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Abstract. Incomplete Argumentation Frameworks (IAFs) have been
defined to incorporate some qualitative uncertainty in abstract argu-
mentation: information such as “I am not sure whether this argument
exists” or “I am not sure whether this argument attacks that one” can
be expressed. Reasoning with IAFs is classically based on a set of com-
pletions, i.e. standard argumentation frameworks that represent the pos-
sible worlds encoded in the IAF. The number of these completions may
be exponential with respect to the number of arguments in the IAF.
This leads, in some cases, to an increase of the complexity of reasoning,
compared to the complexity of standard AFs. In this paper, we follow an
approach that was initiated for Partial AFs (a subclass of IAFs), which
consists in defining new forms of conflict-freeness and defense, the prop-
erties that underly the definition of Dung’s semantics for AFs. We gen-
eralize these semantics from PAFs to IAFs. We show that, among three
possible types of admissibility, only two of them satisfy some desirable
properties. We use them to define two new families of extension-based
semantics. We study the properties of these semantics, and in particular
we show that their complexity remains the same as in the case of Dung’s
AFs. Finally, we propose a logical encoding of these semantics, that paves
the way to the development of SAT-based solvers for reasoning with our
new semantics for IAFs.
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1 Introduction

Abstract argumentation has been a major subfield of Knowledge Representation
and Reasoning since the seminal paper by Dung [14]. However, although it is
very appealing, Dung’s framework is limited in the kind of information that
can be modeled: only (abstract) arguments and attacks between them. For this
reason, many generalization of this framework have been proposed, introducing
the notion of support between arguments [2], weighted attacks [15] or arguments
[26], preferences between arguments [1], and so on.

Among these generalizations of Dung’s framework, a very natural research
direction is the introduction of uncertainty in the model. Indeed, uncertainty
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is omnipresent in real world, and must be taken into account in the modeling
of agents that reason about their environment or about other agents. More-
over, when arguments are generated from natural language processing [21], the
nuances that exist in natural language are likely to be sources of uncertainty [5]
that should appear in the formal model. Two directions have been followed for
integrating uncertainty in abstract argumentation: quantitative representation
of uncertainties (e.g. probabilities [19,22]) and qualitative ones [6,11,12]. While
quantitative representation of uncertainty is valuable when it is available, allow-
ing fine grained reasoning about uncertainty, it may not be available in many
realistic cases. The study of qualitative models of uncertainty is thus of utter
importance for the design of AI systems.

In this paper, we follow this direction. Qualitative uncertainty in abstract
argumentation was originally studied in a context of Argumentation Framework
(AF) merging [12]: Partial Argumentation Frameworks (PAFs) are AFs with
possible ignorance about the existence of some attacks. Semantics dedicated
to these PAFs were then defined in [11]. However, most of the work in this
field focuses on a generalization of PAFs, namely Incomplete AFs (IAFs), and
reasoning is based on completions. A completion is an argumentation framework
that represents one of the (uncertain) options encoded in the IAF. Classical
reasoning tasks are then adapted in two versions: the possible view (is some
property true for some completion?) and the necessary view (is some property
true for each completion?). However, the number of completions is (in the worst
case) exponential in the number of arguments. This means that various reasoning
problems are harder for IAFs than their counterpart for standard AFs [6,8,18].

In this paper, we follow the approach initiated by [11]: we define new forms
of conflict-freeness and defense based on the different types of information in an
IAF. The combination of a notion of conflict-freeness and a notion of defense
yields a notion of admissibility; we show that among the three possible variants
of admissibility, only two of them satisfy some desirable property, namely Dung’s
Fundamental Lemma. This lemma states, in classical AFs, that an admissible
set remains admissible if an argument defended by it is added to the set. From
the two “fundamental” notions of admissibility for IAFs, we define variants of
the classical complete, preferred and stable semantics. We study some properties
of these semantics, and we show that their complexity remains the same as in
the standard AF case. Finally, we propose logical encodings, in the same vein
as [9], that pave the way to SAT-based implementations for reasoning with our
new semantics.

The rest of the paper is organized as follows. Section 2 describes the back-
ground notions on abstract argumentation. In Sect. 3, we define our new seman-
tics and study some of their properties, in particular the satisfaction of the
Fundamental Lemma, and some inclusion relations between them. In Sect. 4, we
show that the complexity remains the same as in the standard AF case,1 and
we provide a logical encoding for our semantics. Finally, Sect. 5 describes some
related work, and Sect. 6 concludes the paper.

1 At the exception of skeptical acceptability under the complete semantics, for which
we do not have a tight complexity result yet.
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2 Background

2.1 Abstract Argumentation Frameworks

Abstract argumentation is the study of relations between abstract pieces of infor-
mation called arguments; the internal nature of arguments, as well as their ori-
gin, is considered as irrelevant. Only the interactions between arguments are
considered in order to determine which arguments are acceptable or not. The
most classical type of relationship is the so-called attack relation, that expresses
a contradiction between arguments. An attack is generally directed from one
argument to another one, meaning that the first one somehow defeats the sec-
ond one. The seminal paper [14] has launched the strong interest for abstract
argumentation in the last 25 years. In this section, we formally introduce this
abstract framework and how it is used for reasoning.

We suppose the existence of a finite set of arguments A.

Definition 1 (Argumentation Framework). An argumentation framework
(AF) is a pair F = 〈A,R〉 with A ⊆ A the set of arguments and R ⊆ A × A
the set of attacks.

For a, b ∈ A, we say that a attacks b if (a, b) ∈ R. If b attacks some c ∈ A,
then a defends c against b. Similarly, a set S ⊆ A attacks (resp. defends) an
argument b if there is some a ∈ S that attacks (resp. defends) b.

Example 1. Figure 1 depicts an AF F = 〈A,R〉, with A = {a, b, c} (i.e. the
nodes of the graph) and R = {(b, a), (b, c), (c, b)} (i.e. the edges of the graph).

a b c

Fig. 1. An example of AF F

The acceptability of arguments is classically evaluated through the concept
of extensions, i.e. sets of arguments that are jointly acceptable. This form of
joint acceptance can be interpreted as defining a coherent point of view about
the argumentative scenario that is represented by the AF. Different semantics
have been defined, that yield different sets of extensions. The usual semantics
are based on two main principles: conflict-freeness and admissibility.

Definition 2 (Conflict-freeness and Admissibility). Given F = 〈A,R〉 an
AF, the set S ⊆ A is

– conflict-free iff ∀a, b ∈ S, (a, b) �∈ R;
– admissible iff it is conflict-free and ∀a ∈ S, ∀b ∈ A s.t. (b, a) ∈ R, ∃c ∈ S

s.t. (c, b) ∈ R.
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The meaning of conflict-freeness is quite easy to understand: we do not want
to accept together arguments that are conflicting. Admissibility corresponds to a
notion of “self-defense”: a (conflict-free) set of arguments must be able to defend
itself against external attacks in order to be considered as a valid point of view.
We use cf(F) (resp. ad(F)) to denote the set of conflict-free (resp. admissible)
sets of an AF F .

These principles are usually considered to be too weak to define semantics,
but the classical semantics are based on them.2 We recall now the definition of
these semantics:

Definition 3 (Admissibility-based Semantics). Given F = 〈A,R〉 an AF,
the admissible set S ⊆ A is

– a complete extension iff S contains all the arguments that it defends;
– a preferred extension iff S is a ⊆-maximal admissible set;
– a grounded extension iff S is a ⊆-minimal complete extension.

A fourth semantics is defined by Dung, that does not directly rely on the
notion of admissibility:

Definition 4 (Stable Semantics). Given F = 〈A,R〉 an AF, the conflict-free
set S ⊆ A is a stable extension iff ∀a ∈ A\S, S attacks a.

We use co(F), pr(F), gr(F) and st(F) for the sets of (respectively) complete,
preferred, grounded and stable extensions. Among their basic properties:

– ∀F , |σ(F)| ≥ 1 for σ ∈ {co, pr, gr};
– ∀F , |gr(F)| = 1;
– ∀F , st(F) ⊆ pr(F) ⊆ co(F).

The last point implies that stable extensions are admissible sets as well, even if
they are not explicitly defined through admissibility.

Example 2. Considering again F from Example 1; its extensions for the four
semantics defined previously are given in Table 1 (second column).

For further details about these semantics, as well as other semantics that
have been defined subsequently, we refer the reader to [4,14].

Given an argumentation framework and a semantics, classical reasoning tasks
include the verification that a given set of arguments is an extension, and that
a given argument is credulously or skeptically acceptable, i.e. belongs to some
or each extension. Formally:

σ-Ver Given an AF F = 〈A,R〉 and S ⊆ A, is S a σ-extension of F?
σ-Cred Given an AF F = 〈A,R〉 and a ∈ A, does a belong to some σ-extension

of F?
2 However, let us notice that we will sometimes include them in the family of studied

semantics, for homogeneity of the presentation, e.g. in the complexity results (see
Sect. 4.1).
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σ-Skep Given an AF F = 〈A,R〉 and a ∈ A, does a belong to each σ-extension
of F?

We use Credσ(F) (resp. Skepσ(F)) to denote the set of credulously (resp. skepti-
cally) accepted arguments of F , i.e. those for which the answer to σ-Cred (resp.
σ-Skep) is “YES”.

Example 3. The credulously and skeptically accepted arguments in F from
Example 1 are given in Table 1 (third and fourth columns).

Table 1. Extensions and acceptable arguments of F , for σ ∈ {gr, st, co, pr}.

Semantics σ σ(F) Credσ(F) Skepσ(F)

gr {∅} ∅ ∅
st {{b}, {a, c}} {a, b, c} ∅
co {∅, {b}, {a, c}} {a, b, c} ∅
pr {{b}, {a, c}} {a, b, c} ∅

The complexity of these problems for various semantics has been established,
see e.g. [16] for an overview. The relevant results for this paper are summarized
in Table 2. We assume that the reader is familiar with basic notions of complexity
theory, otherwise see e.g. [3].

Table 2. Complexity of σ-Ver, σ-Cred and σ-Skep, for σ ∈ {cf, ad, gr, st, co, pr}. C-c
means C-complete.

Semantics σ σ-Ver σ-Cred σ-Skep

cf in L in L Trivial

ad in L NP-c Trivial

gr P-c P-c P-c

st in L NP-c coNP-c

co in L NP-c P-c

pr coNP-c NP-c ΠP
2 -c

2.2 Qualitative Uncertainty in AFs

Now we present the existing models that incorporate qualitative uncertainty in
abstract argumentation.

Incomplete Argumentation Frameworks

Definition 5 (Incomplete Argumentation Framework). An incomplete
argumentation framework (IAF) is a tuple I = 〈A,A?,R,R?〉 where
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– A ⊆ A is the set of certain arguments;
– A? ⊆ A is the set of uncertain arguments;
– R ⊆ (A ∪ A?) × (A ∪ A?) the set of certain attacks;
– R? ⊆ (A ∪ A?) × (A ∪ A?) the set of uncertain attacks.

A and A? are disjoint sets of arguments, and R, R? are disjoint sets of attacks.

Intuitively, A and R correspond, respectively, to arguments and attacks that
certainly exist, while A? and R? are those that may (or may not) actually exist.

Example 4. Figure 2 depicts an IAF I = 〈A,A?,R,R?〉 with A = {a, b} (plain
nodes), A? = {c} (square dashed node), R = {(c, b)} (plain edge) and R? =
{(b, a)} (dotted edge). It means that the arguments a and b certainly exist, and
there is an uncertainty regarding the existence of the attack (b, a). Then, the
argument c is uncertain, but if it exists then the attack (c, d) certainly exists as
well.

a b c

Fig. 2. An example of IAF I

Reasoning with such IAFs is generally made through the notion of comple-
tion:

Definition 6 (Completion). Let I = 〈A,A?,R,R?〉 be an IAF. A completion
of I is a pair 〈Ac,Rc〉 such that

– A ⊆ Ac ⊆ A ∪ A?;
– R ∩ (Ac × Ac) ⊆ Rc ⊆ (R ∪ R?) ∩ (Ac × Ac).

Example 5. Figure 3 depicts the completions of I from Example 4. F1 shows the
situation where none of the uncertain elements actually exists, while F4 shows
the opposite situation (all the uncertain elements appear). F2 and F3 shows the
intermediate situations, where only one uncertain element (either the argument
c, or the attack (b, a)) exists.

a b

(a) F1

a b c

(b) F2

a b

(c) F3

a b c

(d) F4

Fig. 3. The completions of I

As seen with the previous example, the number of completions is generally
exponential in the size of the IAF. More precisely, it is bounded by 2|A?|+|R?|.
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Finally, reasoning tasks like credulous acceptance, skeptical acceptance or
verification are defined with respect to some or each completion [6,8]: each clas-
sical reasoning task has two variants, following the possible view (the property
holds in some completion) and the necessary view (the property holds in each
completion). These reasoning tasks are, in most cases, computationally harder
than their counterpart for standard AFs (under the usual assumption that the
polynomial hierarchy does not collapse) [6,8]. This can be explained by the
exponential number of completions.

Partial Argumentation Frameworks. Partial Argumentation Frameworks were
initially defined as tool in a merging process [12]. They are tuples 〈A,R, I,N〉
with three binary relations over the set of arguments A: R is the (certain) attack
relation, I the ignorance relation, and N the (certain) non-attack relation. Since
N = (A × A)\(R ∪ I), a PAF can be identified with only 〈A,R, I〉. Since the
meaning of I is exactly the same as the meaning of R?, PAFs actually form
a subclass of IAFs:3 any PAF 〈A,R, I〉 is an IAF 〈A, ∅,R,R?〉 with A = A,
R = R, R? = I.

Extension-based semantics for PAFs have been defined in [11]. Intuitively, the
idea consists in defining different forms of conflict-freeness and defense, and then
combine them for defining three types of admissibility. From these new notions
of admissibility, the authors define three variants of the preferred semantics,
and study their properties. An interesting point is the fact that the complexity
remains the same as in Dung’s setting, contrary to the other reasoning methods
for IAFs. These are the notions that are generalized from PAFs to IAFs in the
next section.

3 Generalizing Extension-Based Semantics from PAFs
to IAFs

In this section, we follow the same approach as [11] for defining semantics for
IAFs. Instead of defining the extensions with respect to the set of completions of
the IAF, we will generalize the basic concepts of conflict-freeness and defense to
take into account the uncertainty in the IAF. Then, the usual admissibility-based
semantics can be defined.

3.1 Conflict-Free and Admissible Sets of IAFs

We follow two approaches for defining conflict-freeness and defense for IAFs:

– Optimistic view: we consider that only certain arguments and attacks are
harmful, so keep the definition of conflict-freeness and defense as in Dung’s
frameworks;

– Pessimistic view: we consider that all attacks are harmful, and must be
defended by certain arguments and attacks only.

3 This subclass was studied under the name Attack-Incomplete AFs [7].
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By optimistic, we mean that the agent considers (e.g.) that (a, b) ∈ R? does not
make a a real “threat” against the acceptance of b. Roughly speaking, it means
that the agent is tolerant to conflicts if they are uncertain. On the opposite,
the pessimistic view means that the agent considers that all uncertain attacks
against an argument are real threats against the acceptance of b, and that b must
be defended by certain elements only in order to be accepted. Let us formally
define the corresponding versions of conflict-freeness and defense.

Definition 7 (Weak and Strong Conflict-freeness). Let I = 〈A,A?,R,R?〉
be an IAF. The set S ⊆ A ∪ A? is

– weakly conflict-free iff ∀a, b ∈ S ∩ A, (a, b) �∈ R;
– strongly conflict-free iff ∀a, b ∈ S, (a, b) �∈ R ∪ R?.

We use cfw(I) and cfs(I) to denote, respectively, the weakly and strongly
conflict-free sets of an IAF I.

Example 6. Figure 4 depicts an IAF I2 = 〈A,A?,R,R?〉, with A = {a, b, d, e},
A? = {c, f}, R = {(c, b), (e, b), (e, f)} and R? = {(b, a), (b, e), (d, e)}. The set
{a, b, c} is weakly conflict-free: the attack from b to a does not violate the weak
conflict-freeness since it is uncertain, and the attack from c to b does not violate
it either because the attacker (c) is uncertain. It is not strongly conflict-free
because of the same two attacks.

a b c

d e f

Fig. 4. An example of IAF I2

Strong conflict-freeness can be regarded as conflict-freeness applied on the
“full” graph Ffull = 〈A ∪ A?,R ∪ R?〉, i.e. an AF made from the same argu-
ments and attacks than the IAF, but without any uncertainty. However, weakly
conflict-free sets do not correspond to the conflict-free sets of the “minimal”
graph Fmin = 〈A,R ∩ (A × A)〉 (i.e. the AF obtained by simply ignoring the
uncertain elements): see e.g. {a, b, c} exhibited in Example 6, which is not a set
of arguments in Fmin (since c �∈ A).

Definition 8 (Weak and Strong Defense). Let I = 〈A,A?,R,R?〉 be an
IAF. Given a set of arguments S ⊆ A ∪ A? and an argument a ∈ A ∪ A?,

– S weakly defends a iff ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ S ∩A s.t. (c, b) ∈ R;
– S strongly defends a iff ∀b ∈ A ∪ A? such that (b, a) ∈ R ∪ R?, ∃c ∈ S ∩ A

s.t. (c, b) ∈ R.
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Example 7. Considering again I2 from Example 6, we observe that S = {a}
weakly defends a, since there is no x ∈ A s.t. (x, a) ∈ R. On the contrary, a is
not strongly defended by S, because there is no argument in S ∩ A that attacks
b. But S′ = {a, e} strongly defends a: e ∈ S′ ∩ A (certainly) attacks b.

We observe that in the case where A? = ∅, then weak conflict-freeness and
defense correspond to the notions of R-conflict-freeness and R-acceptability
defined in [11], while the strong versions correspond to RI-conflict-freeness and
RI-acceptability. Then, if R? = ∅ also holds, then both weak conflict-freeness
and strong conflict-freeness coincide with the classical conflict-freeness [14], while
both forms of defense defined here correspond with the classical defense.

For defining a notion of admissibility, we must combine conflict-freeness and
defense. In theory, Definitions 7 and 8 induce four notions of admissibility. How-
ever, the following result shows that weak conflict-freeness and strong conflict-
freeness induce the same notion of admissibility when combined with strong
defense.

Proposition 1. Let I = 〈A,A?,R,R?〉 be an IAF. Let S ⊆ A ∪ A? be a set of
arguments such that S is weakly conflict-free and ∀a ∈ S, S strongly defends a.
Then S is strongly conflict-free.

The proof is similar to the proof of [11, Property 1].

Proof. Reasoning towards a contradiction, let us suppose that S is not strongly
conflict-free, i.e. ∃a, b ∈ S such that (a, b) ∈ R? (we can exclude the option
(a, b) ∈ R because S is assumed to be weakly conflict-free). Then, since S
strongly defends all its elements, in particular it strongly defends b, so ∃c ∈ S
such that (c, a) ∈ R. This is a contradiction with the weak conflict-freeness of
S. So we can conclude that S is strongly conflict-free.

Now we define the three variants of admissibility.4

Definition 9 (Weak, Mixed and Strong Admissibility). Given I =
〈A,A?,R,R?〉 an IAF, a set of arguments S ⊆ A ∪ A? is

– weakly admissible iff S is weakly conflict-free and weakly defends all its ele-
ments;

– mixedly admissible iff S is strongly conflict-free and weakly defends all its
elements;

– strongly admissible iff S is strongly conflict-free and strongly defends all its
elements.

The weakly (resp. mixedly, strongly) admissible sets of an IAF I are denoted
by adw(I) (resp. adm(I), ads(I)).

The definitions imply that ads(I) ⊆ adm(I) ⊆ adw(I), for any IAF I. Also,
as in the standard Dung’s framework, every IAF has at least one admissible set,

4 The terminology “strong defense” and “strong admissibility” has been used with
another meaning in [10], where it applies to classical AFs, not IAFs.
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for all the variations of admissibility. Indeed, for any IAF I, ∅ ∈ ads(I). This
fact will be useful later to guarantee the existence of extensions for the semantics
based on admissibility.

Before going further with the definition of semantics based on these new
notions of admissibility, we briefly discuss a property of classical semantics that
we believe is important. It is called the Fundamental Lemma by Dung [14,
Lemma 10]. This lemma states that if a set of arguments S is admissible, and
defends an argument a, then S ∪ {a} is admissible. Besides its technical interest
for proving some further results, this lemma describes an intuitive property of
argumentation in general: if a point of view (i.e. a set of arguments) is seen as
valid, then it should be jointly acceptable with any argument that it success-
fully defends. We thus consider this property as necessary for defining reason-
able semantics. With the following lemma, we determine which of the notions of
admissibility given in Definition 9 satisfy a notion of “fundamentality” similar to
Dung’s lemma. More precisely, we show that only weak and strong admissibility
are suitable for defining semantics.

Lemma 1 (Fundamental Lemma). Given I = 〈A,A?,R,R?〉 an IAF, and
S ⊆ A ∪ A? a weakly (resp. strongly) admissible set, if S weakly (resp. strongly)
defends some a ∈ A ∪ A?, then S ∪ {a} is weakly (resp. strongly) admissible.

Proof. We first consider weak admissibility. Let us prove that S ∪ {a} is weakly
conflict-free. First of all, notice that if a ∈ A? then the set S ∪ {a} is weakly
conflict-free iff S is weakly conflict-free, since only certain attacks between cer-
tain arguments violate weak conflict-freeness. So in the rest of the reasoning
we suppose that a ∈ A. Towards a contradiction, suppose that S ∪ {a} is not
weakly conflict-free. Then, ∃b ∈ S ∩ A such that, either (b, a) ∈ R or (a, b) ∈ R.
In the former case, since S weakly defends a, then there must be a c ∈ S ∩ A
with (c, b) ∈ R, which is impossible since S is weakly conflict-free. Hence the
contradiction. In the latter case ((a, b) ∈ R), since S is weakly admissible, it
must defend b against a, and the same reasoning applies for concluding the
impossibility. Thus S ∪ {a} is weakly conflict-free.

The fact that S ∪ {a} weakly defends all its elements comes from the fact
that S weakly defends all its elements, as well as a. So we conclude that S ∪{a}
is weakly admissible.

Now, consider S a strongly admissible set that strongly defends some a ∈
A ∪ A?. Suppose that S ∪ {a} is not strongly conflict-free. It means that some
b ∈ S is such that (b, a) ∈ R ∪ R? or (a, b) ∈ R ∪ R?. In the first case, the fact
that S strongly defends a (against b) means that some c ∈ S∩A attacks b, which
violates strong conflict-freeness of S. In the second case, since S strongly defends
all its elements, there is a c ∈ S ∩A such that (c, a) ∈ R, which is impossible for
similar reasons to the first case. Hence S ∪ {a} is strongly conflict-free. Finally,
the fact that S ∪ {a} strongly defends all its elements follows the fact that S
strongly defends all its elements and a. So we conclude that S ∪ {a} is strongly
admissible.
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On the contrary, mixed admissibility does not satisfy a property of funda-
mentality.

Proposition 2. There is an IAF I = 〈A,A?,R,R?〉, S ⊆ A ∪ A? and an
argument a ∈ A∪A? such that S is mixedly admissible, S weakly defends a, and
S ∪ {a} is not mixedly admissible.

Proof. The IAF given at Fig. 5 provides an example. The set S = {b} is mixedly
admissible (it is strongly conflict-free, and it has no attacker). S weakly defends
a (since there is no x ∈ A such that (x, a) ∈ R, there is actually no need to
weakly defend a). But S ∪ {a} is not strongly conflict-free, hence not mixedly
admissible.

a b

Fig. 5. A counter-example about fundamentality of mixed admissibility

Because of this reason, we do not consider mixed admissibility as suitable for
defining semantics (e.g. mixed preferred or mixed complete semantics).

Example 8. Based on Example 6 and 7, we observe that, in I2 from Fig. 4, {a} is
weakly admissible but not strongly admissible. {a, e} is not strongly admissible
either, because it does not strongly defend e (against the uncertain attack (d, e)).
The full sets of weakly and strongly admissible sets of I2 are given in Table 3.

Table 3. Weakly and Strongly Admissible Sets of I2.

adw(I2) ∅, {a}, {c} , {d}, {e}, {a, c}, {a, d},

{a, e}, {c, d}, {c, e}, {d, e}, {a, c, d},

{a, c, e}, {a, d, e}, {c, d, e}, {a, c, d, e}
ads(I2) ∅, {c}, {d}, {c, d}

3.2 Admissibility-Based Semantics for IAFs

The classical definitions of Dung’s semantics can be adapted to IAFs, based on
the two different notions of admissibility identified as suitable in Lemma 1.

Definition 10 (Admissibility-based Semantics). Given I = 〈A,A?,R,R?〉
an IAF, a weakly (resp. strongly) admissible set of arguments S ⊆ A ∪ A? is
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– a weakly (resp. strongly) complete extension iff S contains all the arguments
that it weakly (resp. strongly) defends;

– a weakly (resp. strongly) preferred extension iff it is a ⊆-maximal weakly
(resp. strongly) admissible set.

For x ∈ {w, s} and σ ∈ {co, pr}, the set of x-σ extensions of an IAF I
is denoted σx(I). In the definition of the versions of complete semantics, the
notion of defense used is the same as in the underlying notion of admissibility.

Example 9. We continue Example 8. From the weakly and strongly admissible
sets described in Table 3, we deduce cow(I2) = prw(I2) = {{a, c, d, e}}, and
cos(I2) = prs(I2) = {{c, d}}.

We observe some usual properties regarding these semantics.

Proposition 3. Given I = 〈A,A?,R,R?〉 an IAF, and x ∈ {w, s},
– prx(I) �= ∅;
– prx(I) ⊆ cox(I).

Proof. The first item is a direct consequence of the fact that adx(I) �= ∅, as seen
previously. The existence of (finitely many) admissible sets implies the existence
of ⊆-maximal admissible sets.

Now, let S be a x-preferred extension of I. Reasoning towards a contradiction,
let us suppose that S �∈ cox(I). Since S is x-admissible, it means that S x-defends
some argument a that it does not contain. According to Lemma 1, S ∪ {a} is
x-admissible. This means that we have identified a proper superset of S which is
x-admissible, thus S is not a ⊆-maximal x-admissible set. This contradicts the
fact that S is x-preferred. So we can conclude S ∈ cox(I).

3.3 Stable Semantics for IAFs

Now we focus on a counterpart of stable semantics for IAFs.

Definition 11 (Stable Semantics). Given I = 〈A,A?,R,R?〉 an IAF,

– a weakly conflict-free set of arguments S ⊆ A∪A? is a weakly stable extension
iff ∀a ∈ A\S, there is some b ∈ S ∩ A such that (b, a) ∈ R;

– a strongly conflict-free set of arguments S ⊆ A ∪ A? is a strongly stable
extension iff ∀a ∈ (A ∪ A?)\S, there is some b ∈ S ∩ A such that (b, a) ∈ R.

Weakly and strongly stable extensions of an IAF I are denoted by stx(I),
where x ∈ {w, s}.

Example 10. Continuing Example 9, we observe that the weakly preferred exten-
sion S = {a, c, d, e} is weakly stable as well: the argument e ∈ S ∩ A (certainly)
attacks all the arguments in A\S. It is not strongly stable, since it is not strongly
conflict-free.

On the contrary, the strongly preferred extension S′ = {c, d} is not strongly
stable, since it does not attack all the arguments in (A ∪ A?)\S (e.g. a is not
attacked by S′).
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In Dung’s framework, although admissibility is not directly involved in the
definition of the stable semantics, any stable extension is actually an admissible
set. We show here that it is also the case for strong and weak stable semantics
of IAFs.

Proposition 4 (Admissibility of Stable Extensions). For any IAF I =
〈A,A?,R,R?〉, stx ⊆ adx(I), with x ∈ {w, s}.
Proof. Consider S a weakly stable extension of I. By definition of weakly stable
semantics, S is weakly conflict-free. Let us prove that it weakly defends all its
elements. Consider any a ∈ A\S such that (a, b) ∈ R for some b ∈ S. By
definition of the weakly stable semantics, there is a c ∈ S ∩ A such that (c, a)
∈ R, so S weakly defends b. Thus, S weakly defends all its elements, hence it is
weakly admissible.

Now we consider S a strongly stable extension of I. Again, strong conflict-
freeness is implied by the definition, so we just need to prove that S strongly
defends all its elements. Consider any a ∈ A ∪ A? such that (a, b) ∈ R ∪ R?, for
some b ∈ S. By definition of strongly stable extensions, there is some c ∈ S ∩ A
such that (c, a) ∈ R. Thus S strongly defends a, and then all its elements. We
can conclude that it is strongly admissible.

Another classical results that still holds for our new semantics is the rela-
tionship between (weakly or strongly) stable and (weakly or strongly) preferred
extensions.

Proposition 5 (Preferredness of Stable Extensions). For any IAF I =
〈A,A?,R,R?〉, stx ⊆ prx(I), with x ∈ {w, s}.
Proof. Consider S ∈ stw(I). From Proposition 4, we know that S is weakly
admissible. Towards a contradiction, suppose that S is not weakly preferred,
i.e. ∃S′ ∈ adw(I) such that S ⊂ S′. This implies the existence of an argument
a ∈ S′\S. The weak stability of S implies the existence of some b ∈ S ∩ A
such that (b, a) ∈ R, which violates the weak admissibility of S′. We reach a
contradiction, and thus we conclude that S ∈ prw(af).

Now consider S ∈ sts(I). Again, Proposition 4 implies the strong admissibil-
ity of S. Suppose the existence of S′ ∈ ads(I) with S ⊂ S′. Take a ∈ S′\S; the
strong stability of S implies the existence of b ∈ S ∩A such that (b, a) ∈ R, thus
violating the strong admissibility of S′. We reach a contradiction, and conclude
that S′ does not exist, hence S ∈ prs(I).

Example 10 and Proposition 5 imply that sts(I2) = ∅. The non-existence
of stable extensions in Dung’s framework is one of the main differences between
this semantics and the ones based on admissibility. We can simply show a similar
example for the weakly stable semantics as well: add a certain argument g to A
and (g, g) ∈ R. The set {a, c, d, e} remains the single weakly preferred extension,
but it does not attack g, so it is not weakly stable in the new IAF.
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4 Computational Issues

4.1 Computational Complexity

In this section, we study the complexity of the variants of verification, cred-
ulous acceptability and skeptical acceptability for IAFs. Formally, for σ ∈
{cf, ad, co, pr, st} and x ∈ {w, s}:

σx-Ver Given an IAF I = 〈A,A?,R,R?〉 and S ⊆ A, is S a x-σ-extension of F?
σx-Cred Given an IAF I = 〈A,A?,R,R?〉 and a ∈ A ∪ A?, does a belong to

some x-σ-extension of F?
σx-Skep Given an IAF I = 〈A,A?,R,R?〉 and a ∈ A ∪ A?, does a belong to

each x-σ-extension of F?

Lower Bounds. We can prove that reasoning with our semantics for IAFs is
(at least) as hard as reasoning with the corresponding semantics for AFs. This
can be done by showing that any AF F = 〈A,R〉 can be transformed into an
IAF IF that has the same extensions.

Definition 12 (IAF Associated with an AF). Given F = 〈A,R〉 an AF,
the IAF associated with F is IF = 〈A, ∅,R, ∅〉.

Now we prove the correspondance of extensions, i.e. σ(F) = σw(IF ) =
σs(IF ), for any σ ∈ {cf, ad, pr, co, st}.

Proposition 6 (Dung Compatibility). Given F = 〈A,R〉 an AF, σ ∈
{cf, ad, pr, co, st} and x ∈ {w, s}, σ(F) = σx(IF ), where IF follows Defini-
tion 12.

Proof. Observe that a set S ⊆ A is conflict-free (in F) iff it is weakly and
strongly conflict-free (in IF ). Then, a set S ⊆ A defends an argument a ∈ A
against all it attackers (in F) iff it weakly and strongly defends a against all
its attackers (in IF ). These facts imply ad(F) = adw(IF ) = ads(IF ), which
in turn imply the equivalence of complete and preferred extensions of F with
the (weak and strong) complete and preferred extensions of IF . Given S ⊆ A,
the equivalence between the conditions for S being stable in F and (weakly or
strongly) stable in IF is straightforward.

This allows to prove that the complexity of reasoning with AFs provides a
lower bound of the complexity of reasoning with IAFs.

Proposition 7. Given σ ∈ {cf, ad, pr, co, st}, x ∈ {w, s}, and P ∈
{Ver,Cred,Skep}, if σ-P is C-hard, then σx-P is C-hard.

Proof. Proposition 6 provides a polynomial-time reduction from σ-P to σx-P.
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Upper Bounds for Extension Verification. Similarly to Dung’s classical
setting, most of the properties of extensions can be verified in polynomial time
for our IAF semantics.

Lemma 2. Given an IAF I = 〈A,A?,R,R?〉 and a set of arguments S ⊆
A ∪ A?, the following tasks are doable in polynomial time:

1. check whether S is weakly (resp. strongly) conflict-free,
2. check whether S weakly (resp. strongly) defends some argument a ∈ A (resp.

a ∈ A ∪ A?),
3. check whether each argument in A\S (resp. (A ∪ A?)\S) is attacked by an

argument in S ∩ A.

Proof. For item 1., weak (resp. strong) conflict-freeness is checked by enumerat-
ing every (a, b) ∈ S ×S, and verifying whether (a, b) ∈ R (resp. (a, b) ∈ R∪R?).
There are |S|2 such pairs (a, b), and verifying the membership to R (resp.
R ∪ R?) is bounded by |A ∪ A?|2 (i.e. the maximal number of possible attacks
in an IAF).

For item 2., identifying the arguments b ∈ A (resp. b ∈ A ∪ A?) such that
(b, a) ∈ R (resp. (b, a) ∈ R∪R?) only requires to enumerate all the arguments in
A (resp. A ∪ A?), and then polynomially check the membership to R (resp. R ∪
R?). Then, for each of these attackers b, enumerate all the arguments c ∈ S ∩ A
and check the membership of (c, b) to R (resp. R ∪ R?). All the enumerations
are polynomially bounded.

Finally, for item 3., enumerate all the pairs (a, b) such that a ∈ S ∩ A and
b ∈ A\S (resp. b ∈ (A ∪ A?)\S), and then check whether (a, b) ∈ R.

Combining these polynomial operations allows to check whether a set of
arguments is an extension, for most of the semantics studied in this paper.

Proposition 8. For σ ∈ {cf, ad, co, st} and x ∈ {w, s}, σx-Ver is polynomial.

Proof. The result straightforwardly follows Lemma 2.

Following Proposition 7, the verification of (weakly or strongly) preferred
extensions is intractable (under the usual assumptions of complexity theory).
The following results proves that it remains at the first level of the polynomial
hierarchy, similarly to Dung’s preferred semantics.

Proposition 9. For x ∈ {w, s}, prx-Ver is in coNP.

Proof. Given S ⊆ A ∪ A?, proving that S is not a weakly (resp. strongly) pre-
ferred extension is doable with the following non-deterministic polynomial algo-
rithm:

1. Check whether S is weakly (resp. strongly) admissible. If not, then S is not
weakly (resp. strongly) preferred.

2. Otherwise, guess a proper superset of S, i.e. S ⊂ S′ ⊆ A ∪ A?. Verifying
whether S′ is a weakly (resp. strongly) admissible set is doable in polynomial
time with a deterministic algorithm. If S′ is weakly (resp. strongly) admissi-
ble, then S is not a weakly (resp. strong) preferred extension.

This algorithm proves that the complementary problem is in NP, thus we con-
clude that prx-Ver ∈ coNP for x ∈ {w, s}.
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Upper Bounds for Acceptability. First, consider the case of cfx, for x ∈
{w, s}. An argument a is credulously accepted w.r.t. cfx iff {a} ∈ cfx(I). This
can be easily checked, by verifying that (a, a) �∈ R and (a, a) �∈ R?. This is doable
in polynomial time and logarithmic space. Thus cfx-Cred ∈ L, for x ∈ {w, s}.
Skeptical acceptability is even easier: since ∅ is weakly (resp. strongly) conflict-
free, there is no skeptically acceptable argument w.r.t. cfx for any IAF. The
reasoning is the same for adx-Skep.

Proposition 10. For σ ∈ {ad, co, st, pr} and x ∈ {w, s}, σx-Cred is in NP.

Proof. For σ ∈ {ad, co, st}, guess a set of arguments that contains the queried
argument a, and check (in polynomial time, see Proposition 8) whether it is a
x-σ-extension. This is a NP algorithm for deciding σx-Cred.

For σ = pr, notice that an argument belongs to some weakly (resp. strongly)
preferred extension iff it belongs to some weakly (resp. strongly) admissible set,
hence the result.

Proposition 11. For σ ∈ {co, st} and x ∈ {w, s}, σx-Skep is in coNP.

Proof. Guess a set of arguments that does not contain the queried argument
a and check (in polynomial time) whether it is a x-σ-extension, i.e. a is not
skeptically accepted w.r.t. σx. This is a NP algorithm, thus σx-Skep is in coNP.

Proposition 12. For x ∈ {w, s}, prx-Skep is in ΠP
2 .

Proof. Analogous to Proposition 11, except that the higher complexity of veri-
fication under the (weakly or strongly) preferred semantics yields a higher com-
plexity upper bound for skeptical acceptability as well.

Discussion. We have proved that, in spite of the higher expressivity of IAFs
compared to standard AFs, the complexity of most classical reasoning tasks
remains the same. The only exception is skeptical acceptability under (weakly
or strongly) complete semantics, for which we only have a coNP upper bound,
while it is polynomial in standard Dung’s AFs. We plan to study a counterpart
of the grounded semantics for IAFs, which could bring new insights for the
complete semantics. Finally, notice that using the weak or strong counterpart of
our semantics does not have an impact on the complexity of reasoning.

4.2 SAT-Based Computational Approach

We follow the classical approach, initiated by [9], which consists in associating
an AF with a propositional formula such that there is a bijection between the
extensions of the AF and the models of the formula. Its has been applied with
success for developing argumentation solvers [20,24].

In the following, we consider an IAF I = 〈A,A?,R,R?〉, and we define a
set of propositional variables XA ∪ A? = {xa | a ∈ A ∪ A?}. Intuitively, an
interpretation ω corresponds to the set of arguments S = {a ∈ A∪A? | ω(xa) =
�}. We will provide in the rest of this section propositional formulas such that
their models correspond to desirable sets of arguments (e.g. weakly or strongly
conflict-free sets or extensions).
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Conflict-Freeness. Recall that a set of arguments is weakly conflict-free if there
is no certain attack between two certain arguments in it, while it is strongly
conflict-free if there is no attack at all (neither certain nor uncertain) between
any element of the set. This is encoded, respectively, by the following formulas
φw
cf and φs

cf :
φw
cf =

∧

a,b∈A,(a,b)∈R
(¬xa ∨ ¬xb)

φs
cf =

∧

a,b∈A∪A?,(a,b)∈R∪R?

(¬xa ∨ ¬xb)

Admissibility. Weak (resp. strong) admissibility is based on weak (resp. strong)
conflict-freeness, and weak (resp. strong) defense. We introduce a formula δw

(resp. δs) which characterizes sets of arguments that weakly (resp. strongly)
defend all their elements.

δw =
∧

a∈A∪A?

xa →
∧

b∈A,(b,a)∈R

∨

c∈A,(c,b)∈R
xc

δs =
∧

a∈A∪A?

xa →
∧

b∈A∪A?,(b,a)∈R∪R?

∨

c∈A,(c,b)∈R
xc

Then, weak and strong admissibility are encoded in

φx
ad = φx

cf ∧ δx

where x ∈ {w, s}.

Complete Extensions. The formulas δw and δs characterize sets of arguments
that (weakly or strongly) defend all their elements. To characterize complete
extensions, we just need to replace the implication by an equivalence, which
yields sets of arguments that defend all their elements and contain everything
they defend. Formally,

φx
co = φx

cf ∧ δ′
x

where x ∈ {w, s}, and

δ′
w =

∧

a∈A∪A?

xa ↔
∧

b∈A,(b,a)∈R

∨

c∈A,(c,b)∈R
xc

δ′
s =

∧

a∈A∪A?

xa ↔
∧

b∈A∪A?,(b,a)∈R∪R?

∨

c∈A,(c,b)∈R
xc
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Stable Extensions. Weakly (resp. strongly) stable extensions are weakly (resp.
strongly) conflict-free sets that attack all the certain arguments (resp. all the
arguments) that they do not contain. Said otherwise, it means that an argument
which is not attacked by (a certain argument in) the extension belongs to the
extension. It can be characterized as follows:

φw
st = φw

cf ∧
∧

a∈A
((

∧

b∈A,(b,a)∈R
¬xb) → xa)

φs
st = φs

cf ∧
∧

a∈A∪A?

((
∧

b∈A,(b,a)∈R
¬xb) → xa)

Preferred Extensions. Finally, weakly and strongly preferred semantics can-
not (under the usual assumptions of complexity theory) be directly encoded as
propositional formulas, since the complexity of reasoning with weak and strong
preferred semantics is higher than the complexity of Boolean satisfiability (espe-
cially, skeptical acceptability is ΠP

2 -complete). However, other techniques related
to propositional logic have been used in the past for computing preferred exten-
sions, e.g. quantified Boolean formulas [17], maximal satisfiable subsets [20] or
CEGAR (CounterExample Guided Abstraction Refinement) [24]. These tech-
niques could be adapted for computing weakly or strongly preferred extensions.

5 Related Work

Control Argumentation Frameworks (CAFs) [13,23,25] are highly related to
IAFs. They add another kind of uncertainty (about the direction of an attack),
and a “control part”, which is a set of arguments and attacks that must be
selected by the agent, the goal being to enforce the acceptability of a set of argu-
ments in each (or some) completion, by means of the selected control arguments.
Reasoning with CAFs is only based on completions, and generally the compu-
tational complexity is high (at least the same as reasoning with completions of
IAFs, and sometimes higher).

Reasoning with weighted AFs (i.e. AFs with weights on the attacks) [15] con-
sists, somehow, in relaxing conflict-freeness in order to jointly accept conflicting
arguments, as soon as the total amount of conflict (i.e. the sum of the weights
of the attacks) is lower than a given inconsistency budget. We could adapt this
principle for IAFs, by accepting only a given amount of uncertain attacks in
extensions.

6 Conclusion

In this paper, we have continued an effort started by [11], and defined extension-
based semantics for Incomplete Argumentation Frameworks that do not rely on
the completions of the IAF. We have studied the properties of our new semantics,
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and provided complexity results and logical encoding that pave the way to SAT-
based computation.

Future work include, naturally, missing complexity results (i.e. tight results
for the skeptical acceptability under weakly and strongly complete semantics)
and implementation of our encodings. In particular, the comparison of the var-
ious methods that reach the second level of the polynomial hierarchy for com-
puting the preferred extensions is an enthralling question. The study of the
grounded semantics will fulfill our study of Dung-style semantics for IAFs. We
also plan to apply this kind of semantics to Control Argumentation Frameworks,
which would decrease the complexity of controllability. This requires to take into
account the additional type of information, namely the uncertainty about the
direction of attacks. The link with weighted AFs, i.e. integrating an inconsis-
tency budget in the weak variants of our semantics, is also a promising line for
future research.
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