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Abstract. Operations like belief change or merging have been adapted
to the context of abstract argumentation. However, these operations may
require to express some uncertainty or some disjunction in the result,
which is not representable in classical AFs. For this reason, some of
these works require a set of AFs or a set of extensions as the outcome of
the operation, somehow to represent a disjunction of AFs or extensions.
In parallel, the notion of Incomplete AFs (IAFs) has been developed
recently. It corresponds to AFs where the existence of some arguments
or attacks may be uncertain. Each IAF can be associated with a set
of classical AFs called completions, that correspond to different ways
of “resolving the uncertainty”. While these IAFs could be good candi-
dates for a compact representation of a “disjunction” of AFs, we prove
that this model is not expressive enough. Then we introduce Constrained
IAFs, that include a propositional formula allowing to select the set of
completions used for reasoning. We prove that this model is expressive
enough for representing any set of AFs, or any set of extensions. More-
over, we show that the complexity of credulous and skeptical reasoning
is the same as in the case of IAFs. Finally, we show that CIAFs can be
used to model a new form of extension enforcement.

Keywords: Abstract Argumentation · Uncertainty · Extension Enforce-
ment.

1 Introduction

Representing uncertainty and reasoning with uncertain information is of utmost
importance in artificial intelligence. Indeed, there are many reasons that may
lead an intelligent agent to face uncertainty or impossibility to choose between
alternatives. For instance, she can receive information from different sources,
which can have different degrees of reliability. This information can be incompat-
ible with her previous knowledge, or with information provided by other sources.
This kind of problem can be formalized as belief change operations (“How to
incorporate a new piece of information to my knowledge if it is not logically con-
sistent?”) [1, 21, 22] or belief merging (“How to give a coherent representation of
several agent’s knowledge even if they are globally inconsistent?”) [23]. In this
kind of application, a simple way to deal with the uncertainty of the result is
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the logical disjunction: if the result of revising an agent’s knowledge is “I am not
sure whether a is true or b is true.”, then it can be expressed with a∨b. However,
there are formalisms where this kind of simple representation of undecidedness
cannot be done. For instance, in abstract argumentation frameworks (AFs) [18],
either there is certainly an attack between two arguments, or there is certainly
no attack between them. But an agent cannot express something like “I am not
sure whether a attacks b or not.” AFs have been extended in this direction:
Partial AFs (PAFs) [9] allow to represent uncertain attacks. Later, Incomplete
AFs (IAFs) [6, 5] have been proposed, as a generalization of PAFs where also
arguments can be uncertain. Reasoning with a PAF or an IAF is possible thanks
to a set of completions, that are classical AFs that correspond to the different
possible worlds encoded in the uncertain information. While this framework al-
lows to express uncertainty in abstract argumentation in a rich way, there are
still situations that cannot be modeled. Consider, e.g., that an agent faces the
information “Either a attacks b, or b attacks a, but I am not sure which one is
true.”. There is no way to represent this information with an IAF. However, this
may be necessary in some situations. For instance, several adaptations of belief
change [11, 13] or merging [9, 15] to abstract argumentation lead to results that
can contain such an uncertainty over the result, impossible to be represented by
a single AF. So, these works propose to represent the “disjunction” in the result
as a set of AFs, or even as a set of extensions (and it is also known that not
every set of extensions can be represented by a single AF [19]).

In this paper, we define a generalization of IAFs, that adds a constraint to
it. The constraint in a Constrained IAF (CIAF) is a propositional formula that
allows to specify which subset of the completions of the IAF should be used for
reasoning. We show that this framework is more expressive than IAFs, in the
sense that any set of AFs can be the set of completions of a CIAF. Also, any
set of extensions can be obtained from (the completions of) a CIAF. We prove
that, despite being more expressive than IAFs, the complexity of credulous and
skeptical reasoning does not increase compared to IAFs, under various classical
semantics. Interestingly, we also identify a relation between our CIAFs and ex-
tension enforcement [3]. This operation consists in modifying an AF s.t. a given
set of arguments becomes part of an extension. Classical enforcement operators
are based on expansions, i.e. addition of arguments and attacks s.t. the attack
relation between former arguments remain unchanged. Theoretical results show
under which conditions enforcement is possible under expansions. However, these
results may suppose the possibility to perform unnatural expansions, like adding
a new argument that attacks all the undesired arguments. In a real dialogue, such
an “ultimate attacker”, that defeats every unwanted argument, is not likely to
exist. We show that completions of a CIAF can be used to model the set of
expansions that are available to an agent, and then enforcement is possible iff
the desired set of arguments is credulously accepted w.r.t. the CIAF.

The paper is organized as follows. Section 2 describes background notions of
abstract argumentation. Our first contributions are presented in Section 3 : the
definition of CIAFs, the properties of the framework regarding its expressivity,
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and finally the computational complexity of credulous and skeptical acceptance.
Then in Section 4, we show how CIAFs can be used to model scenarios of ex-
tension enforcement. We discuss related work in Section 5, and finally Section 6
concludes the paper and highlights some topics of interest for future research.1

2 Background

2.1 Dung’s Abstract Argumentation

Abstract argumentation was introduced in [18], where arguments are abstract
entities whose origin or internal structure are ignored. The acceptance of argu-
ments is purely defined from the relations between them.

Definition 1 (Abstract AF). An abstract argumentation framework (AF) is
a directed graph F = 〈A,R〉, where A is a set of arguments, and R ⊆ A× A is
an attack relation.

We say that a attacks b when (a, b) ∈ R. If (b, c) ∈ R also holds, then a
defends c against b. Attack and defense can be adapted to sets of arguments:
S ⊆ A attacks (respectively defends) an argument b ∈ A if ∃a ∈ S that attacks
(respectively defends) b.

Example 1. Let F = 〈A,R〉 be the AF depicted in Figure 1, withA = {a, b, c, d, e}
andR = {(b, a), (c, a), (c, d), (d, b), (d, c), (e, a)}. Each arrow represents an attack.
d defends a against both b and c, since these are attackers of a that are, in turn,
both attacked by d.

a b

c de

Fig. 1: The AF F

Different semantics have been introduced to evaluate the acceptability of
arguments [18], relying on two basic concepts: conflict-freeness and admissibility.

Definition 2 (Conflict-freeness and Admissibility). Given F = 〈A,R〉, a
set of arguments S ⊆ A is:

– conflict-free iff ∀a, b ∈ S, (a, b) 6∈ R;
– admissible iff it is conflict-free, and defends each a ∈ S against its attackers.

1 Proofs are omitted for space reasons.
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We use cf(F) and ad(F) for denoting the sets of conflict-free and admissible
sets of an argumentation framework F . The intuition behind these principles
is that a set of arguments may be accepted only if it is internally consistent
(conflict-freeness) and able to defend itself against potential threats (admissibil-
ity). The semantics proposed by [18] can be defined as follows.

Definition 3 (Extension Semantics). Given F = 〈A,R〉, an admissible set
S ⊆ A is:

– a complete extension iff it contains every argument that it defends;
– a preferred extension iff it is a ⊆-maximal complete extension;
– the unique grounded extension iff it is the ⊆-minimal complete extension;
– a stable extension iff it attacks every argument in A \ S.

The sets of extensions of an AF F , for these semantics, are denoted (respec-
tively) co(F), pr(F), gr(F) and st(F). Based on these semantics, we can define
the status of any (set of) argument(s), namely skeptically accepted (belonging
to each σ-extension), credulously accepted (belonging to some σ-extension) and
rejected (belonging to no σ-extension). Given an AF F and a semantics σ, we
use (respectively) skσ(F), crσ(F) and rejσ(F) to denote these sets of arguments.

Example 2. We consider again F given in Figure 1. Its extensions for the different
semantics, as well as the sets of accepted arguments, are given in Table 1.

σ σ(F) crσ(F) skσ(F) rejσ(F)

co {e}, {d, e}, {b, c, e} {b, c, d, e} {e} {a}
pr {d, e}, {b, c, e} {b, c, d, e} {e} {a}
gr {e} {e} {e} {a,b,c,d}
st {d, e}, {b, c, e} {b, c, d, e} {e} {a}

Table 1: Extensions and Accepted Arguments of F for σ ∈ {co,pr, gr, st}

For more details about argumentation semantics, we refer the interested
reader to [18, 2].

2.2 Incomplete AFs

Now, we describe Incomplete Argumentation Frameworks [9, 6, 5].

Definition 4 (Incomplete AF). An Incomplete Argumentation Framework
(IAF) is a tuple I = 〈A,A?, R,R?〉, where A and A? are disjoint sets of argu-
ments, and R,R? ⊆ (A ∪A?)× (A ∪A?) are disjoint sets of attacks.

Elements from A and R are certain arguments and attacks, i.e. the agent is
sure that they appear in the framework. On the opposite, A? and R? represent
uncertain arguments and attacks. For each of them, there is a doubt about their
actual existence.
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Example 3. Let us consider I = 〈A,A?, R,R?〉 given in Figure 2. We use plain
nodes and arrows to represent certain arguments and attacks, i.e. A = {a, b, c, d,
e} and R = {(b, a), (c, a), (d, b), (d, c)}. Uncertain arguments are represented as
dashed square nodes (i.e. A? = {f}) and uncertain attacks are represented as
dotted arrows (i.e. R? = {(e, a), (f, d)}).

a b

c de f

Fig. 2: The IAF I

The notion of completion in abstract argumentation was first defined in [9]
for Partial AFs (i.e. IAFs with A? = ∅), and then adapted to IAFs. Intuitively,
a completion is a classical AF which describes a situation of the world coherent
with the uncertain information encoded in the IAF.

Definition 5 (Completion of an IAF). Given I = 〈A,A?, R,R?〉, a comple-
tion of I is F = 〈A′, R′〉, s.t. A ⊆ A′ ⊆ A ∪ A? and R|A′ ⊆ R′ ⊆ R|A′ ∪ R?

|A′ ,

where R|A′ = R ∩ (A′ ×A′) (and similarly for R?
|A′).

The set of completions of an IAF I is denoted comp(I).

Example 4. We consider again the IAF from Figure 2. Its set of completions is
described at Figure 3.

a b

c de

(a) F1

a b

c de f

(b) F2

a b

c de f

(c) F3

a b

c de

(d) F4

a b

c de f

(e) F5

a b

c de f

(f) F6

Fig. 3: The Completions of I

Concerning the question of compact representation of a set of AFs by means
of an incomplete AF, the following example proves that some sets of AFs (even
simple ones) cannot be represented by an IAF.
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Example 5. Suppose that the result of revising an AF [11] is the set F = {F1 =
〈{a, b}, {(b, a)}〉,F2 = 〈{a, c}, {(c, a)}〉}. The question is to determine whether
this set can be compactly represented by a single IAF. Towards a contradiction,
suppose that there is an IAF I = 〈A,A?, R,R?〉 s.t. comp(I) = F. Since a
belongs to both F1 and F2, it must belong to the certain arguments A. On the
contrary, the uncertain arguments are A? = {b, c}, each of them belongs to some
(but not all) completions. A = {a} and A? = {b, c} imply the existence of some
completions that only contain a, and some completions that contain the three
arguments a, b, c. This is not the case. So I does not exist.

3 Constrained IAFs

Now we introduce the Constrained Incomplete Argumentation Frameworks, that
generalize IAFs by adding a constraint on the set of possible completions.

3.1 Constraints on Completions

Intuitively, for a given I, a constrained version of it is a pair 〈I, C〉 where
C ⊆ comp(I). Then, reasoning on 〈I, C〉 requires to use only C instead of the
full set of completions of I. For instance, let us consider applications where the
uncertainty about the world is encoded as a set of AFs or a set of extensions
(for instance, revision [11, 13] or merging of argumentation frameworks [9, 15]).
This set of AFs or extensions may not be encodable in a single IAF, while
being representable with a single Constrained IAF. But rather than defining
the constraint with a set of completions, we define a logical language to express
information on the structure of an AF, i.e. a propositional language s.t. the
models of a formula correspond to AFs, inspired by [10] for selecting extensions.
This is a more compact representation of the constraint.

Definition 6 (Constraint). Given A a set of arguments, we define the set of
propositional atoms PropA = ArgA ∪ AttA where ArgA = {arga | a ∈ A} and
AttA = {atta,b | (a, b) ∈ A × A}. Then, LA is the propositional language built
from PropA with classical connectives {¬,∨,∧}.

The satisfaction of a constraint by an AF is defined as follows.

Definition 7 (Constraint Satisfaction). Given A a set of arguments, and
φ ∈ LA a formula, the set of models of φ is denoted mod(φ). An AF F = 〈A′, R〉
with A′ ⊆ A and R ⊆ A′ × A′ satisfies φ iff there is a model ω ∈ mod(φ) s.t.
A′ = {a ∈ A | ω(arga) = >}, and R = {(a, b) ∈ A×A | ω(atta,b) = >)}.

3.2 Definition and Expressivity of CIAFs

Definition 8 (Constrained IAF). A Constrained Incomplete Argumentation
Framework (CIAF) is a tuple C = 〈A,A?, R,R?, φ〉, where 〈A,A?, R,R?〉 is an
IAF, and φ ∈ LA∪A? is a constraint.
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The constraint φ is used to select a subset of the completions of the IAF
IC = 〈A,A?, R,R?〉. The completions of a CIAF are then defined as follows.

Definition 9 (Completions of a CIAF). Given C = 〈A,A?, R,R?, φ〉 a CIAF,
we define its set of completions by comp(C) = {c ∈ comp(IC) | c satisfies φ}
where IC = 〈A,A?, R,R?〉.

Example 6. Let C = 〈A,A?, R,R?, φ〉 be a CIAF s.t. IC = 〈A,A?, R,R?〉 is the
IAF from Figure 2, and φ = atte,a ∧ argf . Recall that the completions of IC
are given in Figure 3. Only two of them satisfy φ, namely F5 (Fig. 3e) and F6

(Fig. 3f). So comp(C) = {F5,F6}.

Let us mention that, in order to be meaningful, the constraint φ must satisfy
some conditions. Indeed, there must be at least one model of φ s.t. arga is true
for each a ∈ A, atta,b is true for each (a, b) ∈ R, and atta,b is false for each
(a, b) ∈ ((A ∪A′)× (A ∪A′)) \ (R ∪R?). Otherwise, comp(C) is trivially empty.
More generally, a CIAF C is over-constrained when comp(C) = ∅.

Now, we focus on the expressivity of CIAFs, i.e. given a set of AFs (or a
set of extensions), is there a CIAF s.t. its completions (or the extensions of
its completions) correspond to the given set? We show that, in both cases, the
answer is yes.

Representing a Set of AFs First, we define a particular formula, that is only
satisfied by one given AF.

Definition 10. Given A a set of arguments, and F = 〈A′, R〉 with A′ ⊆ A, and
R ⊆ A′ ×A′, we define ψF ∈ LA as

ψF = (
∧
a∈A′

arga) ∧ (
∧

a∈A\A′

¬ arga) ∧ (
∧

(a,b)∈R

atta,b) ∧ (
∧

(a,b)∈(A×A)\R

¬ atta,b)

Proposition 1. Let F = {F1 = 〈A1, R1〉, . . . ,Fn = 〈An, Rn〉} be a set of AFs.
There is a CIAF C = 〈A,A?, R,R?, φ〉 s.t. comp(C) = F.

Intuitively, a simple CIAF that does the job consists of all the arguments
and attacks from F defined as uncertain, and then φ is the disjunction of the ψF
formulas, for F ∈ F. Let us exemplify this result.

Let us exemplify this result.

Example 7. We continue Example 5. For F = {F1 = 〈{a, b}, {(b, a)}〉,F2 =
〈{a, c}, {(c, a)}〉}, we define C = 〈A,A?, R,R?, φ, 〉, with A = ∅, A? = {a, b, c},
R = ∅, R? = {(b, a), (c, a)}, φ = ψF1

∨ ψF2
, where

ψF1 = arga ∧ argb ∧¬ argc ∧ attb,a ∧(
∧

(x,y)∈({a,b,c}×{a,b,c})\{(b,a)}

¬ attx,y)

and

ψF2 = arga ∧¬ argb ∧ argc ∧ attc,a ∧(
∧

(x,y)∈({a,b,c}×{a,b,c})\{(c,a)}

¬ attx,y)

We have comp(C) = F.
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Representing a Set of Extensions Now, we focus on the expressibility of a set of
extensions with a CIAF.

Proposition 2. Let E = {E1, . . . , En} be a set of extensions, and σ ∈ {co,pr, st,
gr}. There is a CIAF C = 〈A,A?, R,R?, φ〉 s.t.

⋃
c∈comp(C) σ(c) = E.

Of course, the construction described in Example 7 only shows the existence
of a CIAF that satisfies the expected property. This does not mean that this
given CIAF is the best way to represent the set of AFs (or extensions). A first
possible simplification consists in choosing A =

⋂n
i=1Ai and A? =

⋃n
i=1Ai \ A.

This natural simplification means that an argument that appears in every AF
must be considered as certain. A similar reasoning can be made with the attacks,
and the constraint can also be simplified. In a context of belief revision [11, 13]
or belief merging [9, 15], it is important to ensure that the resulting CIAF is as
close as possible to the initial AF(s). This question is out of the scope of this
paper, and is kept for future research.

3.3 Complexity Issues

Observation 1 Verifying whether an AF (or a completion) satisfies a con-
straint φ is a polynomial task: the correspondence between an AF and an in-
terpretation ω described in Definition 7 can be done polynomially, as well as
checking whether ω satisfies φ.

This means that, given a CIAF C = 〈A,A?, R,R?, φ〉, guessing a completion
of C is equivalent to guessing a set of arguments A ⊆ A′ ⊆ A?, a set of attacks
R|A′ ⊆ A′ ⊆ R?

|A′ , and verifying (in polynomial time) whether 〈A′, R′〉 satisfies
φ. This will be useful in the proofs of complexity results.

Now we study the complexity of credulous and skeptical reasoning. More
specifically, given C = 〈A,A?, R,R?, φ〉 a CIAF, a ∈ A, and σ a semantics,

Cred-σ is a ∈
⋃
F∈comp(C)

⋃
S∈σ(F) S?

Skep-σ is a ∈
⋂
F∈comp(C)

⋂
S∈σ(F) S?

These problems correspond to possible credulous acceptance (PCA) and necessary
skeptical acceptance (NSA) for IAFs [5]. We prove that complexity does not
increase from IAFs to CIAFs.

Proposition 3. The following hold:

1. For σ ∈ {ad, st, co, gr,pr}, Cred-σ is NP-complete.
2. For σ ∈ {st, co, gr}, Skep-σ is coNP-complete.
3. Skep-pr is ΠP

2 -complete.

Concerning skeptical reasoning, the problem is trivial under σ = ad, as usual,
since ∅ is admissible in any AF, there is no skeptically accepted argument in any
completion.

Finally, let us mention that credulous and skeptical acceptance can be gener-
alized to sets of arguments. These versions consists, respectively, in determining
whether a given set of arguments S satisfies S ⊆

⋃
F∈comp(C)

⋃
S∈σ(F) S, or

S ⊆
⋂
F∈comp(C)

⋂
S∈σ(F) S. The generalized versions keep the same complexity.
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4 CIAFs and Extension Enforcement

4.1 Expansion-based Enforcement

Now we introduce the notions of AF expansion and extension enforcement [3].

Definition 11. Let F = 〈A,R〉 be an AF. An expansion of F is an AF F ′ =
〈A ∪ A′, R ∪ R′〉 s.t. A′ 6= ∅ and A ∩ A′ = ∅. An expansion is called normal if
∀(a, b) ∈ R′, a ∈ A′ or b ∈ A′. Moreover, a normal expansion is strong (resp.
weak) if ∀(a, b) ∈ R′, a 6∈ A (resp. b 6∈ A).

In words, an expansion adds some arguments, and possibly attacks. In the
case of a normal expansion, the only added attacks concern at least one new
arguments, i.e. the attacks between the former arguments are not modified.
Finally, a normal expansion is strong (resp. weak) if it adds only strong (resp.
weak) arguments, i.e. arguments that are not attacked by (resp. do not attack)
the former arguments. The fact that F ′ is an expansion of F is denoted F �E F ′
(and normal, strong, weak expansions are denoted by �N ,�S ,�W ).

Definition 12. Given F = 〈A,R〉, a set of arguments S ⊆ A, and a semantics
σ, the AF F ′ is a normal (resp. strong, weak) σ-enforcement of S in F iff F ′ is
a normal (resp. strong, weak) expansion of F , and ∃E ∈ σ(F ′) s.t. S ⊆ E.

Definition 12 only considers “non-strict” enforcement, i.e. the desired set of
arguments must be included in an extension of the new AF. Strict enforcement
is defined in a similar manner, but the desired set of arguments must exactly
correspond to an extension.

Some (im)possibility results for these operations have been presented in [3].
However, some results rely on examples that are not representative of realistic
argument-based dialogues. The following example is inspired by [3, Theorem 4].

Example 8. Let F = 〈A,R〉 be the AF given in Figure 1. Recall that its stable
extensions are st(F) = {{d, e}, {b, c, e}}. Now let S = {a, d} be the set of argu-
ments to be enforced. We can define the (strong) expansion F ′ = 〈A∪{x}, R∪R′〉
where x is a fresh argument, and R′ = {(x, y) | y ∈ A \ S}. F ′ is shown at Fig-
ure 4. st(F ′) = {{x, a, d}}, thus it is a strong enforcement of S in F .

a b

c de x

Fig. 4: The Expansion F ′ Enforces S = {a, d}
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Example 8 illustrates the (theoretical) possibility to enforce any (conflict-
free) set of arguments if strong (or normal) expansions are permitted. However,
in an application context like dialogue (e.g. argument-based negotiation [17] or
persuasion [7]), the existence of an “ultimate” attacker like x, that defeats all
the undesired arguments, is unlikely.

4.2 Enforcement as Credulous Acceptability in CIAFs

To handle the problem highlighted by Example 8, we propose to take into ac-
count the set of arguments and attacks that an agent has at her disposal for
participating to the debate. This means that we parameterize the expansion
operation by the set of possible expanded AFs resulting of using some of the
available arguments and attacks.

Definition 13. Given F = 〈A,R〉 an AF, A a set of available arguments s.t.
A ∩ A = ∅, and R ⊆ ((A ∪ A) × (A ∪ A)) \ (A × A), we say that F ′ = 〈A′, R′〉
is an A-R-parameterized expansion of F (denoted by F �A,R F ′) iff F �E F ′,
A ⊆ A′ ⊆ A ∪ A and R′ = (R ∪R) ∩ (A′ ×A′).

We use �A,RN (resp. �A,RS , �A,RW ) to denote A-R-parameterized normal (resp.
strong, weak) expansions, i.e. A-R-parameterized expansions where F ′ is (addi-
tionally) normal (resp. strong, weak). This definition allows to take into account
the arguments and attacks that are actually known by an agent that participates
in a debate. We can show that a set of arguments that can be enforced with an
arbitrary (strong) expansion (like in Example 8) may not be enforceable with
parameterized expansions.

Example 9. We continue Example 8. Suppose that the available arguments and
attacks are A = {f, g} and R = {(f, c), (g, b)}. Figure 5 depicts the agent’s
possible actions: say nothing (i.e. keep the initial AF, Fig. 5a), say “f attacks c”
(Fig 5b), say “g attacks b” (Fig 5c), or both (Fig. 5d). In all the possible cases,
S = {a, d} is not enforced, since a is never defended against e.

a b

c de

(a)

a b

c de f

(b)

a b

c de

g

(c)

a b

c de f

g

(d)

Fig. 5: The Agent’s Possible Actions

What we call here the “possible actions” of the agent can actually be seen
as the set of completions of a CIAF, and the possibility of enforcing a set of
arguments corresponds to the credulous acceptance of this set w.r.t. the CIAF.
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Definition 14. Given F an AF, A a set of arguments, R a set of attacks, and
X ∈ {E,N, S,W} denoting the type of expansion, we define F = {F} ∪ {F ′ |
F �A,RX F ′}. Then, CA,RF,X is a CIAF s.t. comp(CA,RF,X ) = F.

The existence of CA,RF,X is guaranteed by Proposition 1. The construction il-

lustrated by Example 7 provides a suitable CA,RF,X . However, other CIAFs can be
defined, for instance all the arguments and attacks from the initial F can be
defined as certain elements. The following proposition states that CIAFs can be
used as a computational tool for determining the possibility of enforcement.

Proposition 4. Given an AF F = 〈A,R〉, a set of arguments S ⊆ A, X ∈
{E,N, S,W}, A a set of arguments and R a set of attacks, and a semantics σ,
S can be σ-enforced in F by means of a A-R-parameterized X-expansion iff S
is credulously accepted in CA,RF,X w.r.t. σ.

Observe that this result holds for non-strict enforcement, as given in Defini-
tion 12. Strict enforcement requires, instead, the notion of extension verification
[20] for CIAFs, i.e. we must check that the set of arguments S is actually an
extension of one of the completions.

5 Related Work

We have described the main existing work on IAFs. Let us also mention [20],
which defines an alternative notion of extension (compared to the one from
[6]). This does not have an impact on the work presented here, since we focus on
argument acceptance; our definitions are consistent with the ones in [5]. However,
as mentioned previously, this will be useful for characterizing strict extension
enforcement with CIAF-based reasoning.

Besides IAFs, our contribution is related to other previous works. Using
propositional formulas as constraints in an argumentation framework has been
originally proposed in [10], which defines Constrained Argumentation Frame-
works. In this setting, the propositional formula is a constraint on arguments
that is used for selecting the best extensions. Intuitively, we use here the con-
straint in CIAFs in a similar way, but for selecting completions of a IAF instead
of selecting the extensions of a (classical) AF.

We have shown how to represent any set of extensions with a single CIAF.
The question of representing sets of extensions has already arisen in classical AFs.
This corresponds to the notion of realizability in the literature [4, 19], i.e. given a
set of extensions E and a semantics σ, is there an AF F s.t. σ(F) = E. Existing
results show that it is not possible in general for most classical semantics. The
non-realizability of some sets of extensions is the reason why some operations
(like belief revision or merging) cannot be easily adapted to AFs, as mentioned
in the introduction. With Proposition 2, we continue this line of research, by
proving the realizability of any set of extensions by means of CIAFs.
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Regarding extension enforcement, it has been proven that (non-strict) en-
forcement is NP-complete [28] for another type of authorized change: argument-
fixed enforcement [12], where the set of arguments cannot be modified, but all the
attacks (or non-attacks) can be questioned. Although this is out of the scope of
this paper, we believe that this kind of enforcement can also be captured by the
CIAF setting, which will allow to define a parameterized version of argument-
fixed enforcement. The parameters A and R are also reminiscent of the “control
part” of Control AFs [16, 25, 24], that allows to enforce a set of arguments in
presence of uncertainty.

Constraints that express dependencies between arguments of an ADF [8] in
a dynamic context have been studied in [27]. While there is some similarity
between these constraints and the ones defined here, both studies have different
purposes. Indeed, [27] does not focus on uncertain environment as we do here,
but only on dynamic scenarios. Connections with enforcement based on A-R-
parameterized expansions will be studied.

6 Conclusion

We have defined Constrained Incomplete Argumentation Frameworks (or CIAFs,
for short) that generalize IAFs by adding a constraint over the set of comple-
tions. This new framework increases the expressivity of IAFs without a gap in
complexity, and paves the way for the definition of revision or merging opera-
tors for AFs that return a CIAF, i.e. a more compact result than a (potentially
exponentially large) set of AFs or extensions. However, the CIAF that we have
exhibited here to prove the representability of any set of AFs or extensions
may not be a suitable solution in scenarios like belief revision or belief merging,
where the notion of minimal change is important. We will study how to gen-
erate a CIAF that is optimal in such contexts. Knowledge compilation [14] is
an interesting way for providing a succinct equivalent propositional constraint
such that relevant reasoning tasks are polynomially doable. Other interesting
research tracks are the study of complexity for other decision problems (e.g. ex-
tension verification, or possible skeptical and necessary credulous acceptance),
and the implementation of efficient algorithms (e.g. based on Boolean encoding,
in the line of [26]). We will also study how to encode other extension enforcement
operators as CIAF-based reasoning.
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