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Abstract. Abstract argumentation, as originally defined by Dung, is a model that allows the description of certain information
about arguments and relationships between them: in an abstract argumentation framework (AF), the agent knows for sure
whether a given argument or attack exists. It means that the absence of an attack between two arguments can be interpreted as
“we know that the first argument does not attack the second one”. But the question of uncertainty in abstract argumentation has
received much attention in the last years. In this paper, we survey approaches that allow to express information like “There may
(or may not) be an attack between these arguments”. We describe the main models that incorporate qualitative uncertainty (or
ignorance) in abstract argumentation, as well as some applications of these models. We also highlight some open questions that
deserve some attention in the future.

Keywords: Abstract argumentation, uncertainty, ignorance, complexity

1. Introduction

Abstract argumentation [44] has become a prominent subfield of non-monotonic reasoning. The clas-
sical model consists of a directed graph where the nodes are pieces of information called arguments,
and the edges represent the conflicts between arguments, called attacks. It can be applied to different
domains, especially in multi-agent systems where argument-based dialogues can be used for deliber-
ation [6], negotiation [4] or persuasion [27]. However, this model does not allow to express uncertain
information, like “this argument may exist (or not)” or “there may be an attack from this argument to
this one”. The increase of expressivity of the model (regarding uncertainty) has been motivated, first,
by the issue of merging several argumentation frameworks (corresponding to the knowledge of different
agents) into a global view of the group’s knowledge [33]. In this context, Partial Argumentation Frame-
works are defined as complete directed graphs with three different kinds of edges, that represent the
certain existence of attacks, the certain non-existence of attacks, and the ignorance about the existence
of attacks. The model expressivity has been further increased with the definition of Incomplete Argu-
mentation Frameworks (IAFs) that allow to express uncertainty about the existence of arguments (with
two different kinds of nodes in the graph). Finally, a new kind of uncertainty has been proposed in [39]:
the ignorance about the direction of attacks. It has been defined in the context of Control Argumenta-
tion Frameworks, that allow to model uncertainty in dynamic and strategic scenarios, like automated
negotiation [40,41].
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The three kinds of uncertainty that have been considered in the literature can all be motivated by
concrete situations. First, the uncertainty about the existence of an attack can be naturally identified
with uncertainty about the preferences between arguments. Indeed, in Preference-based Argumentation
Frameworks [2], the attack relation is combined with preferences over the set of arguments to build a
new relation, generally called defeat. An argument a defeats an argument b if a attacks b and b is not
preferred to a. Thus, if an agent is not sure whether b is preferred to a, she does not know whether a

defeats b or not. An IAF can be used to abstract away from the Preference-based AF: pairs of arguments
(a, b) such that a certainly defeat b can be considered as “certain attacks” in the IAF, while situations
where the agent is not sure whether b is preferred to a are “uncertain attacks” in the IAF. For the same
reason, if there are attacks (a, b) and (b, a) in the Preference-based AF, and the agent is not sure of the
preferences between a and b, then it can be modeled as an “attack with uncertain direction” in the IAF:
either a attacks b (modeling the case where a is preferred to b), or b attacks a (modeling the opposite
situation), or both at the same time (modeling the situation where none of a and b is preferred to the
other argument). Studying uncertainty about the existence of arguments has also good motivations. If
we consider the underlying structure of arguments (e.g. logic-based arguments [24]), it makes sense to
consider that, at some specific point in time, the premises of an argument may not be a consequence of an
agent’s knowledge base (or the agent knows that these premises are revisable information). This means
that this argument may not actually be “activated” for the moment (or will not remain so in the future).
Also, even without considering the internal structure of arguments, uncertainty about the arguments is
natural in scenarios like opponent modeling in dialogues. For instances, in argument-based negotiation
[40,41], an agent may have a model of her opponent, that is used to help her choosing the best arguments.
In such a situation, the agent does not usually know perfectly her opponent’s knowledge and beliefs, thus
she cannot model with certainty which arguments the opponent will use in the dialogue.

This paper describes the main works in this line of research. After a brief description of background
notions of propositional logic, computational complexity and abstract argumentation in Section 2, we
describe Incomplete Argumentation Frameworks (IAFs, Section 3): the general model as well as sub-
classes and the complexity of reasoning for two kinds of approaches (based either on completions of
the IAF, or on a re-definition of basic concepts like conflict-freeness or defense). Then, in Section 4,
we present Control Argumentation Frameworks (CAFs), that allow the modeling of uncertainty in dy-
namic and strategic contexts. We discuss several applications of IAFs and CAFs in Section 5, and several
related notions in Section 6. Finally, Section 7 concludes the paper and highlights some open questions.

2. Background

2.1. Propositional logic

We consider a set V of Boolean variables, i.e. variables that can be assigned a value in B = {0, 1},
where 0 is interpreted as false and 1 as true. A well-formed propositional formula φ is then:

• φ = x, with x ∈ V , is called an atomic formula,
• φ = φ1 ∧ φ2, with φ1 and φ2 two well-formed formulas, is the conjunction of φ1 and φ2,
• φ = φ1 ∨ φ2, with φ1 and φ2 two well-formed formulas, is the disjunction of φ1 and φ2,
• φ = ¬φ′, with φ′ a well-formed formula, is the negation of φ′.

We use var(φ) to denote the set of Boolean variables that appear in φ.
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An interpretation is then a mapping ω : V → B, i.e. an assignment of a truth value to every variable.
The notion can be generalized to formulas:

• ω(φ1 ∧ φ2) = 1 if and only if ω(φ1) = 1 and ω(φ2) = 1,
• ω(φ1 ∨ φ2) = 1 if and only if ω(φ1) = 1 or ω(φ2) = 1,
• ω(¬φ′) = 1 if and only if ω(φ) = 0.

An interpretation ω is called a model of φ if ω(φ) = 1. The set of models of φ is denoted by mod(φ).
Determining whether a formula has at least one model is the well-known Boolean Satisfiability problem
(SAT). Although it is theoretically intractable (see Section 2.2), modern SAT solvers can handle large
instances of this problem [54]. Two formulas φ, ψ are logically equivalent when they have the same
set of models, which is denoted by φ ≡ ψ . We use this notion to introduce additional connectives, that
allow a more compact writing of formulas:

• the implication φ → ψ ≡ ¬φ ∨ ψ ,
• the equivalence φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ).

2.2. Computational complexity

In this part, we briefly describe some background notions on computational complexity, that are im-
portant for understanding the relative hardness of the computational problems that will be presented.
First, let us mention that we focus on decision problems, that are computational problems that must be
answered by a binary answer “YES” or “NO”. We will describe complexity classes, that are simply sets
of decision problems that share some properties regarding the time (or space) necessary for solving them.
The first one is made of problems that are considered to be tractable: P is the set of decision problems
that can be solved in polynomial time. More formally, for any P ∈ P, there is a deterministic algorithm
that can decide any instance i of P in (at most) nk computation steps, where n is the size of the instance
i, and k ∈ N is a fixed constant. The assumption that the algorithm is deterministic is important here.
A subclass of P that we consider in this paper is L, the set of decision problems that can be decided in
logarithmic space by a deterministic algorithm.

While all these problems are considered as “easy” ones, we also define classes characterized by non-
deterministic algorithms that are considered as computationally hard. Let us first introduce NP, the set
of decision problems that can be solved in polynomial time by a non-deterministic algorithm. Another
way to characterize NP is to use the notion of witness. Given an instance i of a problem P ∈ NP, define
w(i) the set of potential witnesses that prove that i is a “YES” instance of P . NP is the set of decision
problems such that for each instance i,

• w(i) is non-empty,
• for any x ∈ w(i), verifying whether x is actually a witness is in P,
• if i is actually a “YES” instance, then there is at least one x ∈ w(i) that is an actual witness for i.

For clarifying the concept of witness, let us mention the classical Boolean Satisfiability problem (SAT).
Potential witnesses that a propositional formula φ is satisfiable are all the propositional interpretations
on the set of variables var(φ), so w(φ) 	= ∅. For any propositional interpretation, it can be polynomially
checked whether it satisfies φ or not, i.e. proving whether it is actually a witness for φ. A usual way to
rephrase the definition of NP using witnesses is the following one: NP is the set of problems that may be
hard to solve, but such that checking a solution is easy.
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The complementary of a complexity class C is C = {P | P ∈ C}, where the complementary problem
P of P is the decision problem built on the same set of instances as P , such that the “YES” instances
become “NO” instances (and vice-versa). Then, coNP can be defined as NP. It is well-known that P ⊆
NP and P ⊆ coNP.1

The classes P, NP and coNP form the first levels of the polynomial hierarchy [79]. To define higher
levels, we need to introduce the concept of oracle. An oracle for a class C can be seen as a black box that
solves a problem from C in a single step. Then, the complexity class CC′

is the set of decision problems
that can be solved by a C algorithm that has access to a C ′ oracle. For instance, PNP is the set of problems
that can be solved in polynomial time by a deterministic algorithm that has access to an NP oracle. The
concept of oracles allows to define recursively the classes �P

k , �P
k and �P

k , where k ∈ N. Formally,
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These classes are related by inclusion relations: for any k ∈ N, �P
k ⊆ �P

k and �P
k ⊆ �P

k . In turn,
�P

k ⊆ �P
k+1 and �P

k ⊆ �P
k+1. These inclusions are illustrated by Fig. 1, where an arrow from C to

C ′ means that C ⊆ C ′. It is usually assumed that the polynomial hierarchy does not collapse (i.e. the
inclusions are strict), although it has never been proven. This means that problems in a complexity class
from the level k are supposed to be harder than problems from a level k′ < k.

We present a last complexity class, namely DP, which stands for Differential Polynomial Time. It was
first introduced by [75], as the set of decision problems

DP = {P1 ∩ P2 | P1 ∈ NP,P2 ∈ coNP}

where P ′ = P1 ∩P2 is the decision problem built from the same instances as P1 and P2, and i ∈ P1 ∩P2

is a “YES” instance of P ′ if and only if it is a “YES” instance for both P1 and P2. Both NP and coNP
are included in DP, which is in turn included in �P

2 .
Let us conclude this part on computational complexity with the notion of hardness. Intuitively, a

problem P is said to be C-hard if it is as hard as any problem P ′ ∈ C. The notion of “as hard as” is
formally defined through the notion of reduction. A reduction from P ′ to P is a mapping f : IP ′ → IP
(where IP ′ and IP are, respectively, the instances of P ′ and the instances of P), such that i ∈ IP ′ is a
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Fig. 1. The polynomial hierarchy.

1Whether the opposite inclusions hold or not is still an open problem at the time of writing. See e.g. https://www.claymath.
org/millennium-problems/p-vs-np-problem.

https://www.claymath.org/millennium-problems/p-vs-np-problem
https://www.claymath.org/millennium-problems/p-vs-np-problem
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“YES” instance of P ′ if and only if f (i) is a “YES” instance of P . If f can be computed in polynomial
time, then we write P ′ �P

f P , which means that P is (at least) as hard as P ′. For C a class of the
polynomial hierarchy with k � 1, we say that P is C-hard if and only if ∀P ′ ∈ C, P ′ �P

f P . A notion of
P-hardness can also be defined, using logarithmic reductions instead of polynomial ones, i.e. f must be
computable in polynomial time, using logarithmic space. While the notion of hardness provides a lower
bound for the complexity of a problem, the membership of a problem P to a class C provides an upper
bound. When both bounds coincide (i.e. P is C-hard, and P ∈ C), we say that P is C-complete. This
means, intuitively, that P is one of the hardest problems in C. Since �P

f (and the logarithmic counterpart)
is transitive, there is no need to prove that P ′ �P

f P for each P ′ ∈ C for showing that P is C-hard; proving
that P ′ �P

f P for some C-hard problem P ′ is enough. SAT (and variants of it) can be used for that, since
it is the first problem that was proven to be NP-complete [32].

We refer the interested reader to [7] for more details on the theory of computational complexity.

2.3. Abstract argumentation

Abstract argumentation has been introduced by Dung [44] as the study of arguments acceptability
based only on their relationship. It means that arguments are considered as atomic pieces of information:
their internal structure and their origin are ignored in the reasoning process. Only the attacks between
them matter for determining which arguments can be accepted. Formally:

Definition 1 (Argumentation Framework [44]). An abstract Argumentation Framework (AF) is a di-
rected graph F = 〈A, R〉 where the nodes A are arguments, and the edges R ⊆ A × A are attacks.

In this paper, we consider only finite AFs, i.e. A is a finite set of arguments. For a, b ∈ A, we say
that a attacks b if (a, b) ∈ R. The notion of attack can be extended to sets of arguments: S ⊆ A attacks
an argument b ∈ A if there is some a ∈ S that attacks b. Finally, an argument a ∈ A is defended by
the set S ⊆ A if, ∀b ∈ S such that (b, a) ∈ R, ∃c ∈ S such that (c, b) ∈ R (i.e. each attacker of a is
counter-attacked by an element of S).

Example 1. Figure 2 depicts an AF F = 〈A, R〉 with A = {a1, a2, a3, a4, a5, a6, a7} and R =
{(a1, a2), (a2, a3), (a3, a4), (a4, a3), (a4, a5), (a5, a6), (a6, a7), (a7, a5)}. The set of arguments S =
{a1, a3} defends a3 since both its attackers are attacked by an element of S: we have (a1, a2) ∈ R

and (a3, a4) ∈ R.

The acceptability of arguments is classically evaluated through the notion of extensions, i.e. sets of
collectively acceptable arguments. A set of arguments has to satisfy some properties to be an extension.
The basic principles that underly most extension-based semantics are conflict-freeness and admissibility:

a1 a2 a3 a4 a5

a6

a7

Fig. 2. An example of argumentation framework.
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Definition 2 (Conflict-freeness and Admissibility). Given F = 〈A, R〉 an AF, S ⊆ A is called conflict-
free if ∀a, b ∈ S, (a, b) /∈ R. A conflict-free set if called admissible if it defends all its elements.

Conflict-free and admissible sets of an AF F are (respectively) denoted cf (F) and adm(F). Conflict-
freeness means that a set of arguments must be internally coherent in order to be acceptable, and admis-
sibility means that it must somehow survive any threat, i.e. any attack against it.

Example 2. Continuing the previous example, observe that the set of arguments S = {a1, a3} is admis-
sible: it is conflict-free, and it defends all its elements.

From these basic requirements, extensions are defined following four semantics, proposed in [44]. For-
mally, an extension-based semantics is a mapping from an AF F = 〈A, R〉 to a set of sets of arguments
σ(F) ⊆ 2A.

Definition 3 (Extension-based Semantics). Given F = 〈A, R〉 an AF, an admissible set S ⊆ A is:

• a complete extension (co) if it contains all the arguments that it defends;
• a preferred extension (pr) if it is a ⊆-maximal admissible set;
• a grounded extension (gr) if it is a ⊆-minimal complete extension;
• a stable extension (stb) if it attacks all the arguments in A \ S.

Other semantics have been defined since then; see [9] for an overview. It is well-known since Dung’s
seminal paper [44] that, for any AF F , |gr(F)| = 1, stb(F) ⊆ pr(F) ⊆ co(F), and |pr(F)| � 1. On
the contrary, the stable semantics is not universally defined, i.e. there are some AFs F with stb(F) = ∅.

From a set of extensions σ(F), two classical reasoning modes are used to determine the set of accept-
able arguments.

Definition 4 (Argument Acceptability). Given F = 〈A, R〉 an AF and σ an extension-based semantics,
an argument a ∈ A is

• credulously acceptable with respect to σ if it belongs to some σ -extension of F ,
• skeptically acceptable with respect to σ if it belongs to each σ -extension of F ,
• rejected otherwise.

We use credσ (F) and skepσ (F) to denote the sets of credulously and skeptically acceptable arguments.
Under most semantics, skepσ (F) ⊆ credσ (F) and the rejected arguments are A\credσ (F). Notice that it
is not the case under the stable semantics, for AFs F such that stb(F) = ∅. In that case, credstb(F) = ∅,
and skepstb(F) = A.

Example 3. We continue the previous example again. Considering F from Fig. 2, and σ ∈
{gr, stb, pr, co}, Table 1 describes the σ -extensions of F , as well as the sets of credulously and skepti-
cally acceptable arguments.

The complexity of various reasoning problems has been studied in the past. A recent overview is
provided by [48]. Let us formally define some of these problems, namely Verification (Ver), Credulous
Acceptability (CA), Skeptical Acceptability (SA) and Non-Empty Existence (NE), that will be of interest
in the rest of the paper.
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Table 1

Extensions of F and acceptable arguments under σ ∈ {gr, stb, pr, co}
Semantics σ σ(F) credσ (F) skepσ (F)

gr {{a1}} {a1} {a1}
stb {{a1, a4, a6}} {a1, a4, a6} {a1, a4, a6}
pr {{a1, a4, a6}, {a1, a3}} {a1, a3, a4, a6} {a1}
co {{a1, a4, a6}, {a1, a3}, {a1}} {a1, a3, a4, a6} {a1}

Table 2

Complexity of σ -Ver, σ -CA, σ -SA and σ -NE, for σ ∈
{cf , adm, gr, stb, co, pr} [34,42,44,45,49]. C-c means C-
complete

Semantics σ σ -Ver σ -CA σ -SA σ -NE

cf in L in L trivial in L

adm in L NP-c trivial NP-c
gr P-c P-c P-c in L

stb in L NP-c coNP-c NP-c
co in L NP-c P-c NP-c
pr coNP-c NP-c �P

2 -c NP-c

σ -Ver Given F = 〈A, R〉 an AF and S ⊆ A, is S a σ -extension of F?
σ -CA Given F = 〈A, R〉 an AF and a ∈ A, is a credulously acceptable in F under σ?
σ -SA Given F = 〈A, R〉 an AF and a ∈ A, is a skeptically acceptable in F under σ?
σ -NE Given F = 〈A, R〉 an AF, does F admit a non-empty σ -extension?

Their complexity is described in Table 2. In the table, “trivial” means that the answer is trivially
“NO” for any instance: indeed, ∅ is conflict-free and admissible for every AF, so there is no skeptically
acceptable argument with respect to conflict-freeness and admissibility.

Finally, let us discuss the specificity of some semantics regarding the empty set and skeptical accept-
ability. The stable semantics is the only semantics for which there are AFs F such that stb(F) = ∅.
We have already mentioned that, in this case, the classical definition of skeptical acceptability leads to
the acceptability of each argument. This may seem counterintuitive for some applications. This has con-
ducted to the definition of an alternative decision problem, which consists in determining whether the
AF has at least one extension (here, the non-emptyness is not important), and then whether the given
argument is skeptically accepted. This is the problem of Existence and Skeptical Acceptability (ExSA),
formally:

σ -ExSA Given F = 〈A, R〉 an AF and a ∈ A, do σ(F) 	= ∅ and a ∈ ⋂
E∈σ(F) E hold?

For the other semantics from Definition 3, (as well as conflict-freeness and admissibility), the existence
of at least one extension for any AF is guaranteed, so ExSA coincides with SA. However, the empty
set yields some problem for skeptical acceptability in other cases. Indeed, as mentioned before, σ -SA
is trivial (with all instances being “NO” instances) for σ ∈ {cf , adm}, because ∅ is conflict-free and
admissible for any AF. This issue has conducted to the definition of alternative versions of these “se-
mantics”: σ	=∅, where σ ∈ {cf , adm}, is defined by σ	=∅(F) = σ(F) \ {∅}. These alternative versions of
conflict-freeness and admissibility solve the issue of triviality for skeptical acceptance, but they face the
same issue as the stable semantics, since σ	=∅(F) may be empty. Thus, ExSA has also been studied for
these semantics. The complexity of ExSA is described in Table 3.



298 J.-G. Mailly / Yes, no, maybe, I don’t know

Table 3

Complexity of σ -ExSA for σ ∈ {cf 	=∅, adm 	=∅,
stb} [47,73]

Semantics σ σ -ExSA

cf 	=∅ in P

adm 	=∅ DP-complete
stb DP-complete

3. Incomplete argumentation frameworks

In this section, we describe the first models of incompleteness in abstract argumentation, and then
Incomplete Argumentation Frameworks (IAFs) that generalize both previous models. We present the
complexity and algorithms for several related decision problems. We also present a particular family
of semantics, initially defined for Partial AFs, a subclass of IAFs, and then generalized to the full IAF
model.

3.1. Attack-incompleteness and argument-incompleteness

From a historical point of view, the first model that extends Dung’s abstract argumentation framework
with incompleteness is the so-called Partial Argumentation Framework (PAF), proposed in [33]. A PAF
is a tuple P = 〈A, R, I, N〉 where A is a set of arguments, and R, I , N form a partition of A × A,
where R is the attack relation, I is the ignorance relation, and N is the non-attack relation. Intuitively,
(a, b) ∈ R means that the agent knows for sure that a attacks b, while (a, b) ∈ I means that the agent
ignores whether it is the case or not. Finally, (a, b) ∈ N means that the agent knows for sure the that a

does not attack b. As mentioned by the authors of the original paper, N can be deduced from R and I

(since N = (A × A) \ (R ∪ I )), thus any PAF can be fully specified by 〈A, R, I 〉. This model is used
in a context of merging several argumentation frameworks, each of them representing the knowledge of
one agent [33] (see Section 5.1 for more details). The notion of completion of a PAF 〈A, R, I 〉 is defined
as a standard AF that “solves” the uncertainty in the PAF, i.e. 〈A, R′〉 such that R ⊆ R′ ⊆ R ∪ I . The
model was further studied in [29], where semantics adapted to this setting are defined (see Section 3.4),
without using the notion of completion.

While the literature on PAFs is quite sparse, the model has been later re-named as Attack-Incomplete
Argumentation Framework (Att-IAF) [16]. An Att-IAF is then a tuple 〈A, R, R?〉 (where R? corresponds
to I in PAFs). The focus of [16] is the verification problem, i.e. given an Att-IAF I, a set of arguments
S and a semantics σ , is S a σ -extension of some (or each) completion of I?

Then, a similar question has been studied for Argument-Incomplete Argumentation Framework (Arg-
IAF) [19], i.e. argumentation frameworks where the actual existence of some arguments is uncertain. An
Arg-IAF is a tuple 〈A, A?, R〉 such that R ⊆ A ∪ A?, and a completion is then a standard AF 〈A′, R′〉
where A ⊆ A′ ⊆ A ∪ A?, and R′ = R ∩ (A′ × A′).

The (generalized) Incomplete Argumentation Framework models situations where both arguments and
attacks can be uncertain. We focus on this framework in the rest of the section, and give more details on
the reasoning based on completions (similar to the approach studied in [16,19]), and the reasoning based
on redefinition of basic notions like conflict-freeness and defense (in the spirit of [29]).

3.2. The generalized IAF model

Incomplete AFs were first defined in [18], which generalizes the work from [16,19].
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Definition 5 (Incomplete Argumentation Framework). An Incomplete Argumentation Framework (IAF)
is a tuple I = 〈A, A?, R, R?〉 where A and A? are disjoint sets of arguments, and R, R? ⊆ (A ∪ A?) ×
(A ∪ A?) are disjoint sets of attacks.

Elements in A and R are called certain (or definite) arguments and attacks, while A? and R? are uncer-
tain arguments and attacks. We have already briefly discussed, in the introduction, the intuitive meaning
of the different kinds of arguments and attacks. Roughly speaking, they can be seen as an abstraction
of information regarding the internal structure of arguments (e.g. the validity of the arguments premises
may change through time), or additional knowledge (e.g. unknown preferences between arguments).
They can also represent potential evolution of the AF (e.g. in the case of a debate, uncertain arguments
and attacks can be seen as those that can be used – or not – by other agents). Notice a particular case: an
uncertain argument a ∈ A? that certainly attacks (or is attacked by) another argument b ∈ A ∪ A?, i.e.
(a, b) ∈ R (or (b, a) ∈ R). This specific kind of attack is sometimes called conditionally definite, which
means that this attacks certainly exists if a and b actually exist. A concrete case where this happens is a
debate, where a is an argument that could be used by another agent. We can be sure that – if it appears
in the debate – a attacks b (e.g. because a thorough analysis of their internal content shows some logical
inconsistency between them), but there is no certainty that the opponent will use a.

Example 4. Figure 3 describes an IAF I = 〈A, A?, R, R?〉. Certain arguments A = {a, b, c} and
attacks R = {(b, a), (e, b)} are represented by plain nodes and arrows, while uncertain attacks R? =
{(c, a), (d, b)} are dotted arrows, and uncertain arguments A? = {d, e} are dashed nodes.

The (most classical) way of reasoning with an IAF is based on the notion of completions, that are
(standard) AFs corresponding to a possible resolution of the uncertainty encoded in the IAF. Before
formally defining completions, we introduce a notation: given a set of attacks Att and a set of arguments
Arg, Att|Arg � Att ∩ (Arg × Arg).

Definition 6 (Completion of an IAF). Given an IAF I = 〈A, A?, R, R?〉, a completion is an AF F =
〈A′, R′〉 with

• A ⊆ A′ ⊆ A ∪ A?,
• R|A′ ⊆ R′ ⊆ (R ∪ R?)|A′ .

The set of completions of I is comp(I).

Example 5. Figure 4 gives the completions of I (Fig. 3). We can observe that certain arguments appear
in all completions, and certain attacks appear in all the completions that contain both incident arguments
(e.g. (e, b) appears in all the completions where e appears).

This model is quite general, and includes previously defined models (i.e. those described in Sec-
tion 3.1) as subclasses. First, a Partial AF (PAF) [33] P = 〈A, R, I 〉 can be seen as an IAF with A? = ∅

a b

c d

e

Fig. 3. An IAF I.
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(a) F1
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(b) F2
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(d) F4

a b

c d

(e) F5

a b

c d

(f) F6

a b

c

e

(g) F7

a b

c d

e

(h) F8

a b

c d

e

(i) F9

a b

c

e

(j) F10

a b

c d

e

(k) F11

a b

c d

e

(l) F12

Fig. 4. The completions of I.

and R? = I . Recall that the same model was studied under the name Attack Incomplete AF (Att-IAF) in
[16]. On the contrary, an Argument Incomplete AF (Arg-IAF) [19] is a tuple 〈A, A?, R〉, i.e. an IAF with
R? = ∅.

Two families of reasoning approaches have been defined. In most of the cases, reasoning is based
on the set of completions. For instance, an argument is possibly accepted if it is accepted in some
completion, and necessarily accepted if it is accepted in each completion. We describe this approach in
Section 3.3. Another approach (the first one, from a chronological point of view) consists in adapting
the basic notions of conflict-freeness and defense, on which Dung’s semantics are based. This allows
to define new semantics suited to the specific framework at hand. It was proposed in [29] for PAFs and
later generalized to IAFs [65], and we describe it in Section 3.4.

3.3. Possible and necessary reasoning

Similarly to credulous and skeptical reasoning, based on a set of extensions, two modes of reasoning
can be used when inference is made from a set of completions. Possible reasoning is the counterpart
(for completions) of credulous reasoning (for extensions). It means that we expect some property to be
satisfied in some completion. On the contrary, necessary reasoning is the counterpart (for completions) of
skeptical reasoning (for extension): the property must be satisfied in each completion. A natural example
where both reasoning modes make sense is a trial. There may be uncertainty arising in such scenario. The
prosecutor’s goal is to prove that the defendant is guilty without any doubt, i.e. it must be a consequence
of every completion. On the contrary, the defendant’s lawyer has to prove that the defendant may be
innocent (this is the presumption of innocence), i.e. it must be a consequence of some completion.

Possible and necessary modes of reasoning can be combined with any decision problem of interest
regarding argumentation frameworks. Interestingly, being “skeptical” about the completions does not
means that the agent has to be skeptical about the extensions (and vice-versa). So, both credulous and
skeptical reasoning, as well as verification and non-empty existence, have been adapted for IAFs under
the possible and necessary views.
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3.3.1. Complexity
Now we discuss the different reasoning problems for IAFs that have been studied in the literature, as

well as their complexity.

Verification. The first study on extension verification for IAFs was described in [18]:2

σ -IncPV Given I = 〈A, A?, R, R?〉 an IAF and S ⊆ A ∪ A?, is there F ∈ comp(I) such that S ∩ A′
is a σ -extension of F?

σ -IncNV Given I = 〈A, A?, R, R?〉 an IAF and S ⊆ A ∪ A?, for each F ∈ comp(I), is S ∩ A′ a
σ -extension of F?

Example 6. Let us consider again I = 〈A, A?, R, R?〉 (Fig. 3), and the set S = {a, b}. Since S is not
conflict-free regarding the certain attack relation R, it is not conflict-free in any completion of I, thus
it cannot be an extension for any semantics considered in this paper. The pair (I, S) is thus a “NO”
instance for σ -IncPV and σ -IncNV.

Now, consider S ′ = {a, c, d, e}. S ′ is a σ -extension (σ ∈ {co, pr, stb, gr}) for some completions of
I (e.g. F8, see Fig. 4), so (I, S ′) is a “YES” instance for σ -IncPV. It is, however, a “NO” instance for
σ -IncNV, because it is not conflict-free in completions where (a, c) exists (e.g. F12).

Finally, we show that there is no “YES” instance with I for σ -IncNV (for σ one of the semantics
considered here). Towards a contradiction, suppose that there is some set S ′′ such that S ′′ ∩ A′

i is a σ -
extension of Fi = 〈A′

i , R
′
i〉 for each completion Fi ∈ comp(I). S ′′ must contain c, d and e since they

are unattacked in e.g. F12, they appear in every σ -extension of it. For similar reasons, S ′′ must contain b

(which is unattacked in e.g. F4, thus it belongs to every extension of it). Already we face a contradiction:
if b ∈ S ′′, then S ′′ /∈ σ(F12) because b is attacked by the (unattacked) arguments d and e in F12.

Further research on extension verification has been conducted. In [50], a set of arguments for which
the answer to σ -IncPV (respectively σ -IncNV) is “YES” is called a possible (respectively necessary)
i-extension. The authors identify some issues with this definition (for instance, a set of arguments could
be identified as a possible i-extension even if it is not conflict-free). To remedy this issue, they define
i∗-extensions, and the corresponding verification problems:

σ -IncPV∗ Given I = 〈A, A?, R, R?〉 an IAF and S ⊆ A ∪ A?, is there F ∈ comp(I) such that S is a
σ -extension of F?

σ -IncNV∗ Given I = 〈A, A?, R, R?〉 an IAF and S ⊆ A ∪ A?, for each F ∈ comp(I), is S a σ -
extension of F?

Example 7. Observe that in I = 〈A, A?, R, R?〉 (Fig. 3), S = {b, c, e} is a possible σ i-extension
(σ ∈ {co, pr, stb, gr}), i.e. (I, S) is a “YES” instance for σ -IncPV. For instance, in F1 = 〈A′

1, R
′
1〉

(Fig. 4), S∩A′
1 = {b, c} is a σ -extension. It is counterintuitive, since S is not conflict-free in completions

where S ⊆ A′
i . On the contrary, (I, S) is a “NO” instance for σ -IncPV∗, since there is no completion

such that S is an extension of it.

We refer the interested reader to [50] for a more detailed discussion of the difference between i-
extensions and i∗-extensions.

2See [16,19] for preliminary results regarding verification in Att-IAFs and Arg-IAFs.
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Argument acceptability. Then, the (possible and necessary) variants of credulous and skeptical accept-
ability are studied in [15,17]:

σ -PCA Given I = 〈A, A?, R, R?〉 an IAF and a ∈ A, is there F ∈ comp(I) such that a ∈⋃
E∈σ(F) E?

σ -NCA Given I = 〈A, A?, R, R?〉 an IAF and a ∈ A, for each F ∈ comp(I), is a ∈ ⋃
E∈σ(F) E?

σ -PSA Given I = 〈A, A?, R, R?〉 an IAF and a ∈ A, is there F ∈ comp(I) such that a ∈⋂
E∈σ(F) E?

σ -NSA Given I = 〈A, A?, R, R?〉 an IAF and a ∈ A, for each F ∈ comp(I), is a ∈ ⋂
E∈σ(F) E?

Example 8. We continue the previous example, with I = 〈A, A?, R, R?〉 from Fig. 3. Notice that, since
all the completions are acyclic graphs, they all have one extension which is complete, preferred, stable
and grounded at the same time (this result is known since Dung’s seminal paper [44]). (I, a) is a “YES”
instance for σ -PCA and σ -PSA for all considered semantics, since a belongs to the (unique) extension
of some completions of I (e.g. F3), but it is a “NO” instance for σ -NCA and σ -NSA because a is not
accepted in each completion (see e.g. F1). On the contrary, (I, c) is a “YES” instance for σ -NCA and
σ -NSA, since c belongs to the (unique) extension of every completion.

Non-empty existence. The variants of non-empty existence have been defined in [77,78]:

σ -PNE Given I = 〈A, A?, R, R?〉 an IAF, is there F ∈ comp(I) with a non-empty σ -extension?
σ -NNE Given I = 〈A, A?, R, R?〉 an IAF, for each F ∈ comp(I), does F have a non-empty σ -

extension?

Example 9. The IAF I from Fig. 3 is a “YES” instance for both σ -PNE and σ -NNE, since all the
completions possess (exactly) one non-empty extension for all the semantics under consideration.

Actually, [77] also mentions the “existence problem”, where the answer is true if there is an extension
(empty or not). For most semantics, the answer to this question is trivially “YES” for any AF (thus, for
any completion of any IAF). The only case where this problem is not trivial is the stable semantics, but
then it coincides with the non-empty existence problem, so we choose not to give more details about this
(less demanding) version.

The complexity of these problems under various classical semantics is summarized in Table 4.

Existence and skeptical acceptability. Like in the case of classical AFs, the ExSA problem (or more
precisely its adaptations to IAFs) has only been studied for σ ∈ {cf 	=∅, adm 	=∅, stb}. The formal definition

Table 4

Complexity of reasoning with IAFs under σ ∈ {adm, stb, co, gr, pr} [15,18,50,77]. C-c means C-complete

σ σ -IncPV σ -IncNV σ -IncPV∗ σ -IncNV∗ σ -PCA σ -NCA σ -PSA σ -NSA σ -PNE σ -NNE

adm NP-c P P P NP-c �P
2 -c trivial trivial NP-c �P

2 -c
stb NP-c P P P NP-c �P

2 -c �P
2 -c coNP-c NP-c �P

2 -c
co NP-c P P P NP-c �P

2 -c NP-c coNP-c NP-c �P
2 -c

gr NP-c P P P NP-c coNP-c NP-c coNP-c P P
pr �P

2 -c coNP-c �P
2 -c coNP-c NP-c �P

2 -c �P
3 -c �P

2 -c NP-c �P
2 -c
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Table 5

Complexity of σ -PExSA and σ -NExSA under σ ∈
{cf 	=∅, adm 	=∅, stb} [73]. C-c means C-complete

σ σ -PExSA σ -NExSA

cf 	=∅ in P in P

adm 	=∅ �P
2 -c �P

2 -c
stb �P

2 -c �P
2 -c

a b

(a) I

a b

(b) F1

a b

(c) F2

Fig. 5. An IAF and its two completions.

is as follows:

σ -PExSA Given I = 〈A, A?, R, R?〉 an IAF and a ∈ A, is there F ∈ comp(I) such that σ(F) 	= ∅
and a ∈ ⋂

E∈σ(F) E?
σ -NExSA Given I = 〈A, A?, R, R?〉 an IAF and a ∈ A, for each F ∈ comp(I), do σ(F) 	= ∅ and

a ∈ ⋂
E∈σ(F) E hold?

Complexity of these problems was also established, results are reported in Table 5.

Example 10. Let I = 〈A, A?, R, R?〉 be the IAF depicted in Fig. 5(a), with its completions comp(I) =
{F1,F2} given in Fig. 5(b) and 5(c). F1 has no stable extension, while F2 has one stable extension {b}.
Thus, (I, b) is a “YES” instance for stb-PExSA, and a “NO” instance for stb-NExSA.

3.3.2. Algorithms
A computational method based on Boolean satisfiability has been proposed for acceptance problems

in IAFs [73]. Some problems are at the first level of the polynomial hierarchy, and thus can be translated
into instances of the SAT or UNSAT problems. Then, a CEGAR (CounterExample Guided Abstraction
Refinement [31]) algorithm based on a SAT oracle is proposed for second level complete problems. Let
us briefly describe the Boolean encodings, based on standard translation of semantics by [21].

Given an IAF I = 〈A, A?, R, R?〉, define Boolean variables xa , ya for each a ∈ A ∪ A?, and ra,b for
all (a, b) ∈ R ∪ R?, with the following meaning:

• ya = 1 if and only if a ∈ A′,
• ra,b = 1 if and only if (a, b) ∈ R′,
• and xa = 1 if and only if ∃E ∈ σ(F ′) such that a ∈ E,

where F ′ = 〈A′, R′〉 is a completion of I associated with the ya and ra,b variables, and σ is a semantics.
The structural information about completions is encoded by

φ?(I) =
∧
a∈A

ya ∧
∧

(a,b)∈R

ra,b ∧
∧
a∈A?

(
¬ya →

(
¬xa ∧

∧
(a,b)∈R?

¬ra,b ∧
∧

(b,a)∈R?

¬rb,a

))

that expresses the fact that certain arguments and attacks must be true, and uncertain arguments that do
not appear in a completion cannot be accepted or be involved in attacks. In the remainder of this part,
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we focus on the stable semantics for a matter of exemplification, but the original paper also describes a
Boolean encoding for admissibility. First, we describe how conflict-freeness is encoded:

φcf =
∧

(a,b)∈R∪R?

(
(ya ∧ yb ∧ ra,b) → (¬xa ∨ ¬xb)

)

expresses the fact that two arguments cannot be jointly accepted (with respect to a completion) if there
is an attack between them (in the said completion). Then, the stable semantics is encoded in

φstb = φcf ∧
∧

a∈A∪A?

(
(¬xa ∧ ya) → za

)

where za is a newly introduced variable, for each a ∈ A ∪ A?, with

za ↔
∨

(b,a)∈R∪R?

(xb ∧ yb ∧ rb,a).

In words, an argument a that appears in a completion (ya) without being accepted (¬xa) must be attacked
by some accepted argument (za). Then, the NP-complete problem stb-PCA can be solved by checking
whether the formula φPCA

stb (I, a) = φ?(I) ∧ φstb(I) ∧ xa is satisfiable, while the coNP-complete problem
stb-NSA corresponds to checking whether φNSA

stb = φ?(I) ∧ φstb(I) ∧ ¬xa is unsatisfiable. We refer
the interested reader to [15,73] for more details about the encodings and the CEGAR algorithm for the
second level of the polynomial hierarchy.

3.4. Direct semantics for PAFs and IAFs

Besides the possible and necessary reasoning modes described previously, [29] defines semantics
for Partial AFs (recall that it corresponds to Att-IAFs, i.e. IAFs with A? = ∅), based on alternative
definitions of the basic notions of conflict-freeness and acceptability that underly Dung’s semantics.
Here we call these semantics “direct semantics”, opposed to the completion-based reasoning presented
before. In the following, we adapt the definitions of [29] to be consistent with the notations used in this
paper.

Definition 7 (Conflict-freeness in PAFs). Given a PAF P = 〈A, R, R?〉, a set of arguments S ⊆ A is

• R-conflict-free if and only if �a, b ∈ S such that (a, b) ∈ R;
• R-R?-conflict-free if and only if �a, b ∈ S such that (a, b) ∈ R ∪ R?.

Intuitively, R-conflict-freeness considers that the incompatibility between a and b, when (a, b) ∈ R?,
is not severe enough to prevent a and b of being accepted together. Thus, uncertain attacks can be ignored
for identifying R-conflict-freeness. On the contrary, R-R?-conflict-freeness excludes all conflicts (both
certain and uncertain) from acceptable sets.

Example 11. Consider P = 〈A, R, R?〉 from Fig. 6. The set of arguments S = {a2, a3}. is R-conflict-
free, but not R-R?-conflict-free. Then, S ′ = {a1, a3} is R-R?-conflict-free (and naturally, R-conflict-free
as well).
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a1 a2 a3 a4 a5

a6

a7

Fig. 6. A PAF P .

In standard AFs, the notion of admissibility combines conflict-freeness and self-defense [44]. More
precisely, Dung defines an argument a as acceptable with respect to a set of arguments S if each attacker
of a is attacked by an element in S. This notion is also extended to PAFs.

Definition 8 (Acceptability in PAFs). Given a PAF P = 〈A, R, R?〉 and a set of arguments S ⊆ A, an
argument a ∈ A is

• R-acceptable with respect to S if ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ S such that (c, b) ∈ R;
• R-R?-acceptable with respect to S if ∀b ∈ A such that (b, a) ∈ R∪R?, ∃c ∈ S such that (c, b) ∈ R;

Similarly to R-conflict-freeness, R-acceptability considers uncertain attacks as “not serious enough”
for requiring to be counterattacked. On the contrary, R-R?-acceptability implies that an argument is
defended against all its attacks, not only the certain ones. Notice that a quite cautious view is adopted
here, since only certain attacks can be used to defend an argument (even against uncertain attacks).

Example 12. Consider again P = 〈A, R, R?〉 from Fig. 6. The argument a3 is R-acceptable with respect
to S = {a3}: the only attacker of a3 (with respect to R) is a4, and (a3, a4) ∈ R. Since a2 is a “weaker”
attacker (i.e. (a2, a3) ∈ R? instead of R), there is no need for a3 to defend itself against a2. But then, a3

is not R-R?-acceptable with respect to S, since S does not defend a3 against a2. On the contrary, a3 is
R-R?-acceptable with respect to S ′ = {a1, a3}. Notice that it would not be the case if (a1, a2) was in R?

instead of R.

Then, different versions of admissibility can be defined by combining a notion of conflict-freeness
with a notion of acceptability. More precisely:

Definition 9 (Admissibility in PAFs). Given a PAF P = 〈A, R, R?〉, a set of arguments S ⊆ A is

• admissible if and only if S is R-conflict-free, and ∀a ∈ S, a is R-acceptable with respect to S;
• R-admissible if and only if S is R-R?-conflict-free, and ∀a ∈ S, a is R-acceptable with respect to

S;
• R-R?-admissible if and only if S is R-R?-conflict-free, and ∀a ∈ S, a is R-R?-acceptable with

respect to S.

One may wonder why there is no notion of admissibility characterized by R-conflict-freeness and
R-R?-acceptability. It is proven that such a set would actually be R-R?-conflict-free, thus it would be a
R-R?-admissible as well. We use adm(P), admR(P) and admR,R?(P) to denote, respectively, the admis-
sible, R-admissible and R-R?-admissible sets of a PAF P . The definitions straightforwardly imply that
admR,R?(P) ⊆ admR(P) ⊆ adm(P).
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Table 6

Complexity of reasoning with weak and strong seman-
tics of IAFs, where X ∈ {S, W } means strong or weak
[65]

σ σ -CA σ -SA σ -Ver

admX NP-c trivial in P

stbX NP-c coNP-c in P

coX NP-c in coNP in P

prX NP-c �P
2 -c coNP-c

Example 13. Let us continue Example 12. We have seen that a3 is R-acceptable with respect to S =
{a3}. Moreover, S is R-conflict-free. Thus S is an admissible set of P . It is also R-admissible, since it is
R-R?-conflict-free. But it is not R-R? admissible.

The set S ′ = {a1, a3} is R-R?-conflict-free, and all its elements are R-R?-acceptable with respect to
S ′. Thus it is R-R?-acceptable.

Then, [29] focuses on three versions of the preferred semantics, based on the different notions of
admissibility defined in Definition 9.

Definition 10 (Preferred Semantics for PAFs). Given a PAF P = 〈A, R, R?〉, the set S ⊆ A is

• a preferred extension if and only if it is a ⊆-maximal admissible set;
• a R-preferred extension if and only if it is a ⊆-maximal R-admissible set;
• a R-R?-preferred extension if and only if it is a ⊆-maximal R-R?-admissible set.

The original paper discusses the properties of these semantics (for instance the inclusion links be-
tween different semantics, or the relations between the semantics of the PAF and the semantics of the
completions) as well as computational issues. Interestingly, contrary to possible and necessary reason-
ing that can be harder than classical reasoning with AFs (recall Section 3.3.1), reasoning with these new
semantics keep the complexity of Dung’s AFs. In particular, credulous and skeptical acceptability are
(respectively) NP-complete and �P

2 -complete for the three PAF variants of the preferred semantics.
This approach has been recently generalized to IAFs in [65]. The concepts of conflict-freeness and

acceptability are adapted to IAFs under the names weak conflict-freeness (respectively weak defense)
corresponding to R-conflict-freeness (respectively R-acceptability) and strong conflict-freeness (respec-
tively strong defense) corresponding to R-R?-conflict-freeness (respectively R-R?-acceptability). Then,
the three types of admissibility are also defined for IAFs, where “simple” admissibility is renamed
weak admissibility, R-admissibility is mixed admissibility, and R-R?-admissibility is strong admissibil-
ity. However, the paper excludes mixed admissibility from further study after proving that it does not
satisfy Dung’s fundamental lemma, i.e. the fact that if an admissible set S defends an argument a, then
S ∪ {a} is admissible as well. Then, [65] adapts the definitions of preferred, complete and stable seman-
tics to weak and strong admissibility, and provides complexity results, reported in Table 6. This paper left
open the question of grounded semantics, as well as tight complexity result for skeptical acceptability
under (weak and strong) complete semantics.

3.5. Rich IAFs: A closer look to uncertainty of the third kind

Besides uncertain arguments (A?) and uncertain attacks (R?), a third kind of uncertainty can be con-
sidered: uncertainty about the direction of attacks. This idea has been introduced in Control AFs [39]
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(see Section 4). However, such a new kind of uncertainty can also be applied in the context of IAFs. This
leads to the definition of Rich IAFs (RIAFs) [63].

Definition 11 (Rich IAF). A Rich Incomplete Argumentation Framework (RIAF) is a tuple rI =
〈A, A?, R, R?, ↔?〉, where A and A? are disjoint sets of arguments, and R, R?, ↔?⊆ (A∪A?)×(A∪A?)

are disjoint sets of attacks, such that ↔? is symmetric.

The new relation ↔?, borrowed from [39], is a symmetric (uncertain) conflict relation: if (a, b) ∈↔?,
then we are sure that there is a conflict between a and b, but not of the direction of the attack. This new
relation impacts the definition of completions.

Definition 12 (Completion of a RIAF). Given rI = 〈A, A?, R, R?, ↔?〉, a completion of rI is F =
〈A′, R′〉, such that

• A ⊆ A′ ⊆ A ∪ A?;
• R|A′ ⊆ R′ ⊆ R|A′ ∪ R?

|A′∪ ↔?
|A′ ;

• if (a, b) ∈↔?
|A′ , then (a, b) ∈ R′ or (b, a) ∈ R′ (or both);

where R|A′ = R ∩ (A′ × A′) (and similarly for R?
|A′ and ↔?

|A′).

Again, we use comp(rI) to denote the set of completions of a RIAF rI.

Example 14. Figure 7 depicts a RIAF rI = 〈A = {a, b, c, d, e}, A? = {f }, R = {(c, a), (d, b), (d, c)},
R? = {(e, a), (f, d)}, ↔?= {(a, b), (b, a)}〉.

We do not give here the full set of completions of rI. Let us focus on one option for each of (e, a),
(f, d) and f , and we only illustrate the three options for (a, b). These three completions F1, F2 and F3

are given at Fig. 8.
Similarly, for each other configuration of (e, a), (f, d) and f , there are three options for the conflict

between a and b, leading to three different completions.

Although this richer framework is strictly more expressive than IAFs (i.e. any IAF is a RIAF, but some
RIAFs cannot be translated into an equivalent IAF), the complexity of reasoning with RIAFs is the same
as the complexity of reasoning with IAFs (see [63] for more details).

a b

c de f

Fig. 7. The RIAF rI.

a b

c de f

(a) F1

a b

c de f

(b) F2

a b

c de f

(c) F3

Fig. 8. Three completions of rI.
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3.6. Restricting the set of completions

Several approaches have been proposed recently (and concurrently) that allow to restrict the set of
completions of an IAF. There are several motivations to do that. As a first natural example of such
motivation (borrowed from [53]), consider a situation where to agents Ag1 and Ag2 are participating in
a debate. Ag1 knows that Ag2 may use one of two arguments a1 and a2, such that a1 (respectively a2)
corresponds to the point of view of right-wing (respectively left-wing) politicians. Ag1 also knows that
Ag2 is politically oriented, i.e. Ag2 certainly has some preferences between a1 and a2, but she does not
know exactly which of right-wing or left-wing corresponds to Ag2’s orientation. So, the AF of Ag2 is
one of those described at Fig. 9.

However, there is no simple way to represent these AFs with the formalisms presented in previous
section, i.e. there is no IAF I with comp(I) = {F1,F2}. A possible solution is to define an IAF structure
that admits a set of completions F such that {F1,F2} ⊆ F, and to add a constraint that excludes from the
reasoning all the AFs different from F1 or F2.

A similar motivation is given in [66], where the issue of representing any set of AFs as the comple-
tions of a (constrained) IAF is related to AF revision [35] and merging [38] whose result might not be
representable by a single AF but by a set of AFs instead.

A third motivation is the notion of correlation between arguments [51]. For instance, considering
structured argumentation settings [22,23], if a1 and a2 are uncertain arguments such that a1 is a sub-
argument of a2, then a2 cannot belong to a completion without a1 belonging too. Such a constraint can
be intuitively represented as a2 ⇒ a1. Different kinds of correlations are proposed by [51], in the context
of Arg-IAFs (i.e. IAFs with R? = ∅).

Definition 13 (Dependency). Given an Arg-IAF I = 〈A, A?, R〉, a dependency δ is

• either X ⇒ Y ,
• or OP(X), OP ∈ {Or, Nand, Choice},

and X, Y are non-empty subsets of A?.

Then, a completion of I is valid (with respect to δ) under some conditions.

Definition 14 (Valid Completion w.r.t. a Dependency). Given an Arg-IAF I = 〈A, A?, R〉, a completion
F = 〈A′, R′〉 of I is valid with respect to δ if

• δ = Or(X) and X ∩ A′ 	= ∅, i.e. at least one argument in X belongs to the completion,
• δ = Nand(X) and X ∩ A′ ⊂ X, i.e. not all the arguments in X belong to the completion,
• δ = Choice(X) and |X ∩ A′| = 1, i.e. exactly one argument in X belongs to the completion,
• δ = X ⇒ Y and if X ⊆ A then Y ∩ A′ 	= ∅, i.e. if all the arguments in X belong to the completion,

then at least one argument in Y also does.

An Arg-IAF with dependencies is then a pair made of an Arg-IAF I = 〈A, A?, R〉 and a set of
dependencies �, and [51] studies the complexity of two decision problems:

a1 a2

(a) F1

a1 a2

(b) F2

Fig. 9. The possible AFs of Ag2.
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DSat Given an Arg-IAF with dependencies, is there at least one completion valid with respect to
each dependency δ ∈ �?

σ -PDVer Given an Arg-IAF with dependencies and a set of argument S ⊆ A ∪ A?, is S a σ -extension
of some valid completion?

DSat is either trivial or NP-complete, depending on the kinds of dependencies appearing in �.
σ -PDVer goes from trivial to �P

2 -complete depending on the dependencies in � and the semantics
σ ∈ {adm, stb, co, gr, pr}.

Arg-IAFs with dependencies have been generalized in [66], in two directions: the Arg-IAF is replaced
by a (generalized) IAF, and the set of dependencies is replaced by a propositional formula (over the
presence of arguments and attacks). This framework is called Constrained Incomplete Argumentation
Framework. The constraint is expressed in a propositional language LX built on the Boolean variables
{arga | a ∈ X} ∪ {attai ,aj

| (ai, aj ) ∈ X × X}, where X is a set of arguments.

Definition 15 (Constrained IAF). A Constrained Incomplete Argumentation Framework (CIAF) is a
tuple cI = 〈A, A?, R, R?, φ〉, where 〈A, A?, R, R?〉 is an IAF, and φ ∈ LA∪A? is a constraint.

Similarly to Arg-IAFs with dependencies, only specific completions of 〈A, A?, R, R?〉 are valid, i.e.
those which satisfy the constraint φ.

Example 15. Let cI be the CIAF depicted in Fig. 10(a), where A = {a1, a2}, A? = ∅, R = ∅,
R? = {(a1, a2), (a2, a1)} and φ = atta1,a2 ⊕ atta2,a1 . Its completions are comp(cI) = {F1,F2} as given
respectively in Fig. 10(b) and 10(c). Without the constraint (i.e. with φ′ = �), there would be two other
completions (one with no attack at all, and one with both attacks (a1, a2), (a2, a1)).

The main point of [66] is to prove that any set of AFs can be represented as the completions of a
CIAF, and then any set of extensions can be the (union of the sets of) extensions of (the completions of)
a CIAF. A similar question has been tackled independently by [53].

Proposition 1 ([53,66]). Given F a set of AFs, there is a CIAF cIF such that comp(cIF) = F.

Proposition 2 ([66]). Given S a set of sets of arguments and σ ∈ {co, pr, stb, gr}, there is a CIAF cIS
such that

⋃
c∈comp(cIS) σ (c) = S.

Notice that [53] studies CIAFs with another definition, where the graphical structure is completely
abstracted away. In this paper, a CIAF is a pair 〈U, φ〉 where U is the universe of arguments, and φ

is a constraint similar to those defined in [66], where the propositional atoms concern the existence of
arguments in U and attacks in U × U . This means that such a structure can be mapped with a CIAF
cI = 〈A = ∅, A? = U, R = ∅, R? = U × U, φ〉.

a1 a2 φ = atta1,a2 ⊕ atta2,a1

(a) cI

a1 a2

(b) F1

a1 a2

(c) F2

Fig. 10. A CIAF and its completions.
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Moreover, the relation between CIAFs and RIAFs (see Section 3.5) is also studied in [53]. It is proven
there that any RIAF rI can be translated into an equivalent CIAF (i.e. one with the same completions),
while the converse is not true. Since their approach “forgets” the graphical structure of the (C)IAF, one
constraint φ can be built such that each completion of rI corresponds to one model of φ. Here, we
proposed an alternative translation of RIAFs into CIAFs, based on Definition 15.

Definition 16. Given rI = 〈A, A?, R, R?, ↔?〉 a RIAF, the corresponding CIAF is cIrI =
〈A, A?, R, R′, φ〉 such that R′ = R?∪ ↔? and φ = ∧

(a,b)∈↔? atta,b ∨ attb,a .

Applying the definitions of RIAFs and CIAFs, it is easy to see that, for any RIAF rI such that cIrI is
its corresponding CIAF, comp(rI) = comp(cIrI).

4. Control argumentation frameworks

4.1. The model

Now we describe Control Argumentation Frameworks (CAFs) [39], a model that generalizes IAFs
in two ways: a new type of uncertainty is added (about the direction of an attack, i.e. the same as in
RIAFs), and a new kind of arguments and attacks (named control arguments and attacks) is added. A
CAF is made of three parts, that represent three types of information from the point of view of an agent:

(1) the fixed part represent information that cannot be influenced by the agent nor the environment
(here, we include other agents as part of the environment), e.g. because they are legal information,
or arguments that have already been stated in a debate;

(2) the uncertain part can be seen as information that can be influenced by the environment, e.g.
arguments that might be used by the other agents in the next steps of the debate;

(3) finally, the control part represents information that can be influenced by the agent.

Items (1) and (2) are similar to the meaning of certain and uncertain information in IAFs. So, the main
conceptual difference between IAFs and CAFs is the control part, that implies some action to be made
by the agent, i.e. some arguments and attacks should be added by the agent in order to reach a given
goal. We will describe these goals in a later subsection.

Let us formally define CAFs:

Definition 17 (Control Argumentation Framework). A Control Argumentation Framework (CAF) is a
tuple C = 〈F, C, U〉 where F is the fixed part, U is the uncertain part, and C is the control part, with:

• F = 〈A, R〉, with R ⊆ (A ∪ A?) × (A ∪ A?),
• U = 〈A?, R?∪ ↔?〉 where R?, ↔?⊆ (A ∪ A?) × (A ∪ A?) and ↔? a symmetric irreflexive relation,
• C = 〈AC, RC〉 where RC ⊆ (AC × (A ∪ A? ∪ AC)) ∪ ((A ∪ A? ∪ AC) × AC),3

where A, A? and AC are disjoint sets of arguments, and R, R?, ↔? and RC are disjoint sets of attacks.

A, A?, R, R? have the same meaning as in IAFs and ↔? represents the same kind uncertain information
as in RIAFs: if (a, b) ∈↔?, then either there is actually an attack (a, b), or (b, a), or both. This means
that there certainly is a conflict between a and b, only the orientation is uncertain. Finally, control

3Equivalently, RC ⊆ (AC × (A ∪ A?)) ∪ ((A ∪ A?) × AC) ∪ (AC × AC).
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a bc

de f

g

Fig. 11. A CAF C.

a bc

de f

Fig. 12. A configured CAF Ccc obtained from C with cc = {e, f }.

arguments (and the incident control attacks) only exist if the agent chooses to use them. This corresponds
to the notion of configuration, formally stated by Definition 19.

Example 16. Figure 11 describes a CAF C. Bold edges and rectangle nodes represent the control part
C = 〈{e, f, g}, {(e, c), (e, d), (e, g), (f, b), (f, d), (g, c), (g, e)}〉. Two-heads dashed edges represent
↔?= {(a, c), (c, a)}. Other nodes and edges have the same meaning as in the case of IAFs.

The aim of an agent using a CAF is to control it with respect to some target set of arguments, i.e. make
sure (by using some control arguments) that this target belongs to some (or each) extension in some (or
each) completion. Let us show how the concept of completion is adapted to CAFs:

Definition 18 (Completion of a CAF). Given a CAF C = 〈F, C, U〉, a completion is an AF F = 〈A′, R′〉
such that

• A ∪ AC ⊆ A′ ⊆ A ∪ AC ∪ A?,
• (R ∪ RC)|A′ ⊆ R′ ⊆ (R ∪ RC ∪ R?∪ ↔?)|A′ , with (a, b) ∈ R′ or (b, a) ∈ R′ for all (a, b) ∈↔?.

Finally, a configuration of the CAF is the choice of some control arguments (and the incident attacks).

Definition 19 (Control Configuration). Given a CAF C = 〈F, C, U〉, a configuration is a set of control
arguments cc ⊆ AC . The CAF configured with cc is Ccc = 〈F, C ′, U〉 where C ′ = 〈cc, RC|A′ 〉, with
A′ = cc ∪ A ∪ A?.

Example 17. We continue the previous example. Figure 12 describes the configured CAF Ccc obtained
from C (Fig. 11) with cc = {e, f }.
4.2. Complexity of controllability

Controllability is the fact that an agent can configure the CAF in order to make its target set of argu-
ments accepted. In a similar manner to arguments acceptance in IAFs, controllability has four variants:
“possible” and “necessary” quantify over the set of completions, while “credulous” and “skeptical”
quantify of the set of extensions. The necessary variants were first defined in [39], where it is simply
called “controllability”. Then [64] defined the possible versions. Let us formally define the decision
problems:
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Table 7

Complexity of reasoning with CAFs under σ ∈ {adm, stb, co, gr, pr} [39,64,70,72]

σ σ -PCC σ -NCC σ -PSC σ -NSC σ -CNE

adm NP-c �P
3 -c trivial trivial �P

3 -c
stb NP-c �P

3 -c �P
2 -c �P

2 -c �P
3 -c

co NP-c �P
3 -c NP-c �P

2 -c �P
3 -c

gr NP-c �P
2 -c NP-c �P

2 -c P

pr NP-c �P
3 -c �P

3 -c �P
3 -c �P

3 -c

σ -PCC Given C = 〈F, C, U〉 a CAF and T ⊆ A, is there a configuration cc ⊆ AC such that T is
credulously accepted in some completion of Ccc under σ?

σ -NCC Given C = 〈F, C, U〉 a CAF and T ⊆ A, is there a configuration cc ⊆ AC such that T is
credulously accepted in each completion of Ccc under σ?

σ -PSC Given C = 〈F, C, U〉 a CAF and T ⊆ A, is there a configuration cc ⊆ AC such that T is
skeptically accepted in some completion of Ccc under σ?

σ -NSC Given C = 〈F, C, U〉 a CAF and T ⊆ A, is there a configuration cc ⊆ AC such that T is
skeptically accepted in each completion of Ccc under σ?

We observe that, for T = {a}, σ = stb and C from Fig. 11, the answer to all these questions is “YES”:
the configured CAF Ccc (Fig. 12) provides an example of a configuration cc = {e, f } that guarantees
that a is accepted.

Preliminary complexity results for the necessary variants were given in [39], and a more detailed
analysis was given in [72]. Complexity results for the possible variants have been given in [64]. While
there were no results for adm-PCC and adm-PSC in [64], we can easily add them: skeptical acceptance
is always trivially false since the empty set is admissible in any AF; credulous acceptance with respect
to adm is always equivalent to credulous acceptance with respect to pr. Hence the results presented in
Table 7.

Several computational approaches have been defined, based on Boolean satisfiability for the problems
at the first level of the polynomial hierarchy, and quantified Boolean formulas (QBFs) [60] or CEGAR
[31] for higher complexity problems. The intuition behind these approaches is similar to the one for
IAFs, and again logical encodings are based on [21].

Finally, recent work [70] has adapted the work on non-emptiness from IAFs [77,78] to CAFs:

σ -CNE Given C = 〈F, C, U〉 a CAF, is there a configuration cc ⊆ AC such that for each completion
F ∈ comp(Ccc), ∃S ∈ σ(F) with S 	= ∅?

This problem of Control Non-Emptiness is (for most semantics) harder than the equivalent problems for
IAFs. More precisely, the problem is �P

3 -complete under all the semantics considered here, except the
grounded semantics where it is polynomial (see Table 7).4 [70] also mentions the fact that a “possible”
variant of control non-emptiness (inspired by possible controllability [64]) would be NP-complete for
all σ ∈ {adm, co, pr, stb}.

4It is also proven in [70] that cf -CNE is polynomial.
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5. Application scenarios

Now we describe three scenarios where IAFs or CAFs are useful. First, the aggregation of several
AFs into a single one is the context where IAFs (or more precisely PAFs) were first proposed. Then,
we present stability, a concept initially introduced for structured argumentation. It has been proven that
adapting this notion to abstract argumentation is strongly connected to reasoning with IAFs. Finally,
CAFs have shown some interest in the context of automated negotiation.

5.1. AF merging

Partial AFs [33] were defined as a tool in a process of AF merging. The goal is to obtain a global
view of the knowledge of a group of agents Ag1, . . . , Agn, where each agent has her personal AF Fi =
〈Ai, Ri〉, where both Ai and Ri can differ from an agent to another. The AF of an agent is expanded into
a PAF that represents, somehow, the agent’s opinion about the group knowledge. Different expansion
policies can be used. Here we only describe the consensual expansion:

Definition 20 (Consensual Expansion of an AF). Given F1 = 〈A1, R1〉, . . . ,Fn = 〈An, Rn〉 n AFs cor-
responding to the knowledge of n agents, the consensual expansion of Fi = 〈Ai, Ri〉 is Pi = 〈A, R, R?〉,
defined by:

• A = ⋃n
j=1 Aj ,

• ∀a, b ∈ Ai , (a, b) ∈ R iff (a, b) ∈ Ri ,
• ∀a, b ∈ A such that a /∈ Ai or b /∈ Ai , define A = {Fj | a, b ∈ Aj }.

∗ If ∀Fj ∈ A, (a, b) ∈ Rj , then (a, b) ∈ R.
∗ If ∃Fj ,Fk ∈ A such that (a, b) ∈ Rj and (a, b) /∈ Rk, then (a, b) ∈ R?.
∗ Otherwise, (a, b) is included neither in R nor R?.

All the arguments that appear in one of the AFs also appear in agent Agi’s PAF. If two arguments a and
b both appear in her initial AF, then the existence (or non-existence) and direction of attacks between a

and b is the same as in Fi . Then, for the arguments that agent Agi does not initially know, she somehow
trusts the other agents. More precisely, if all the agents that know both a and b agree on the fact that
there is an attack from a to b, then there is a certain attack (a, b) in the PAF. If they disagree (i.e. some
of them consider that there is an attack (a, b), and some other consider that there is no such attack), then
(a, b) becomes an uncertain attack in the PAF. Finally, if they all agree that there is no attack (a, b), then
there is no attack (a, b) in the PAF (neither certain nor uncertain).

Example 18. Figure 13 describes three AFs Fi and their respective expansion Pi , for i ∈ {1, 2, 3},
corresponding to three agents. Let us focus on F1. The relations between a and b correspond to those in
F1 (i.e. a attacks b, but not the other way around), since Ag1 initially knows these arguments. Arguments
c and d are added, and the other agents AFs are used to define the attack relation concerning these
arguments. Only one agent (Ag3) knows c and d, so the relation between c and d in P1 is the same as in
F3: c attacks d. For b and c, the situation is different. Two agents (Ag2 and Ag3) know both b and c, but
they disagree and the relation between them: the attack (b, c) only exists in F2. So (b, c) is included in
the uncertain attack relation of P1.

The expansion of AFs into PAFs allows to compare each agent’s knowledge with the same set of
arguments. The result of the merging is then a set of AFs, built on A, that minimize the (aggregated)
distance with the set of PAFs that correspond to the expansions of F1, . . . ,Fn.
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a b

(a) F1

a b

c

(b) F2

b

cd

(c) F3

a b

cd

(d) P1

a b

cd

(e) P2

a b

cd

(f) P3

Fig. 13. Three AFs Fi and their expansions Pi , i ∈ {1, 2, 3}.

Definition 21 (Merging Operator). Given F1 = 〈A1, R1〉, . . . ,Fn = 〈An, Rn〉 n AFs corresponding to
the knowledge of n agents, the merging of F1, . . . ,Fn is defined by:

�⊕
d (F1, . . . ,Fn,P1, . . . ,Pn) =

{
F∗ = 〈

A∗, R∗〉 ∣∣∣∣ F∗ minimizes
n⊕

i=1

d
(
F∗,Pi

)}

where d is a distance between PAFs, ⊕ is an aggregation function, and A∗ = ⋃n
i=1 Ai .

The operator ⊕ can be any classical aggregation function, e.g. the sum, the max or the leximax. Here,
for a matter of simplification we have only described the consensual expansion, but each agent can have
her own expansion policy, which means that all the Pi do not need to be built with the same method.
Finally, let us give an example of distance between PAFs.

Definition 22 (Edit Distance). Given two PAFs P1 = 〈A, R1, R
?
1〉 and P2 = 〈A, R2, R

?
2〉, the edit

distance over a and b (with a, b ∈ A) is defined by:

dea,b(P1,P2) =

⎧⎪⎨
⎪⎩

0 if and only if (a, b) ∈ R1 ∩ R2, or (a, b) ∈ R?
1 ∩ R?

2, or (a, b) ∈ N1 ∩ N2

1 if and only if (a, b) ∈ R1 ∩ N2, or (a, b) ∈ N1 ∩ R2

0.5 otherwise

where Ni = (A × A) \ (Ri ∪ R?
i ). Then, the edit distance between P1 and P2 is

de(P1,P2) =
∑

a,b∈A

dea,b(P1,P2)

The distance between two PAFs is defined as the sum of the scores of all the possible pairs of argu-
ments, where the score of a pair is 0 if both PAFs agree on the nature of the pair (certain attack, uncertain
attack, or absence of attack), 1 if they strongly disagree (certain attack for one PAF, absence of attack for
the other one) and 0.5 otherwise (certain attack or absence of attack for one PAF, and uncertain attack
for the other one). Since AFs are specific PAFs (with R? = ∅), the distance de can be applied on AFs.
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a b

cd

(a) F∗
1

a b

cd

(b) F∗
2

Fig. 14. Result of the merging.

Table 8

Distances between AFs and PAFs

F∗
i P1 P2 P3

∑
F∗

1 0.5 0 1 1.5
F∗

3 0.5 1 0 1.5

Example 19. Now we illustrate the result of the merging operator �
∑
de , with F1, F2, F3 from Exam-

ple 18. Again, for a matter of simplification, we consider that all the agents use the consensual expansion
(Definition 20). So, the AFs and their respective expansions are those from Fig. 13.

We have �
∑
de (F1,F2,F3,P1,P2,P3) = {F∗

1 ,F∗
2 }, with F∗

1 and F∗
2 from Fig. 14. We detail the com-

putation of de(F∗
1 ,P1). For (x, y) ∈ {(a, b), (c, d)}, both F∗

1 and P1 agree on the fact that (x, y) cer-
tainly exist, so dex,y(F∗

1 ,P1) = 0. For (b, c), we obtain deb,c(F∗
1 ,P1) = 0.5 since it is an uncertain

attack in P1, and a certain attack in F∗
1 . Finally, for any other (x, y), both F∗

1 and P1 agree on the
absence of attack, so dex,y(F∗

1 ,P1) = 0. All the distances, as well as their aggregation with
∑

, are
presented in Table 8.

5.2. Stability

Stability was defined in a context of structured argumentation: it consists in determining whether a
given literal will keep the same acceptance status with respect to the grounded semantics, whatever the
argumentation setting evolutions [74,81]. It has been applied in the design of an AI agent that helps
the Dutch police in investigations about Internet trade frauds. The concept was then adapted to abstract
argumentation (and generalized to other semantics) in [67], where the link with IAFs is made.

The hypothesis is made that there is an “argumentation universe” FU = 〈AU, RU 〉 that describes all
the possible arguments and the attacks between them. Any valid AF is then F = 〈A, R〉 with A ⊆ AU

and R = RU |A. Now, for determining whether an AF is stable, we need a way to characterize its possible
evolution. It is made with the notion of future AF.

Definition 23 (Future Argumentation Framework). Given an AF F = 〈A, R〉, the future AFs are
F(F) = {F ′ = 〈A′, R′〉 | A ⊆ A′, R′ = RU |A′ }.

Since it is assumed that any valid AF is a subgraph of FU , the number of future AFs is finite; precisely
|F(F)| = 2k, with k = |AU \ A|. Stability with respect to a given argument a ∈ A consists in analyzing
all the future AFs to determine whether the acceptability status of a is the same in all the future AFs.
Note that F ∈ F(F).

Definition 24 (Stability). An AF F = 〈A, R〉 is said to be credulously (respectively skeptically) σ -stable
with respect to some a ∈ A if and only if
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a1 a2 a3 a4 a5

a6

a7

(a) FU

a3 a4 a5

a6

a7

(b) F

Fig. 15. The argumentation universe FU and a possible AF F .

• either ∀F ′ ∈ F(F), a is credulously (respectively skeptically) accepted with respect to σ ;
• or ∀F ′ ∈ F(F), a is not credulously (respectively skeptically) accepted with respect to σ .

Example 20. Let us borrow the example from [67]. Consider the argumentation universe FU and the
AF F , both depicted in Fig. 15. The argument a3 is not credulously σ -stable for σ = stb, since it is
credulously accepted in F , but not in the future AF where a2 is added. On the contrary, it is skeptically
σ -stable since it is not skeptically accepted in F , nor in any future AF.

a6 is skeptically σ -stable as well, but for another reason: indeed we observe that in F (and in any
future AF), a6 is defended by the (unattacked) argument a7, thus it belongs to every extension.

It has been proven that deciding stability can be done through Arg-IAFs, i.e. I = 〈A, A?, R, R?〉 with
R? = ∅. For a matter of simplicity, we omit R? in the rest of the section. Let us show how an AF can be
associated with an IAF such that the future AFs correspond to the completions of the IAF.

Definition 25 (IAF Corresponding to an AF). Given an AF F = 〈A, R〉, the corresponding IAF is
IF = 〈A, A \ AU, RU 〉.

It means that all the arguments that appear in F are certain, and all the other ones are uncertain.
Finally, all the attacks are certain. The correspondance between F(F) and comp(IF ) is straightforward.
It implies the following result:

Proposition 3. Given an AF F = 〈A, R〉, a ∈ A and σ a semantics, F is credulously (respectively
skeptically) σ -stable with respect to a if and only if

• either a is necessarily credulously (respectively skeptically) accepted in IF with respect to σ ;
• or a is not possibly credulously (respectively skeptically) accepted in IF with respect to σ .

Stability is still a recent research topic. As illustrated by [74,81], it can be used to improve the com-
munication between a software agent and a human being, stopping the dialogue when the argumentation
system is stable with respect to the issue under discussion. More generally, the notion of stability is
promising in argument-based dialogue systems, where it can be used either to stop the dialogue when
there is no need to continue (thus saving communication resources), or for adapting an agent’s strat-
egy. For instance, [67] presents an example of argument-based negotiation where an agent can revise
her strategy when she detects that her (current) preferred argument will never be accepted. The corre-
spondance between the notion of stability and IAF-based reasoning means that efficient computational
techniques (e.g. those from [73] based on Boolean Satisfiability) can be used in all the scenarios where
stability plays a role.
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5.3. Automated negotiation

Let us present a last application of the frameworks described in this paper. In [40,41], the authors use
CAFs in a context of automated negotiation, where they are used to model the agent’s knowledge about
her opponent. During a negotiation round, the agent uses her own personal theory (i.e. an AF) to choose
her favorite offer. But then, in order to convince her opponent to accept this offer, the agent selects an
argument supporting it in the CAF that models the opponent. In the case where this argument is not
directly accepted by the opponent, the agent uses controllability to defend her argument with control
arguments. The technical details of the approach are out of the scope of this paper, we choose to focus
on an example of negotiation dialogue that allows to illustrate its main features.

Example 21. Let F1, F2 be the AFs that represent the personal knowledge of the negotiating agents
Ag1, Ag2, and C1,2, C2,1 the CAFs that represent their knowledge about the opponent (i.e. CX,Y represents
the knowledge of agent X about agent Y ). These AFs and CAFs are shown at Fig. 16. Suppose that
reasoning is based on credulous acceptance with respect to σ = stb. Before the negotiation, Ag1 prefers
the offer o1 (supported by the accepted argument x in F1), and Ag2 prefers o2 (supported by the accepted
argument v in F2). Ag1 starts the negotiation. The dialogue is made of the following steps.

(1) Best offer selection. Agent Ag1 need to determine which offer among o1 and o2 she prefers, using
her personal theory. As already mentioned, o1 is supported by an accepted argument (x) in F1. On
the contrary, o2 is only supported by a rejected argument (z). So o1 is preferred to o2.

(2) Supporting argument selection. For convincing her opponent to accept o1, agent Ag1 will use her
knowledge about Ag2. More precisely, she needs to make the argument y accepted in Ag2’s theory
(since y is the only argument in C1,2 that supports o1).

(3) Bidding strategy. Without using control arguments, it is impossible to convince agent Ag2 to accept
y, since there would be completions where y is not defended against b or e. Thus the agent
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Fig. 16. Agents Ag1, Ag2 personal theories (left) and opponent modeling (right).
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searches for a control configuration, and finds that cc = {a, k} ensures the acceptability of y in
every completion of C1,2. Thus Ag1 proposes “offer o1, supported by y, that is accepted because
of {a, k}”.

(4) Acceptance strategy. When receiving an offer, agent Ag2 updates its theory and CAF accordingly.
Here, she already knows the arguments y and a. She adds k as well as the attacks between e and k.
However, after this update, y remains rejected because b is accepted (it is defended by d). She
rejects the offer, and communicates the reasons to agent Ag1.

(5) Update and new supporting argument selection. Agent Ag1 updates her CAF with the informa-
tion given by Ag2. The argument y cannot be used any longer. The agent searches for another
supporting argument. Since there is none, Ag1’s round is over and the token goes to agent Ag2.

(6) Best offer selection. Now, agent Ag2 needs to choose an offer. Since o2 is supported by the accepted
argument v, and o1 is only supported by a rejected argument (y), she chooses o2.

(7) Supporting argument selection. Using her CAF, she determines that (only) z supports the offer o2.
(8) Bidding strategy. The agent first checks whether z can be accepted without control arguments. It is

not the case, since there are completions in which w is present, and then z is not defended. Then,
the control configuration cc = {u} is sufficient for defending z. So Ag2 proposes to Ag1 “offer o2,
supported by the argument z, that is accepted because of {u}”.

(9) Acceptance strategy. This time, receiving this offer (along with the defending argument u) makes
z acceptable in Ag1’s theory. So she accepts the offer.

The negotiation ends on an agreement.

Experiments [40] have shown that using control arguments in negotiation increases the agreement
rate, i.e. the percentage of negotiation that reach an agreement between both agents. Even in presence
of a high level of uncertainty, the agreement rate is satisfactorily high when the opponent modeling is
enough accurate and the number of control arguments is high [41].

6. Related work

The question of qualitative uncertainty has been handled in another way in [11]. In this work, the
authors only consider classical AFs, but they introduce undecidedness in the arguments acceptance sta-
tuses. This is somehow a dual approach to IAFs, where uncertainty is present in the initial knowledge
(presence or absence of arguments and attacks), but not in the outcome of reasoning (arguments accep-
tance). Several ideas are discussed. First, in some cases, it is not necessary for a particular application
to give a precise status to each argument. A possible motivation for that is to avoid unnecessary com-
putations regarding arguments that are not important, or will likely be revised in the future. For dealing
with such situation, a labelling-based approach is used. Besides “traditional” labels {in, undec, out} [28],
a fourth label is introduced that corresponds to situations where the agent “does not care” about [58].
Another similar approach consists in labelling partially the AF, somehow ignoring the arguments that
are not considered as interesting. Then, another issue mentioned in [11] is the fact that “ignorance” is
not always the same thing, depending on the context. Especially, an agent can be unable to assess the ac-
ceptance status of an argument either because she has no information about it, or on the contrary because
she has too much (inconsistent) information about it. A preliminary work on epistemological undecid-
edness, i.e. the fact that some piece of information is inherently unknowable, has then be proposed in
the context of structured argumentation in [10]. This kind of approach is more related to IAFs, since the
uncertainty appears in the input of the reasoning process.
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In this paper, we focus on qualitative uncertainty. However, there is a vast literature on quantitative un-
certainty in abstract argumentation, namely on probabilistic argumentation. Two families of approaches
exist. The epistemic approach (e.g. [56,57,82]) attaches to arguments a degree of belief, i.e. the probabil-
ity (according to the agent) that the argument is acceptable. In that way, probabilistic argumentation can
be seen as related to [11]. On the contrary, in the constellation approach (e.g. [52,55,61]), the probability
is attached with the arguments and attacks; it is the probability of existence of arguments and attacks.
While [55,61] can be seen as quantitative counterparts of IAFs, [52] is the quantitative counterpart of
CAFs. The correspondance between IAFs and Probabilistic Argumentation Frameworks (PrAFs) under
the constellation approach has been illustrated by [15]. Each completion of a PrAFs is associated with
a probability, it is thus possible (given a semantics) to determine the probability that a given set is an
extension, or that a given argument is credulously (respectively skeptically) accepted. Then, it is noted
that a set of arguments is a possible extension if its probability is strictly greater than 0, and a necessary
extension if its probability is 1. Similarly, an argument is necessarily credulously (respectively skepti-
cally) accepted if its probability of credulous (respectively skeptical) acceptability is 1, and it is possibly
credulously (respectively skeptically) accepted if its probability of credulous (respectively skeptical)
acceptability is strictly greater than 0.

Finally, let us discuss extension enforcement [12–14,36,84]. This operation consists in modifying
an argumentation framework F = 〈A, R〉 in order to make some set of arguments S ⊆ A (part of)
an extension. When considering an IAF I = 〈A, A?, R, R?〉, determining whether a set of arguments
S ⊆ A is (part of) an extension is equivalent to determining whether S can be enforced in F , by means
of the arguments A? and attacks R?. This is reminiscent of the constraints defined in [83]. Enforcement
is also directly related to CAFs, since controllability is the fact that the target set of arguments can be
enforced in some (or each) extension of some (or each) completion, by means of control arguments.
CAFs provide a richer setting than existing work on extension enforcement, since it includes uncertainty
in the argumentation graph, and the control part constrains the possible ways to perform the enforcement.

7. Conclusion

We have described the main approaches that incorporate qualitative uncertainty in abstract argumen-
tation, namely Incomplete Argumentation Frameworks and Control Argumentation Frameworks and
variants of these. Figure 17 shows the relation between these models. An arrow X → Y with a label
T means that any instance of the class X can be transformed into an instance of the class Y with the
transformation T . For instance, any AF F = 〈A, R〉 is an Arg-IAF I = 〈A, A?, R〉 with A? = ∅, and
any Arg-IAF is an IAF I = 〈A, A?, R, R?〉 with R? = ∅.

Although these frameworks are still quite recent, they have already shown their interest in various
scenarios, and it paves the way to many applications especially in multi-agent systems, where uncertain
information is omnipresent, because e.g. the cost of communication forces agents to use enthymemes
[25], because of trust issues between agents [80], or because of the impossibility to anticipate the envi-
ronment evolution [59].

Using IAFs, as well as RIAFs, CIAFs and CAFs, in various application scenarios, seems to be a
promising line of research. Besides AF merging, stability and negotiation mentioned here, potential ap-
plications include argumentation dynamics [43] (especially in logic-based argumentation with uncertain
knowledge in the underlying knowledge base [62]), persuasion [27], or risk management [8]. We have
identified several other promising research tracks, including the combinations of ideas discussed in this
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CIAF: cI = 〈A, A?, R, R′, φ〉 CAF: C = 〈F = 〈A, R〉, C = 〈AC, RC〉, U = 〈A?, R?, ↔?〉〉

RIAF: rI = 〈A, A?, R, R?, ↔?〉

IAF: I = 〈A, A?, R, R?〉

Arg-IAF: I = 〈A, A?, R〉 Att-IAF: I = 〈A, R, R?〉

AF: F = 〈A, R〉

R′ = R?∪ ↔?, φ = ∧
(a,b)∈↔? atta,b ∨ attb,a C = 〈AC, RC〉 = 〈∅, ∅〉

↔?= ∅

R? = ∅ A? = ∅

A? = ∅ R? = ∅

Fig. 17. Relations between Dung’s AFs and the frameworks studied in this paper.

paper. For instance, controllability of CAFs could be studied in the context of the extension-based se-
mantics introduced in [65], or with a constrained version of CAFs (using the same kinds of constraints as
in [51,53,66]). Similarly, using IAFs instead of PAFs would provide new insights on AF merging [33].
From a more technical point of view, an interesting question consists in determining whether an instance
of one of the frameworks presented here can be translated into an equivalent AF (maybe at the cost of
additional arguments or attacks, like in the case of Extended AFs [68,69] or Bipolar AFs [30]). This
would allow to use existing algorithms dedicated to Dung’s AFs for reasoning with these more expres-
sive frameworks. Naturally, the complexity gap for some of these problems means that such translation
may not be polynomially doable in some cases. This question should be investigated in depth to identify
subclasses of IAFs/CAFs with better computational properties than the general case.

Real world applications of formal argumentation may require a complex combination of different
generalizations of Dung’s model. A natural question, for instance, is how to combine qualitative un-
certainty and bipolar argumentation, i.e. how to add (uncertain) supports [3,30] to IAFs. This may also
lead to an interesting combination of IAFs (or CAFs) with various frameworks like Weighted AFs [46],
Strength-based AFs [76], Value-based AFs [20] or AFs with collective attacks (SETAFs) [71]. The ques-
tion would then be to determine which arguments are acceptable when the agent is not sure about the
weight of some attacks, the strength or the value of some arguments, or the existence of some sub-attack
in a collective attack.

Finally, while ranking-based (or gradual) methods for argument acceptability have been a hot topic in
the last years (see e.g. [1,5,26,37]), there is no such approach for IAFs yet. This would provide valuable
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methods for contexts where a more fine-grained reasoning mechanism than a binary acceptability degree
is required.
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