeCCCetCCCCAACTeTGCTCTGCTCCTGAAG

Structure

Gene order

Non-coding regions

Gene networks

Computational Biology What for ?

And their phenotypic counterpart

Translational BioInformatics

PLOS Computational Biology A Peer-Reviewed, Open Access Journal Translational Bioinformatics : a collection of Education Articles, 2012 http://www.ploscollections.org/article/browselssue.action?issue=info:doi/10.1371/issue.pcol.v03. i11

Impact of Computational Biology : translational sciences

Integrate huge amount of heterogeneous molecular and clinical data for a better understanding of molecular basis of diseases and subsequently changing clinical practices of course for the benefice of the patient

Translational :

- How to improve diagnostic, pronostic and patients' care ?
- Small devices
- Molecular dignostic
- Nano-particules based treatment
- Vaccine Etc.
- Mastering the huge amount of new knowledge in molecular biology, genetics and genomic.

Double helixoidal structure of ADN \rightarrow pratical improvement of human health from a technological point of view ?

For sure, we are able to quickly compute/measure :

- DNA sequences (whole genome scale)
- RNA sequences and expression
- protein sequences, structure, expression and modification
- structure, presence and quantity of small molecular metabolites
- generate a lot of data including images

2 playground chapters for this sessions :

- Quantitative Imagery
- Machine Learning / Data Mining

2 important chapters in an ideal world :

- Graph and Network representations
- Knowledge representations : data, database, ontologies

Then technologies/ environments for sotware use/development :

- Java : ImageJ, Weka

- Python : Biopython, Numpy, Scipy, Matplotlib, Pyvis, Enthought Python Distribution and Canopy, Anaconda Pandas

- scripts : Perl, Gawk

- Inkscape, ImageMagik / Sphinx / XML, SBML, BioPax, GPML, JSON, SQL, noSQL, Hadoop

- Clustal \rightarrow T-coffee, PathwayAPI, BioGRID, PatternHunter

Learning code In a biological perspective for being able to get involved in...

- Gene feature recognition :

- \rightarrow TIS (Translation Initiation Site)
- \rightarrow TSS (Transcriptional Start Sites)
- \rightarrow Feature Generation \rightarrow Feature Selection \rightarrow Feature integration
- \rightarrow Gene finding

- Gene expression analysis :

- → Affymetrix Gene Chip Data
- \rightarrow Gene expression Profile Classification
- \rightarrow Gene expression Profile Clustering
- → Gene Regulatory Circuits Reconstruction : Differentially Expressed

Genes, Gene Interaction Prediction

- Sequence Alignment / Comparaison / Homology :

- → Multiple Sequence Alignment (Dynamic Programming)
- \rightarrow Function assignment to protein sequence (Guilt by Association)
- \rightarrow Discovery of Active Site or Domain of a function
- \rightarrow PPI / Proteomic Profile Analysis
- \rightarrow key mutation site identification

- Phylogenetic tree :

- $\rightarrow \textbf{Construction}$
- \rightarrow Comparison

-Biological Networks / Graph of Interactions :

- \rightarrow Natural pathways
- \rightarrow PPI Networks
- \rightarrow Protein Complex Prediction

- Image analysis :

→ High-throughput screening

TIS : Translation Initiation Site Recognition/Prediction

cDNA sample

Why the second ATG is a TIS?

Gene prediction

DNA	Predictions				
# Exons	TP	%	FP	%	
229	171	74.7	39	18.6	
600	575	95.8	30	4.9	
829	746	90.0	69	8.5	
# Bases					
134814	122885	91.2	13048	9.6	

PAS Prediction

T-Cell Epitopes Prediction By Artificial Neural Network

 Honeyman et al., Nature Biotechnology 16:966-969, 1998

TRAP-559AA

MNHLGNVKYLVIVFLIFFDLFLVNGRDVQNNIVDEIKYSE EVCNDQVDLYLLMDCSGSIRRHNWVNHAVPLAMKLIQQLN LNDNAIHLY**VNVFSNNAK**EIIRLHSDASKNKEKALIIIRS LLSTNLPYGRTNLTDALLQVRKHLNDRINRENANQLVVIL TDGIPDSIQDSLKESRKLSDRGVKIAVFGIGQGINVAFNR FLVGCHPSDGKCNLYADSAWENV**KNVIGPFMKAVCVEVEK** TASCGVWDEWSPCSVTCGKGTRSRKREILHEGCTSEIQEQ CEEERCPPKWEPLDVPDEPEDDQPRP**RGDNSSVQK**PEENI IDNNPQEPSPNPEEGKDENPNGFDLDENPENPPNPDIPF KPNIPEDSEKEVPSDVPKNPEDDREENFDIPKKPENV DN QNNLPNDKSDRN**IPYSPLPPK**VLDNERKQSDPQSCDNNGN RHVPNSEDRETRPHGRNNENRSYNRKYNDTPKHFLREEHE KPDNNKKKGESDNKYKIAGGIAGGLAL**LACAGLAYK**FVVP

Histone Promoter Recognition Programs

"GENERAL PROMOTERS"							
First Generation							
Name	Scoring Technique used	Search by content/signal	Features used				
NNPP	Time delay NN	Signal	TATA box, Inr				
Promoter 2	NN	Signal	TATA box, Inr, CAAT box, GC Box				
PromFind	Discriminative count	Content	Hexamer frequency				
PromoterScan	Discriminative count	Signal	TATA box, TFBS				
TSSG/TSSW	Linear discriminant analysis	Content + signal	TATA box, TSS, hexamer frequency upstream TSS, TFBS				
Second Generation	า						
DGSF	NN	Content + signal	CpG island, TSS, DPF output				
DPF	NN	Content + signal	Promoter, exon, intron, TSS				
Eponine	SVM variant	Content + signal	TATA box, GC rich content, TSS				
FirstEF	Quadratic discriminant analysis	Content + signal	First exon, CpG islands				
Mcpromoter	NN & Interpolated marko∨ models	Content + signal	TATA box, CAAT box, GC box, nucleosome position				
PromoterInspector	Discriminati∨e counts	Content	Oligonuleotides, Exon, Intron, 3'UTR, Promoter genomic context				
CpG Promoter	Quadratic discriminant analysis	Content + signal	CpG island, TSS				
CpGProD	Generalised linear model	Content	CpG island, AT/GC content				
"SUB-CLASS OF PROMOTERS"							
Muscle family	Discriminative counts	Signal	TFBS, relative distance				
Globin family	family Logical operators AND, OR and NOT		TFBS, relative distance				

9 Motifs Discovered by MEME algo in Histone Promoter 5' Region [-250,-1] among 127 histone promoters

MOTIF	MOTIF		TRANSFAC
NO.	DEFINITION	TFBS AND ASSOCIATED FACTORS	SITE NUMBER
1	TCTGATTGGTTA	CCAAT-box: H1TF2 (La Bella et al. 1989; Martinelli and Heintz 1994; Gallinari et al. 1989), HiNF-B (van Wijnen et al. 1988a,b), NF-Y (Mantovani 1999), HiNF-D (van Wijnen et al 1996: Grimes et al. 2003)	R00660
		Oct-1: Octamer transcription factor 1	
2	ATGCAAATGAGG	(OTF-1) (Fletcher et al. 1987)	R00662
3	СТАТАААААСС	TATA-box: TBP, TFIID (Nakajima et al. 1988)	R00770
4	TTTTCGCGCCCA	E2F-binding site: E2F-1 factor (Oswald et al. 1996)	R09798
5	CAATCAGGTCCG	H4TF2 binding site: H4TF2 (La Bella and Heintz 1991)	R00681
6		AC-box: H1TF1 (La Bella et al. 1989), HiNF-A (van Wijnen et al. 1988b), HiNF-D (van Wijnen et al. 1996; Grimes et al. 2003)	R00658
7	CAGCCAATCAGA	CCAAT-box: H1TF1 (La Bella et al. 1989), HiNF-B (van Wijnen et al. 1988a,b), NF-Y (Mantovani 1999), HiNF-D (van Wijnen et al. 1996; Grimes et al. 2003), H1TF2 (La Bella et al. 1989; Martinelli and Heintz 1994; Gallinari et al. 1989)	R00659, R00660
8	CCATTGGTTAAA	CCAAT-box: H1TF2 (La Bella et al. 1989; Martinelli and Heintz 1994; Gallinari et al. 1989), HiNF-B (van Wijnen et al. 1988a,b), NF-Y (Mantovani 1999), HiNF-D (van Wijnen et al. 1996; Grimes et al. 2003)	R00660
9	222222222222	GC-box: HiNF-C (van Wijnen et al. 1989), Sp1 (Courey and Tjian 1988), Sp3 (Bimbaum et al. 1995; Hagen et al. 1994)	R00684

Diagnosis of Childhood Acute Lymphoblastic Leukemia (ALL) and Optimization of Risk-Benefit Ratio of Therapy

Affymetrix GeneChip Micro Array Analysis

Proteomics Data : Guilt-by-Association

Proteomics Data: Subgraphs in Protein Interaction

Topology of Protein Interaction Networks: Hubs, Cores, Bipartites

Yeast SH3 domain-domain Interaction network: 394 edges, 206 nodes Tong et al. *Science*, v295. 2002

8 proteins containing SH3 5 binding at least 6 of them

Prognosis based on Gene Expression Profiling

Discovery of Diagnostic Biomarkers for Ovarian Cancer

- Motivation: cure rate ~ 95% if correct diagnosis at early stage
- Proteomic profiling data obtained from patients' serum samples
- The first data set by Petricoin et al was published in *Lancet*, 2002
- Data set of June-2002.
- 253 samples: 91 controls and 162 patients suffering from the disease; 15154 features (proteins, peptides, precisely, mass/charge identities)

SVM: 0 errors; Naïve Bayes: 19 errors; *k*-NN: 15 errors.

Mining Errors from Bio Databases

Rule 1. Identical sequences with the same sequence length and not originated from PDB are 99.7% likely to be duplicates.

Rule 2. Identical sequences with the same sequence length and of the same species are 97.1% likely to be duplicates.

Rule 3. Identical sequences with the same sequence length, of the same species and not originated from PDB are 96.8% likely to be duplicates.

- Yeoh et al., Cancer Cell 1:133-143, 2002; Differentiating MLL subtype from other subtypes of childhood leukemia
- Training data (14 MLL vs 201 others), Test data (6 MLL vs 106 others), Number of features: 12558

Phylogenetic tree construction

Time since split

- Estimate order in which "populations" evolved
- Based on assimilated freq of many different genes
 - is human evolution a succession of population fissions?
 - Is there such thing as a proto-Anglo-Italian population which split, never to meet again, and became inhabitants of England and Italy?

Predicting interactions using phylogenetic profile

Pellegrini et al. PNAS 96, 4285-4288 (1999)

Comparative genomics

