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Abstract

Incomplete Argumentation Frameworks (IAFs) have been defined to
incorporate some qualitative uncertainty in abstract argumentation: in-
formation such as “I am not sure whether this argument exists” or “I am
not sure whether this argument attacks that one” can be expressed. Rea-
soning with IAFs is classically based on a set of completions, i.e. standard
argumentation frameworks that represent the possible worlds encoded in
the IAF. The number of these completions may be exponential with re-
spect to the number of arguments in the IAF. This leads, in some cases,
to an increase of the complexity of reasoning, compared to the complexity
of standard AFs. In this paper, we follow an approach that was initiated
for Partial AFs (a subclass of IAFs), which consists in defining new forms
of conflict-freeness and defense, the properties that underly the definition
of Dung’s semantics for AFs. We generalize these semantics from PAFs to
IAFs. We show that, among three possible types of admissibility, only two
of them satisfy some desirable properties. We use them to define two new
families of extension-based semantics. We study the properties of these
semantics, and in particular we show that their complexity remains the
same as in the case of Dung’s AFs. Finally, we propose a logical encoding
of these semantics, and we show experimentally that this encoding can be
used efficiently to reason with IAFs, thanks to the power of modern SAT
solvers.

1 Introduction

Abstract argumentation has been a major subfield of Knowledge Representation
and Reasoning since the seminal paper by Dung [18]. However, although it is
very appealing, Dung’s framework is limited in the kind of information that
can be modeled: only (abstract) arguments and attacks between them. For this
reason, many generalizations of this framework have been proposed, introducing
the notion of support between arguments [3], weighted attacks [19] or weighted
arguments [44], preferences between arguments [2], and so on.
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Among these generalizations of Dung’s framework, a very natural research
direction is the introduction of uncertainty in the model. Indeed, uncertainty
is omnipresent in real world, and must be taken into account in the modeling
of agents that reason about their environment or about other agents. More-
over, when arguments are generated from natural language processing [35], the
nuances that exist in natural language are likely to be sources of uncertainty
[6] that should appear in the formal model. Two directions have been followed
for integrating uncertainty in abstract argumentation: quantitative representa-
tion of uncertainties (e.g. probabilities [36, 30]) and qualitative ones [16, 14, 7].
While quantitative representation of uncertainty is valuable when it is avail-
able, allowing fine grained reasoning about uncertainty, it may not be available
in many realistic cases. For instance, in a debate, an agent can be uncertain that
her opponent will use a given argument or not, without having a quantitative
measure of this uncertainty. The study of qualitative models of uncertainty is
thus of utter importance for the design of AI systems.

In this paper, we follow this direction. Qualitative uncertainty in abstract
argumentation was originally studied in a context of Argumentation Framework
(AF) merging [16]: Partial Argumentation Frameworks (PAFs) are AFs with
possible ignorance about the existence of some attacks, initially used as a tool
during some step of the merging process. Semantics dedicated to these PAFs
were then defined in [14]. However, most of the work in this field focuses on
a generalization of PAFs, namely Incomplete AFs (IAFs), where uncertainty
concerns both the arguments and the attacks, and reasoning is based on com-
pletions. A completion is an argumentation framework that represents one of
the (uncertain) scenarios encoded in the IAF. Classical reasoning tasks are then
adapted in two versions: the possible view (is some property true for some com-
pletion?) and the necessary view (is some property true for each completion?).
However, the number of completions is (in the worst case) exponential in the
number of arguments. This means that various reasoning problems are harder
for IAFs than their counterpart for standard AFs [9, 24, 7].

In this paper, we follow the approach initiated by [14]: we define new forms
of conflict-freeness and defense based on the different types of information in an
IAF. The combination of a notion of conflict-freeness and a notion of defense
yields a notion of admissibility; we show that among the three possible variants
of admissibility, only two of them satisfy some desirable property, namely Dung’s
Fundamental Lemma (adapted to IAFs). This lemma states, in classical AFs,
that an admissible set remains admissible if an argument defended by it is added
to the set. From the two “fundamental” notions of admissibility for IAFs (that
we call weak and strong admissibility), we define (weak and strong) variants of
the classical complete, preferred and stable semantics. We study some properties
of these semantics, and we show that their complexity remains the same as in
the standard AF case. Finally, we propose logical encodings of these semantics,
in the same vein as [11]. We describe an implementation of our SAT-based
approach for reasoning with the new semantics, and we empirically show that
it scales up well.

This article is an extended version of a preliminary conference paper [39].
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The new material included in this version is this one:

• we provide additional background notions, on propositional logic and com-
putational complexity: Section 2.1 and Section 2.2,

• we correct an error included in the previous publication, proving that
weak stable extensions are not weak admissible sets (but strong stable
extensions are indeed strong admissible sets): Section 3.3;

• we provide new results on the relations between weak and strong variants
of the semantics: Section 3.4);

• we study the complexity of additional decision problems (extension ex-
istence and non-emptiness) for all the semantics studied in the paper:
Section 4.1.3 and Section 4.1.5;

• we describe an implementation of the SAT-based approach, and an exper-
imental evaluation thereof: Section 5.

The rest of the paper is organized as follows. Section 2 describes back-
ground notions on propositional logic, computational complexity and abstract
argumentation. In Section 3, we define our new semantics and study some of
their properties, in particular the satisfaction of the Fundamental Lemma, and
some inclusion relations between them. In Section 4, we show that the com-
plexity remains the same as in the standard AF case,1 and we provide a logical
encoding for our semantics. Section 5 describes our implementation of the log-
ical encoding defined in the previous section, and an experimental evaluation
thereof shows that it scales up well. Finally, Section 6 describes some related
work, and Section 7 concludes the paper.

2 Background

2.1 Propositional Logic and Boolean Satisfiability

We first recall some basic notions of classical logic, that will be useful in Sec-
tion 4.2. We consider propositional formulas built on a set of Boolean variables
V , i.e. each variable can be assigned a value in B = {0, 1} (where 0 is interpreted
as false, and 1 as true). A well-formed formula is:

• ϕ = x, for any x ∈ V (atomic formula),

• ϕ = ¬ψ, for ψ a well-formed formula (negation),

• ϕ = ψ ∨ ψ′, for ψ,ψ′ two well-formed formulas (disjunction),

• ϕ = ψ ∧ ψ′, for ψ,ψ′ two well-formed formulas (conjunction).

1At the exception of skeptical acceptability under the complete semantics, for which we do
not have a tight complexity result yet.
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An interpretation is a mapping ω : V → B, i.e. an assignment of a truth
value to each variable. It can be extended to arbitrary formulas by the recursive
mechanism:

• ω(¬ϕ) = 1− ω(ϕ),

• ω(ϕ ∨ ψ) = max(ω(ϕ), ω(ψ)),

• ω(ϕ ∧ ψ) = min(ω(ϕ), ω(ψ)).

An interpretation ω satisfies a formula ϕ if ω(ϕ) = 1. We also say that ω is a
model of ϕ. We write mod(ϕ) the set of models of ϕ. Finally, we define additional
connectives as shortcuts for complex formulas:

• the material implication is ϕ→ ψ, with mod(ϕ→ ψ) = mod(¬ϕ ∨ ψ),

• the equivalence is ϕ↔ ψ, with mod(ϕ↔ ψ) = mod((ϕ→ ψ) ∧ (ψ → ϕ)).

The Boolean satisfiability problem (SAT) consists in determining, given a
propositional formula, whether it possesses at least one model. Although it
is theoretically hard to solve in general (NP-complete [15], see Section 2.2),
modern SAT solvers allow to solve it for many instances, including large ones
[12]. This makes reductions to SAT a good method for solving many hard
problems without developing specific algorithms for these problems. Notice that
SAT solvers usually take as input Conjunctive Normal Form formulas (CNF),
i.e. conjunction of clauses, where each clause is a disjunction of literals, and a
literal is either an atomic formula, or the negation of an atomic formula. This
is not a problem in practice, since any propositional formula can be translated
into an equivalent CNF formula in polynomial time (modulo the addition of
variables) [45].

2.2 Computational Complexity

We present now the basic notions of computational complexity that are used
in the rest of this article. We focus on decision problems, i.e. questions that
can be answered by “YES” or “NO”. The goal is to determine how hard it is to
solve such problems, with respect to the main resources required for computing
a solution to these problems: time and space. To do so, we use the notion of
complexity class, that are sets of problems sharing similar properties (e.g. being
“easy” or “hard” to solve).

Roughly speaking, a problem is considered to be “easy” to solve (tractable)
when there exists a deterministic algorithm that solves it in polynomial time
with respect to the size of the problem instance, i.e. O(nk) computation steps
where n is the size of the instance, and k ∈ N is a fixed constant. These
problems are gathered in the complexity class P. Among polynomial problems,
we can identify space-logarithmic ones, that are the decision problems solved by
a deterministic algorithm using a memory space logarithmic in the size of the
input (besides the size of the input itself, naturally). This means that running
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the algorithm requires O(log(n)) memory units if the problem instance needs n
memory units to be represented. These problems form the class L, which is a
subset of P.

Among “hard” problems (intractable), special attention has been paid to NP,
the set of problems that can be solved in polynomial time by a non-deterministic
algorithm. A classical approach to identify a problem in NP is the following
generic non-deterministic algorithm: given an instance I of the problem,

1. guess a potential proof p that I is a “YES” instance,

2. check (with a deterministic polynomial algorithm) that p is actually a
proof that I is a “YES” instance.

The first step is called a non-deterministic guess. From this approach, NP is
sometimes characterized as the set of problems for which it is hard to find a
solution, but easy to verify a solution (step 2 of the algorithm).

If the second step does not use a deterministic polynomial algorithm, but
a NP algorithm instead, it defines another class ΣP

2 (sometimes written NPNP),
the set of decision problems that can be solved in polynomial time by a non-
deterministic algorithm with access to a NP oracle (i.e. a black box able to
solve a problem from the class NP).

The complement of a complexity class C is C = {P | P ∈ C}, where P is the
complement problem of P, i.e. the decision problem built on the same set of
instances as P, such that i is a “YES” instance of P if and only if it is a “NO”
instance of P. Complement classes that will be used in the rest of this article

are coNP = NP and ΠP
2 = ΣP

2 .
Decision problems in these complexity classes can be compared thanks to

the notion of polynomial time reduction, i.e. a function f that takes as input
instances of a problem P, and outputs instances of a problem P ′, such that i is
a “YES” instance of P if and only if f(i) is a “YES” of P ′, and f is computable
in polynomial time with respect to the size of i. In this case, we write P ≤P

f P ′,
which means that P ′ is at least as hard as P. This notion is used to define the
concept of C-hardness: a problem P ′ is C-hard if for any P ∈ C, P ≤P

f P ′.2 A
problem which is C-hard and belongs to C is called C-complete, which means
that it is one of the hardest problems in C.

The classes mentioned here are part of the polynomial hierarchy, a family
of complexity classes recursively defined from P, NP, and coNP, using the con-
cept of oracles. Several inclusion relations exist between these classes, depicted
by Figure 1.3 Whether these inclusions are strict is still an open question; if
they were not strict then we would say that the polynomial hierarchy collapses.
However, the contrary is usually assumed, it means (for instance) that a Σ2P-
complete problem is considered strictly harder than a NP-complete problem,
which is in turn supposed to be strictly harder than a polynomial problem.

2If C = P, an additional constraint must be fulfilled, namely f must be computable using
logarithmic space with respect to the size of i.

3The classes ∆P
i correspond to problems that can be solved by using a polynomial number
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Figure 1: Illustration of the Polynomial Hierarchy first classes. C1 → C2 is used
to represent the inclusion of the complexity class C1 in the class C2.

For a more detailed overview of computational complexity, we refer the
reader to e.g. [4].

2.3 Abstract Argumentation Frameworks

Abstract argumentation is the study of relations between abstract pieces of in-
formation called arguments; the internal nature of arguments, as well as their
origin, is considered as irrelevant. Only the interactions between arguments are
considered in order to determine which arguments are acceptable or not. The
most classical type of relationship is the so-called attack relation, that expresses
a contradiction between arguments. An attack is generally directed from one
argument to another one, meaning that the first one somehow defeats the sec-
ond one. The seminal paper [18] has launched the strong interest for abstract
argumentation in the last 25 years. In this section, we formally introduce this
abstract framework and how it is used for reasoning.

We suppose the existence of a finite set of arguments A.

Definition 1 (Argumentation Framework). An argumentation framework (AF)
is a pair F = ⟨A,R⟩ with A ⊆ A the set of arguments and R ⊆ A×A the set
of attacks.

For a, b ∈ A, we say that a attacks b if (a, b) ∈ R. If b attacks some c ∈ A,
then a defends c against b. Similarly, a set S ⊆ A attacks (respectively defends)
an argument b if there is some a ∈ S that attacks (respectively defends) b.

Example 1. Figure 2 depicts an AF F = ⟨A,R⟩, with A = {a, b, c} (i.e. the
nodes of the graph) and R = {(b, a), (b, c), (c, b)} (i.e. the edges of the graph).

a b c

Figure 2: An Example of AF F

The acceptability of arguments is classically evaluated through the concept
of extensions, i.e. sets of arguments that are jointly acceptable. This form of

of calls to a ΣP
i oracle. They are only shown for describing the position of ΣP

2 and ΠP
2 in the

hierarchy, but they not used in the rest of the article.
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joint acceptance can be interpreted as defining a coherent point of view about
the argumentative scenario that is represented by the AF. Different semantics
have been defined, that yield different sets of extensions. The usual semantics
are based on two main principles: conflict-freeness and admissibility.

Definition 2 (Conflict-freeness and Admissibility). Given F = ⟨A,R⟩ an AF,
the set S ⊆ A is

• conflict-free iff ∀a, b ∈ S, (a, b) ̸∈ R;

• admissible iff it is conflict-free and ∀a ∈ S, ∀b ∈ A s.t. (b, a) ∈ R, ∃c ∈ S
s.t. (c, b) ∈ R.

The meaning of conflict-freeness is quite easy to understand: we do not want
to accept together arguments that are conflicting. Admissibility corresponds to
a notion of “self-defense”: a (conflict-free) set of arguments must be able to
defend itself against external attacks in order to be considered as a valid point
of view. We use cf(F) (respectively ad(F)) to denote the set of conflict-free
(respectively admissible) sets of an AF F .

These principles are usually considered to be too weak to define semantics,
but the classical semantics are based on them.4 We recall now the definition of
these semantics:

Definition 3 (Admissibility-based Semantics). Given F = ⟨A,R⟩ an AF, the
admissible set S ⊆ A is

• a complete extension iff S contains all the arguments that it defends;

• a preferred extension iff S is a ⊆-maximal admissible set;

• a grounded extension iff S is a ⊆-minimal complete extension.

A fourth semantics is defined by Dung, that does not directly rely on the
notion of admissibility:

Definition 4 (Stable Semantics). Given F = ⟨A,R⟩ an AF, the conflict-free
set S ⊆ A is a stable extension iff ∀a ∈ A \ S, S attacks a.

We use co(F), pr(F), gr(F) and st(F) for the sets of (respectively) complete,
preferred, grounded and stable extensions. Among their basic properties:

• for any AF F , |σ(F)| ≥ 1 for σ ∈ {co, pr, gr};

• for any AF F , |gr(F)| = 1;

• for any AF F , st(F) ⊆ pr(F) ⊆ co(F).

The last point implies that stable extensions are admissible sets as well, even if
they are not explicitly defined through admissibility.

4However, let us notice that we will sometimes include them in the family of studied
semantics, for homogeneity of the presentation, e.g. in the complexity results (see Section 4.1).
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Example 2. Considering again F from Example 1; its extensions for the four
semantics defined previously are given in Table 1 (second column).

For further details about these semantics, as well as other semantics that
have been defined subsequently, we refer the reader to [18, 5].

Given an argumentation framework and a semantics, classical reasoning
tasks include the verification that a given set of arguments is an extension,
and that a given argument is credulously or skeptically acceptable, i.e. belongs
to some or each extension. Formally:

σ-Ver Given an AF F = ⟨A,R⟩ and S ⊆ A, is S a σ-extension of F?

σ-Cred Given an AF F = ⟨A,R⟩ and a ∈ A, does a belong to some σ-extension
of F?

σ-Skep Given an AF F = ⟨A,R⟩ and a ∈ A, does a belong to each σ-extension
of F?

We use Credσ(F) (respectively Skepσ(F)) to denote the set of credulously (re-
spectively skeptically) accepted arguments of F , i.e. those for which the answer
to σ-Cred (respectively σ-Skep) is “YES”.

Example 3. The credulously and skeptically accepted arguments in F from
Example 1 are given in Table 1 (third and fourth columns).

Semantics σ σ(F) Credσ(F) Skepσ(F)

gr {∅} ∅ ∅
st {{b}, {a, c}} {a, b, c} ∅
co {∅, {b}, {a, c}} {a, b, c} ∅
pr {{b}, {a, c}} {a, b, c} ∅

Table 1: Extensions and acceptable arguments of F , for σ ∈ {gr, st, co, pr}.

For most of the classical semantics, σ(F) ̸= ∅ holds for any F . However, it is
not the case for the stable semantics. This induces another interesting decision
problem:

σ-Exist Given an AF F = ⟨A,R⟩, is σ(F) ̸= ∅?

Finally, let us discuss the issue of (non-)emptiness in extension-based se-
mantics. As said before, except for the stable semantics, most of the classical
semantics always produce a non-empty set of extensions (i.e. σ(F) ̸= ∅ for any
F). However, there is no guarantee that there is a non-empty extension. On
the contrary, the stable extensions may not exist, but if there are some then
they are all non-empty. This conducts to the definition of the non-emptiness
decision problem:

σ-NE Given an AF F = ⟨A,R⟩, is there some S ⊆ A such that S ̸= ∅ and
S ∈ σ(F)?
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The complexity of these problems for various semantics has been established,
see e.g. [20] for an overview. The relevant results for this paper are summarized
in Table 2.

Semantics σ σ-Ver σ-Cred σ-Skep σ-Exist σ-NE

cf in L in L trivial trivial in L
ad in L NP-c trivial trivial NP-c
gr P-c P-c P-c trivial in L
st in L NP-c coNP-c NP-c NP-c
co in L NP-c P-c trivial NP-c
pr coNP-c NP-c ΠP

2 -c trivial NP-c

Table 2: Complexity of σ-Ver, σ-Cred, σ-Skep, σ-Exist and σ-NE for σ ∈
{cf, ad, gr, st, co, pr}. C-c means C-complete.

2.4 Qualitative Uncertainty in AFs

Now we present the existing models that incorporate qualitative uncertainty in
abstract argumentation.

Incomplete Argumentation Frameworks

Definition 5 (Incomplete Argumentation Framework). An incomplete argu-
mentation framework (IAF) is a tuple I = ⟨A,A?,R,R?⟩ where

• A ⊆ A is the set of certain arguments;

• A? ⊆ A is the set of uncertain arguments;

• R ⊆ (A ∪A?)× (A ∪A?) the set of certain attacks;

• R? ⊆ (A ∪A?)× (A ∪A?) the set of uncertain attacks.

A and A? are disjoint sets of arguments, and R, R? are disjoint sets of attacks.

Intuitively, A and R correspond, respectively, to arguments and attacks that
certainly exist, while A? and R? are those that may (or may not) actually exist.

Example 4. Figure 3 depicts an IAF I = ⟨A,A?,R,R?⟩ with A = {a, b}
(plain nodes), A? = {c} (square dashed node), R = {(c, b)} (plain edge) and
R? = {(b, a)} (dotted edge). It means that the arguments a and b certainly exist,
and there is an uncertainty regarding the existence of the attack (b, a). Then,
the argument c is uncertain, but if it exists then the attack (c, b) certainly exists
as well.

Reasoning with such IAFs is generally made through the notion of comple-
tion, i.e. a classical AF that represents a “possible world” with respect to the
uncertain information encoded in the IAF:
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a b c

Figure 3: An Example of IAF I

Definition 6 (Completion). Let I = ⟨A,A?,R,R?⟩ be an IAF. A completion
of I is an AF Fc = ⟨Ac,Rc⟩ such that

• A ⊆ Ac ⊆ A ∪A?;

• R∩ (Ac ×Ac) ⊆ Rc ⊆ (R∪R?) ∩ (Ac ×Ac).

Example 5. Figure 4 depicts the completions of I from Example 4. F1 shows
the situation where none of the uncertain elements actually exists, while F4

shows the opposite situation (all the uncertain elements appear). F2 and F3

shows the intermediate situations, where only one uncertain element (either the
argument c, or the attack (b, a)) exists.

a b

(a) F1

a b c

(b) F2

a b

(c) F3

a b c

(d) F4

Figure 4: The Completions of I

As seen with the previous example, the number of completions is generally

exponential in the size of the IAF. More precisely, it is bounded by 2|A
?|+|R?|.

Finally, reasoning tasks like credulous acceptance, skeptical acceptance or
verification are defined with respect to some or each completion [9, 7]: each
classical reasoning task has two variants, following the possible view (the prop-
erty holds in some completion) and the necessary view (the property holds in
each completion). These reasoning tasks are in many cases computationally
harder than their counterpart for standard AFs (under the usual assumption
that the polynomial hierarchy does not collapse) [9, 7]. This can be explained
by the exponential number of completions.

Partial Argumentation Frameworks Partial Argumentation Frameworks
were initially defined as a tool in a merging process [16]. They are tuples
P = ⟨A,R, I,N⟩ with three binary relations over the set of arguments A: R
is the (certain) attack relation, I the ignorance relation, and N the (certain)
non-attack relation. Since N = (A×A) \ (R∪ I), a PAF can be identified with
only ⟨A,R, I⟩. Since the meaning of I is exactly the same as the meaning of R?,
PAFs actually form a subclass of IAFs:5 any PAF P = ⟨A,R, I⟩ is equivalent
to an IAF IP = ⟨A, ∅,R,R?⟩ with A = A, R = R, R? = I.

5This subclass was studied under the name Attack-Incomplete AFs [8].
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Extension-based semantics for PAFs have been defined in [14]. Intuitively,
the idea consists in defining different forms of conflict-freeness and defense,
and then combine them for defining three types of admissibility. From these
new notions of admissibility, the authors define three variants of the preferred
semantics, and study their properties. An interesting point is the fact that
the complexity remains the same as in Dung’s setting, contrary to the other
reasoning methods for IAFs. These are the notions that are generalized from
PAFs to IAFs in the next section.

3 Generalizing Extension-based Semantics from
Partial to Incomplete AFs

In this section, we follow the same approach as [14] for defining semantics for
IAFs. Instead of defining the extensions with respect to the set of completions
of the IAF, we will generalize the basic concepts of conflict-freeness and defense
to take into account the uncertainty in the IAF. Then, the usual admissibility-
based semantics can be defined.

3.1 Conflict-free and Admissible Sets of IAFs

We follow two approaches for defining conflict-freeness and defense for IAFs:

• Optimistic view: we consider that only certain arguments and attacks are
harmful, so keep the definition of conflict-freeness and defense as in Dung’s
frameworks;

• Pessimistic view: we consider that all attacks are harmful, and must be
defended by certain arguments and attacks only.

By optimistic, we mean that the agent considers e.g. that (a, b) ∈ R? does not
make a a real “threat” against the acceptance of b. Roughly speaking, it means
that the agent is tolerant to conflicts if they are uncertain. On the opposite,
the pessimistic view means that the agent considers that all uncertain attacks
against an argument are real threats against the acceptance of b, and that b
must be defended by certain elements only in order to be accepted. Let us
formally define the corresponding versions of conflict-freeness and defense.

Definition 7 (Weak and Strong Conflict-freeness). Let I = ⟨A,A?,R,R?⟩ be
an IAF. The set S ⊆ A ∪A? is

• weakly conflict-free iff ∀a, b ∈ S ∩ A, (a, b) ̸∈ R;

• strongly conflict-free iff ∀a, b ∈ S, (a, b) ̸∈ R ∪ R?.

We use cfw(I) and cfs(I) to denote, respectively, the weakly and strongly
conflict-free sets of an IAF I.
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Example 6. Figure 5 depicts an IAF I2 = ⟨A,A?,R,R?⟩, with A = {a, b, d, e},
A? = {c, f}, R = {(c, b), (e, b), (e, f)} and R? = {(b, a), (b, e), (d, e)}. The set
{a, b, c} is weakly conflict-free: the attack from b to a does not violate the weak
conflict-freeness since it is uncertain, and the attack from c to b does not violate
it either because the attacker (c) is uncertain. It is not strongly conflict-free
because of the same two attacks. An example of strongly conflict-free set is
{a, c, e}.

a b c

d e f

Figure 5: An Example of IAF I2

Strong conflict-freeness can be regarded as conflict-freeness applied on the
“full” graph Ffull = ⟨A ∪ A?,R ∪ R?⟩, i.e. an AF made from the same ar-
guments and attacks than the IAF, but without any uncertainty. However,
weakly conflict-free sets do not correspond to the conflict-free sets of the “min-
imal” graph Fmin = ⟨A,R∩ (A×A)⟩ (i.e. the AF obtained by simply ignoring
the uncertain elements): see e.g. {a, b, c} exhibited in Example 6, which is not
a set of arguments in Fmin (since c ̸∈ A).

Definition 8 (Weak and Strong Defense). Let I = ⟨A,A?,R,R?⟩ be an IAF.
Given a set of arguments S ⊆ A ∪A? and an argument a ∈ A ∪A?,

• S weakly defends a iff ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ S ∩ A s.t.
(c, b) ∈ R;

• S strongly defends a iff ∀b ∈ A∪A? such that (b, a) ∈ R∪R?, ∃c ∈ S ∩A
s.t. (c, b) ∈ R.

Example 7. Considering again I2 from Example 6, we observe that S = {a}
weakly defends a, since there is no x ∈ A s.t. (x, a) ∈ R. On the contrary, a is
not strongly defended by S, because there is no argument in S ∩ A that attacks
b. But S′ = {a, e} strongly defends a: e ∈ S′ ∩ A (certainly) attacks b.

We observe that in the case where A? = ∅, then weak conflict-freeness and
defense correspond to the notions of R-conflict-freeness and R-acceptability
defined in [14], while the strong versions correspond to RI-conflict-freeness
and RI-acceptability. Thus, if R? = ∅ also holds, then both weak conflict-
freeness and strong conflict-freeness coincide with the classical conflict-freeness
[18], while both forms of defense defined here correspond with the classical
defense.

For defining a notion of admissibility, we must combine conflict-freeness and
defense. In theory, Definitions 7 and 8 induce four notions of admissibility. How-
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ever, the following result shows that weak conflict-freeness and strong conflict-
freeness induce the same notion of admissibility when combined with strong
defense.

Proposition 1. Let I = ⟨A,A?,R,R?⟩ be an IAF. Let S ⊆ A∪A? be a set of
arguments such that S is weakly conflict-free and ∀a ∈ S, S strongly defends a.
Then S is strongly conflict-free.

The proof is similar to the proof of [14, Property 1].

Proof. Reasoning towards a contradiction, let us suppose that S is not strongly
conflict-free, i.e. ∃a, b ∈ S such that (a, b) ∈ R ∪ R?. Then, since S strongly
defends all its elements, in particular it strongly defends b, so ∃c ∈ S ∩ A such
that (c, a) ∈ R. Now there are two options: either a ∈ A or a ∈ A?. First
assume a ∈ A. In that case, there is a contradiction between the existence of
the attack (c, a) and the weak conflict-freeness of S. Now, assume that a ∈ A?.
Since it is assumed that S strongly defends all its elements, there must be some
d ∈ S∩A such that (d, c) ∈ R (i.e. a is strongly defended against its attacker c).
Now, we have a certain attack (d, c) between two certain arguments c, d ∈ S∩A,
which is in contradiction with the weak conflict-freeness of S.

So we can conclude that S is strongly conflict-free.

Now we define the three variants of admissibility.6

Definition 9 (Weak, Mixed and Strong Admissibility). Given I = ⟨A,A?,
R,R?⟩ an IAF, a set of arguments S ⊆ A ∪A? is

• weakly admissible iff S is weakly conflict-free and weakly defends all its
elements;

• mixedly admissible iff S is strongly conflict-free and weakly defends all its
elements;

• strongly admissible iff S is strongly conflict-free and strongly defends all
its elements.

The weakly (respectively mixedly, strongly) admissible sets of an IAF I are
denoted by adw(I) (respectively adm(I), ads(I)).

The definitions imply that ads(I) ⊆ adm(I) ⊆ adw(I), for any IAF I. Also,
as in the standard Dung’s framework, every IAF has at least one admissible
set, for all the variations of admissibility. Indeed, for any IAF I, ∅ ∈ ads(I).
This fact will be useful later to guarantee the existence of extensions for the
semantics based on admissibility.

Before going further with the definition of semantics based on these new
notions of admissibility, we briefly discuss a property of classical semantics that
we believe is important. It is called the Fundamental Lemma by Dung [18,
Lemma 10]. This lemma states that if a set of arguments S is admissible, and

6The terminology “strong defense” and “strong admissibility” has been used with another
meaning in [13], where it applies to classical AFs, not IAFs.
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defends an argument a, then S∪{a} is admissible. Besides its technical interest
for proving some further results, this lemma describes an intuitive property
of argumentation in general: if a point of view (i.e. a set of arguments) is
seen as valid, then it should be jointly acceptable with any argument that it
successfully defends. We thus consider this property as necessary for defining
reasonable semantics. With the following lemma, we determine which of the
notions of admissibility given in Definition 9 satisfy a notion of “fundamentality”
similar to Dung’s lemma. More precisely, we show that only weak and strong
admissibility are suitable for defining semantics.

Lemma 1 (Fundamental Lemma). Given I = ⟨A,A?,R,R?⟩ an IAF, and S ⊆
A ∪ A? a weakly (respectively strongly) admissible set, if S weakly (respectively
strongly) defends some a ∈ A∪A?, then S∪{a} is weakly (respectively strongly)
admissible.

Proof. We first consider weak admissibility. Let us prove that S ∪{a} is weakly
conflict-free. First of all, notice that if a ∈ A? then the set S ∪ {a} is weakly
conflict-free iff S is weakly conflict-free, since only certain attacks between cer-
tain arguments violate weak conflict-freeness. So in the rest of the reasoning we
suppose that a ∈ A. Towards a contradiction, suppose that S∪{a} is not weakly
conflict-free. Then, ∃b ∈ S ∩ A such that, either (b, a) ∈ R or (a, b) ∈ R. In
the former case, since S weakly defends a, then there must be a c ∈ S ∩A with
(c, b) ∈ R, which is impossible since S is weakly conflict-free. Hence the con-
tradiction. In the latter case ((a, b) ∈ R), since S is weakly admissible, it must
defend b against a, and the same reasoning applies for concluding the impossi-
bility. Thus S∪{a} is weakly conflict-free. The fact that S∪{a} weakly defends
all its elements comes from the fact that S weakly defends all its elements, as
well as a. So we conclude that S ∪ {a} is weakly admissible.

Now, consider S a strongly admissible set that strongly defends some a ∈
A ∪A?. Suppose that S ∪ {a} is not strongly conflict-free. It means that some
b ∈ S is such that (b, a) ∈ R ∪R? or (a, b) ∈ R ∪R?. In the first case, the fact
that S strongly defends a (against b) means that some c ∈ S∩A attacks b, which
violates strong conflict-freeness of S. In the second case, since S strongly defends
all its elements, there is a c ∈ S∩A such that (c, a) ∈ R, which is impossible for
similar reasons to the first case. Hence S ∪{a} is strongly conflict-free. Finally,
the fact that S ∪ {a} strongly defends all its elements follows the fact that S
strongly defends all its elements and a. So we conclude that S ∪ {a} is strongly
admissible.

On the contrary, mixed admissibility does not satisfy a property of funda-
mentality.

Proposition 2. There is an IAF I = ⟨A,A?,R,R?⟩, S ⊆ A ∪ A? and an
argument a ∈ A ∪ A? such that S is mixedly admissible, S weakly defends a,
and S ∪ {a} is not mixedly admissible.

Proof. The IAF given at Figure 6 provides an example. The set S = {b}
is mixedly admissible (it is strongly conflict-free, and it has no attacker). S
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weakly defends a (since there is no x ∈ A such that (x, a) ∈ R, there is actually
no need to weakly defend a). But S ∪ {a} is not strongly conflict-free, hence
not mixedly admissible.

a b

Figure 6: A Counter-Example about Fundamentality of Mixed Admissibility

Because of this reason, we do not consider mixed admissibility as suitable
for defining semantics (e.g. mixed preferred or mixed complete semantics).

Example 8. Based on Example 6 and 7, we observe that, in I2 from Figure 5,
{a} is weakly admissible but not strongly admissible. {a, e} is not strongly admis-
sible either, because it does not strongly defend e (against the uncertain attack
(d, e)). The full sets of weakly and strongly admissible sets of I2 are given in
Table 3.

x ∈ {w, s} w s

∅, {a}, {c} , {d}, {e}, {a, c}, {a, d},
adx(I2) {a, e}, {c, d}, {c, e}, {d, e}, {a, c, d}, ∅, {c}, {d}, {c, d}

{a, c, e}, {a, d, e}, {c, d, e}, {a, c, d, e}

Table 3: Weakly and Strongly Admissible Sets of I2.

3.2 Admissibility-based Semantics for IAFs

The classical definitions of Dung’s semantics can be adapted to IAFs, based on
the two different notions of admissibility identified as suitable in Lemma 1.

Definition 10 (Admissibility-based Semantics). Given I = ⟨A,A?,R,R?⟩ an
IAF, a weakly (respectively strongly) admissible set of arguments S ⊆ A∪A? is

• a weakly (respectively strongly) complete extension iff S contains all the
arguments that it weakly (respectively strongly) defends;

• a weakly (respectively strongly) preferred extension iff it is a ⊆-maximal
weakly (respectively strongly) admissible set.

For x ∈ {w, s} and σ ∈ {co, pr}, the set of x-σ extensions of an IAF I
is denoted σx(I). In the definition of the versions of complete semantics, the
notion of defense used is the same as in the underlying notion of admissibility.

Example 9. We continue Example 8. From the weakly and strongly admissible
sets described in Table 3, we deduce cow(I2) = prw(I2) = {{a, c, d, e}}, and
cos(I2) = prs(I2) = {{c, d}}.
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We observe some usual properties regarding these semantics.

Proposition 3. Given I = ⟨A,A?,R,R?⟩ an IAF, and x ∈ {w, s},

• prx(I) ̸= ∅;

• prx(I) ⊆ cox(I).

Proof. The first item is a direct consequence of the fact that adx(I) ̸= ∅, as
seen previously. The existence of (finitely many) admissible sets implies the
existence of ⊆-maximal admissible sets.

Now, let S be a x-preferred extension of I. Reasoning towards a contradic-
tion, let us suppose that S ̸∈ cox(I). Since S is x-admissible, it means that S
x-defends some argument a that it does not contain. According to Lemma 1,
S ∪ {a} is x-admissible. This means that we have identified a proper superset
of S which is x-admissible, thus S is not a ⊆-maximal x-admissible set. This
contradicts the fact that S is x-preferred. So we can conclude S ∈ cox(I).

3.3 Stable Semantics for IAFs

Now we focus on a counterpart of stable semantics for IAFs.

Definition 11 (Stable Semantics). Given I = ⟨A,A?,R,R?⟩ an IAF,

• a weakly conflict-free set of arguments S ⊆ A ∪ A? is a weakly stable
extension iff ∀a ∈ A \ S, there is some b ∈ S ∩ A such that (b, a) ∈ R;

• a strongly conflict-free set of arguments S ⊆ A ∪ A? is a strongly stable
extension iff ∀a ∈ (A∪A?)\S, there is some b ∈ S∩A such that (b, a) ∈ R.

Weakly and strongly stable extensions of an IAF I are denoted by stx(I),
where x ∈ {w, s}.

Example 10. Continuing Example 9, we observe that the weakly preferred ex-
tension S = {a, c, d, e} is weakly stable as well: the argument e ∈ S ∩ A (cer-
tainly) attacks all the arguments in A \ S = {b}. It is not strongly stable,
since it is not strongly conflict-free. The same applies to {a, d, e}, {a, d, e, f}
and {a, c, d, e, f} which are also weakly conflict-free and certainly attack b.

On the contrary, the strongly preferred extension S′ = {c, d} is not strongly
stable, since it does not attack all the arguments in (A ∪ A?) \ S (e.g. a is not
attacked by S′).

In Dung’s framework, although admissibility is not directly involved in the
definition of the stable semantics, any stable extension is actually an admissible
set. Example 10 shows that weak stable extensions are not weakly admissible
in general: {a, c, d, e, f} is weakly conflict-free, but it does not weakly defend f ,
thus it is not weakly admissible. But we prove here that it is the case for strong
stable semantics of IAFs.

Proposition 4 (Admissibility of Strong Stable Extensions). For any IAF I =
⟨A,A?,R,R?⟩, sts ⊆ ads(I).
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Proof. Consider S a strongly stable extension of I. Again, strong conflict-
freeness is implied by the definition, so we just need to prove that S strongly
defends all its elements. Consider any a ∈ A∪A? such that (a, b) ∈ R∪R?, for
some b ∈ S. By definition of strongly stable extensions, there is some c ∈ S ∩A
such that (c, a) ∈ R. Thus S strongly defends a, and then all its elements. We
can conclude that it is strongly admissible.

Another classical result that still holds for the strong stable semantics se-
mantics is the relationship between stable and preferred extensions.

Proposition 5 (Preferredness of Strong Stable Extensions). For any IAF I =
⟨A,A?,R,R?⟩, sts ⊆ prs(I).

Proof. Consider S ∈ sts(I). Proposition 4 implies the strong admissibility of
S. Suppose the existence of S′ ∈ ads(I) with S ⊂ S′. Take a ∈ S′ \ S; the
strong stability of S implies the existence of b ∈ S∩A such that (b, a) ∈ R, thus
violating the strong admissibility of S′. We reach a contradiction, and conclude
that S′ does not exist, hence S ∈ prs(I).

Example 10 and Proposition 5 imply that sts(I2) = ∅. The non-existence of
stable extensions in Dung’s framework is one of the main differences between
this semantics and the ones based on admissibility. We can simply show a similar
example for the weakly stable semantics as well: the IAF I = ⟨{a}, ∅, {(a, a)}, ∅⟩
has a single weakly conflict-free set (the empty set), which is not weakly stable.

3.4 Relations between Weak and Strong Semantics

From Definition 7, we can observe that strong conflict-freeness implies weak
conflict-freeness. Formally,

Observation 1. For any IAF I = ⟨A,A?,R,R?⟩, cfs(I) ⊆ cfw(I).

In this part of the paper, we establish similar relationships between the weak
and strong variants of other semantics. Indeed, the same observation can be
made about the two concepts of defense.

Observation 2. For any IAF I = ⟨A,A?,R,R?⟩, S ⊆ A∪A? and a ∈ A∪A?,
if S strongly defends a then S weakly defends a.

These two observations imply that strong σ-extensions are also weak σ-
extensions for some of the semantics studied in this paper.

Proposition 6. For any IAF I = ⟨A,A?,R,R?⟩ and σ ∈ {ad, st}, σs(I) ⊆
σw(I).

Proof. For σ = ad, the proof is obvious, following Observations 1 and 2.
Now, consider E ∈ sts(I). From the definition, E ∈ cfs(I) ⊆ cfw(I). Then,

we know that for each a ∈ (A ∪ A?) \ S, some b ∈ S ∩ A certainly attacks a.
This implies that for each a ∈ A \ S, some b ∈ S ∩ A attacks a, and then S is
weakly stable.
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However, this result is not true for the complete and preferred semantics.

Example 11. Consider I = ⟨A,A?,R,R?⟩ depicted at Figure 7. The strongly
admissible sets of I are ads(I) = {∅, {b}}, and the weakly admissible sets are
adw(I) = {∅, {a}, {b}, {a, b}}, hence prs(I) = {{b}} ̸⊆ prw(I) = {{a, b}}. The
reasoning applies for the complete semantics as well, since here cox(I) = prx(I),
for x ∈ {s, w}.

a b

Figure 7: Counterexample for the relationship between strong and weak σ se-
mantics, σ ∈ {co, pr}

However, Proposition 7 implies some relationship between strong complete
(and preferred) extensions and weak complete (and preferred) extensions: in-
deed, each strong extension is included in a weak one.

Proposition 7. For any IAF I = ⟨A,A?,R,R?⟩ and σ ∈ {co, pr}, for each
S ∈ σs(I), there is a S′ ∈ σw(I) such that S ⊆ S′.

Proof. Let S be a strong complete (or preferred) extension of I. From the def-
inition of the semantics, S is strongly admissible, then from Proposition 6 S is
weakly admissible. This implies that S is included in some weakly preferred ex-
tension (which are the ⊆-maximal weakly admissible sets), which is a particular
weak complete extension (Proposition 3). Hence the result.

We summarize the inclusion schemes between the semantics in Table 4. For
a cell with coordinates (σ1, σ2),

• ✓ means that, for any I, σ1(I) ⊆ σ2(I),

• ✠ means that, for any I, ∀S ∈ σ1(I) ∃S′ ∈ σ2(I) such that S ⊆ S′.

4 Computational Issues

4.1 Computational Complexity

In this section, we study the complexity of the variants of verification, existence,
credulous acceptability, skeptical acceptability and non-emptiness for IAFs. For-
mally, for σ ∈ {cf, ad, co, pr, st} and x ∈ {w, s}:

σx-Ver Given an IAF I = ⟨A,A?,R,R?⟩ and S ⊆ A, is S ∈ σx(I)?

σx-Exist Given an IAF I = ⟨A,A?,R,R?⟩, is σx(I) ̸= ∅?

σx-Cred Given an IAF I = ⟨A,A?,R,R?⟩ and a ∈ A ∪ A?, does a belong to
some x-σ-extension of I?
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σ1

σ2 cfw cfs adw ads cow cos prw prs stw sts

cfw ✓
cfs ✓ ✓
adw ✓ ✓
ads ✓ ✓ ✓ ✓
cow ✓ ✓ ✓
cos ✓ ✓ ✓ ✓ ✠ ✓ ✠
prw ✓ ✓ ✓ ✓
prs ✓ ✓ ✓ ✓ ✠ ✓ ✠ ✓
stw ✓ ✓
sts ✓ ✓ ✓ ✓ ✠ ✓ ✠ ✓ ✓ ✓

Table 4: Summary of the Inclusions between Semantics

σx-Skep Given an IAF I = ⟨A,A?,R,R?⟩ and a ∈ A ∪ A?, does a belong to
each x-σ-extension of I?

σx-NE Given an IAF I = ⟨A,A?,R,R?⟩, is there some S ⊆ A ∪ A? such that
S ̸= ∅ and S ∈ σx(I)?

4.1.1 Lower Bounds

We can prove that reasoning with our semantics for IAFs is (at least) as hard
as reasoning with the corresponding semantics for AFs. This can be done by
showing that any AF F = ⟨A,R⟩ can be transformed into an IAF IF that has
the same extensions.

Definition 12 (IAF Associated with an AF). Given F = ⟨A,R⟩ an AF, the
IAF associated with F is IF = ⟨A, ∅,R, ∅⟩.

Now we prove the correspondence of extensions, i.e. σ(F) = σw(IF ) =
σs(IF ), for any σ ∈ {cf, ad, pr, co, st}.

Proposition 8 (Dung Compatibility). Given F = ⟨A,R⟩ an AF, σ ∈ {cf, ad,
pr, co, st} and x ∈ {w, s}, σ(F) = σx(IF ), where IF follows Definition 12.

Proof. Observe that a set S ⊆ A is conflict-free (in F) iff it is weakly and
strongly conflict-free (in IF ). Then, a set S ⊆ A defends an argument a ∈ A
against all it attackers (in F) iff it weakly and strongly defends a against all
its attackers (in IF ). These facts imply ad(F) = adw(IF ) = ads(IF ), which
in turn imply the equivalence of complete and preferred extensions of F with
the (weak and strong) complete and preferred extensions of IF . Given S ⊆ A,
the equivalence between the conditions for S being stable in F and (weakly or
strongly) stable in IF is straightforward.

This allows to prove that the complexity of reasoning with AFs provides a
lower bound of the complexity of reasoning with IAFs.
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Proposition 9. Given σ ∈ {cf, ad, pr, co, st}, x ∈ {w, s}, and P ∈ {Ver,Exist,
Cred,Skep,NE}, if σ-P is C-hard, then σx-P is C-hard.

Proof. Proposition 8 provides a polynomial-time and logarithmic-space reduc-
tion from σ-P to σx-P.

4.1.2 Upper Bounds for Extension Verification

Similarly to Dung’s classical setting, most of the properties of extensions can
be verified in polynomial time for our IAF semantics.

Lemma 2. Given an IAF I = ⟨A,A?,R,R?⟩ and a set of arguments S ⊆
A∪A?, the following tasks are doable in polynomial time and logarithmic space:

1. check whether S is weakly (respectively strongly) conflict-free,

2. check whether S weakly (respectively strongly) defends some argument a ∈
A (respectively a ∈ A ∪A?),

3. check whether each argument in A\S (respectively (A∪A?)\S) is attacked
by an argument in S ∩ A.

Proof. For item 1., weak (respectively strong) conflict-freeness is checked by
iterating over {(a, b) ∈ S × S}, and verifying whether (a, b) ∈ R (respectively
(a, b) ∈ R∪R?). There are |S|2 such pairs (a, b), and verifying the membership
to R (respectively R∪R?) is bounded by |A ∪ A?|2 (i.e. the maximal number
of possible attacks in an IAF).

For item 2., identifying the arguments b ∈ A (respectively b ∈ A ∪ A?)
such that (b, a) ∈ R (respectively (b, a) ∈ R ∪R?) only requires to iterate over
the arguments in A (respectively A ∪ A?), and then polynomially check the
membership to R (respectively R ∪ R?). Then, for each of these attackers b,
iterate over the arguments c ∈ S ∩ A and check the membership of (c, b) to R
(respectively R∪R?). All the iterations are polynomially bounded.

Finally, for item 3., enumerate all the pairs (a, b) such that a ∈ S ∩ A and
b ∈ A\S (respectively b ∈ (A∪A?)\S), and then check whether (a, b) ∈ R.

Combining these operations allows to check whether a set of arguments is
an extension, for most of the semantics studied in this paper.

Proposition 10. For σ ∈ {cf, ad, co, st} and x ∈ {w, s}, σx-Ver is doable in
polynomial time and logarithmic space.

Proof. The result straightforwardly follows Lemma 2.

Following Proposition 9, the verification of (weakly or strongly) preferred
extensions is intractable (under the usual assumptions of complexity theory).
The following results proves that it remains at the first level of the polynomial
hierarchy, similarly to Dung’s preferred semantics.

Proposition 11. For x ∈ {w, s}, prx-Ver is in coNP.
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Proof. Given S ⊆ A∪A?, proving that S is not a weakly (respectively strongly)
preferred extension is doable with the following non-deterministic polynomial
algorithm:

1. Check whether S is weakly (respectively strongly) admissible. If not, then
S is not weakly (respectively strongly) preferred.

2. Otherwise, guess a proper superset of S, i.e. S ⊂ S′ ⊆ A ∪A?. Verifying
whether S′ is a weakly (respectively strongly) admissible set is doable in
polynomial time with a deterministic algorithm. If S′ is weakly (respec-
tively strongly) admissible, then S is not a weakly (respectively strong)
preferred extension.

This algorithm proves that the complementary problem is in NP, thus we con-
clude that prx-Ver ∈ coNP for x ∈ {w, s}.

4.1.3 Upper Bounds for Existence

We recall that ∅ is weakly and strongly admissible (and naturally, weakly and
strongly conflict-free as well) for any IAF. This implies that for any I, adx(I) ̸=
∅, for x ∈ {w, s}. The existence of some ⊆-maximal elements in adx(I) is
then guaranteed, i.e. prx(I) ̸= ∅, and finally since prx(I) ⊆ cox(I), we obtain
cox(I) ̸= ∅ as well. This means that our semantics have another common point
with their counterpart in Dung’s framework: all of them, except the stable
semantics, induce a non-empty set of extensions for any IAF. We show that
the question of existence for the stable semantics is NP-complete (NP-hardness
follows Proposition 9, so we focus on NP-membership).

Proposition 12. For x ∈ {w, s}, stx-Exist is in NP.

Proof. The proof is based on a classical NP algorithm:

1. non-deterministically guess a set of arguments S ⊆ A ∪A?,

2. check in polynomial time (Proposition 10) whether it is a (weak or strong)
stable extension.

Hence the result.

4.1.4 Upper Bounds for Acceptability

First, consider the case of cfx, for x ∈ {w, s}. An argument a is credulously
accepted w.r.t. cfx iff {a} ∈ cfx(I). This can be easily checked, by verifying that
(a, a) ̸∈ R and (a, a) ̸∈ R?. This is doable in polynomial time and logarithmic
space. Thus cfx-Cred ∈ L, for x ∈ {w, s}. Skeptical acceptability is even easier:
since ∅ is weakly (respectively strongly) conflict-free, there is no skeptically
acceptable argument w.r.t. cfx for any IAF. The reasoning is the same for
adx-Skep.

Proposition 13. For σ ∈ {ad, co, st, pr} and x ∈ {w, s}, σx-Cred is in NP.

21



Proof. For σ ∈ {ad, co, st}, guess a set of arguments that contains the queried
argument a, and check (in polynomial time, see Proposition 10) whether it is a
x-σ-extension. This is a NP algorithm for deciding σx-Cred.

For σ = pr, notice that an argument belongs to some weakly (respectively
strongly) preferred extension iff it belongs to some weakly (respectively strongly)
admissible set, hence the result.

Proposition 14. For σ ∈ {co, st} and x ∈ {w, s}, σx-Skep is in coNP.

Proof. Guess a set of arguments that does not contain the queried argument
a and check (in polynomial time) whether it is a x-σ-extension, i.e. a is not
skeptically accepted w.r.t. σx. This is a NP algorithm, thus σx-Skep is in
coNP.

Proposition 15. For x ∈ {w, s}, prx-Skep is in ΠP
2 .

Proof. Analogous to the proof of Proposition 14, except that the higher com-
plexity of verification under the (weakly or strongly) preferred semantics (recall
Proposition 11) yields a higher complexity upper bound for skeptical accept-
ability as well.

4.1.5 Upper Bounds for Non-Emptiness

Finally, we focus on the non-emptiness problem. We prove that it is doable in
polynomial time and logarithmic space for (weak and strong) conflict-freeness,
and NP-complete for other semantics. Again, NP-hardness results are implied
by Proposition 9.

Proposition 16. cfx-NE is in L, for x ∈ {w, s}.

Proof. First consider weak conflict-freeness. If a set S ⊆ A ∪ A? is weakly
conflict-free, then every singleton {a} ⊆ S is weakly conflict-free as well, so
we focus on singletons. If a ∈ A?, then {a} is trivially weakly conflict-free,
so if A? ̸= ∅, the answer is “YES”. This can be checked in polynomial time
and logarithmic space. Now assume A? = ∅, i.e. we consider singletons {a}
with a ∈ A. {a} is weakly conflict-free iff (a, a) ̸∈ R, which can be checked in
polynomial time and logarithmic space.

Now, considering strong conflict-freeness, we can also focus on singletons,
and simply check (again, in polynomial time and logarithmic space) that at
least one argument a ∈ A ∪ A? is not (certainly or uncertainly) self-attacking,
i.e. (a, a) ̸∈ R ∪ R?.

Proposition 17. σx-NE is in NP, for σ ∈ {ad, st, co, pr} and x ∈ {w, s}.

Proof. First, we consider σ ∈ {ad, st, co}, and solve the problem with a simple
NP algorithm:

1. non-deterministically guess a non-empty set of arguments S ⊆ A ∪A?.

2. check (in polynomial time, see Proposition 10) whether S ∈ σx(F).

22



Hence the result for these semantics. Then, observe that the existence of a
non-empty (weak or strong) admissible set implies the existence of a non-empty
(weak or strong) preferred extension, which means that prx-NE has the same
complexity as adx-NE.

4.1.6 Discussion

Our complexity results are summarized in Table 5. We have proved that, in spite
of the higher expressivity of IAFs compared to standard AFs, the complexity of
most classical reasoning tasks remains the same. The only exception is skeptical
acceptability under (weakly or strongly) complete semantics, for which we only
have a coNP upper bound, while it is polynomial in standard Dung’s AFs. We
plan to study a counterpart of the grounded semantics for IAFs, which could
bring new insights for the complete semantics. Finally, notice that using the
weak or strong counterpart of our semantics does not have an impact on the
complexity of reasoning.

Semantics σx σx-Ver σx-Cred σx-Skep σx-Exist σx-NE

cfx in L in L trivial trivial in L
adx in L NP-c trivial trivial NP-c
stx in L NP-c coNP-c NP-c NP-c
cox in L NP-c in coNP trivial NP-c
prx coNP-c NP-c ΠP

2 -c trivial NP-c

Table 5: Complexity of σx-Ver, σx-Exist, σx-Cred, σx-Skep and σx-NE for σ ∈
{cf, ad, st, co, pr} and x ∈ {w, s}. C-c means C-complete.

4.2 SAT-based Computational Approach

We follow the classical approach, initiated by [11], which consists in associating
an AF with a propositional formula such that there is a bijection between the
extensions of the AF and the models of the formula. Its has been applied with
success for developing argumentation solvers [32, 41].

In the following, we consider an IAF I = ⟨A,A?,R,R?⟩, and we define a
set of propositional variables XA∪A? = {xa | a ∈ A ∪ A?}. Intuitively, an
interpretation ω corresponds to the set of arguments S = {a ∈ A∪A? | ω(xa) =
⊤}. We will provide in the rest of this section propositional formulas such
that their models correspond to desirable sets of arguments (e.g. weakly or
strongly conflict-free sets or extensions). This means that obtaining one (or
each) extension can be done thanks to a SAT solver, providing one (or each)
model of the formula. Credulous acceptance of an argument a can be checked by
verifying that ϕ ∧ xa is satisfiable (where ϕ is the formula corresponding to the
chosen semantics), and skeptical acceptance corresponds to the unsatisfiability
of ϕ ∧ ¬xa.
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Conflict-freeness Recall that a set of arguments is weakly conflict-free if
there is no certain attack between two certain arguments in it, while it is strongly
conflict-free if there is no attack at all (neither certain nor uncertain) between
any element of the set. This is encoded, respectively, by the following formulas
ϕwcf and ϕ

s
cf :

ϕwcf =
∧

a,b∈A,(a,b)∈R

(¬xa ∨ ¬xb)

ϕscf =
∧

a,b∈A∪A?,(a,b)∈R∪R?

(¬xa ∨ ¬xb)

Admissibility Weak (respectively strong) admissibility is based on weak (re-
spectively strong) conflict-freeness, and weak (respectively strong) defense. We
introduce a formula δw (respectively δs) which characterizes sets of arguments
that weakly (respectively strongly) defend all their elements.

δw =
∧

a∈A∪A?

xa →
∧

b∈A,(b,a)∈R

∨
c∈A,(c,b)∈R

xc

δs =
∧

a∈A∪A?

xa →
∧

b∈A∪A?,(b,a)∈R∪R?

∨
c∈A,(c,b)∈R

xc

Then, weak and strong admissibility are encoded in

ϕxad = ϕxcf ∧ δx

where x ∈ {w, s}.
Notice that δw and δs are not directly written as CNF formulas, but can be

easily translated into ones:

xa →
∧

b∈X,(b,a)∈Y

∨
c∈A,(c,b)∈R

xc ≡
∧

b∈X,(b,a)∈Y

¬xa ∨
∨

c∈A,(c,b)∈R

xc

where X and Y are A and R (for δw) or A ∪A? and R∪R? (for δs).

Complete Extensions The formulas δw and δs characterize sets of arguments
that (weakly or strongly) defend all their elements. To characterize complete
extensions, we just need to replace the implication by an equivalence, which
yields sets of arguments that defend all their elements and contain everything
they defend. Formally,

ϕxco = ϕxcf ∧ δ′x
where x ∈ {w, s}, and

δ′w =
∧

a∈A∪A?

xa ↔
∧

b∈A,(b,a)∈R

∨
c∈A,(c,b)∈R

xc
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δ′s =
∧

a∈A∪A?

xa ↔
∧

b∈A∪A?,(b,a)∈R∪R?

∨
c∈A,(c,b)∈R

xc

For translating these formulas into CNF, we add auxiliary variables, using
a technique similar to the one from [32]. For a given argument a, define ya as a
variable that is true when one of the certain attackers of a is accepted. This is
encoded in the formulas by: ∧

a∈A∪A?

ya ↔
∨

b∈A,(b,a)∈R

xb

which is easily translated into CNF, since

ya ↔
∨

b∈A,(b,a)∈R

xb ≡ (¬ya ∨
∨

b∈A,(b,a)∈R

xb) ∧ (
∧

b∈A,(b,a)∈R

¬xb ∨ ya)

Then, δ′w and δ′s can be written in CNF:

xa ↔
∧

b∈X,(b,a)∈Y

yb ≡ (
∧

b∈X,(b,a)∈Y

¬xa ∨ yb) ∧ (xa ∨
∨

b∈X,(b,a)∈Y

¬yb)

where, again, either X = A and Y = R, or X = A ∪A? and Y = R∪R?.

Stable Extensions We recall that weakly (respectively strongly) stable ex-
tensions are weakly (respectively strongly) conflict-free sets that attack all the
certain arguments (respectively all the arguments) that they do not contain.
Said otherwise, it means that an argument which is not attacked by (a certain
argument in) the extension belongs to the extension. It can be characterized as
follows:

ϕwst = ϕwcf ∧
∧
a∈A

((
∧

b∈A,(b,a)∈R

¬xb) → xa)

ϕsst = ϕscf ∧
∧

a∈A∪A?

((
∧

b∈A,(b,a)∈R

¬xb) → xa)

Preferred Extensions Finally, weakly and strongly preferred semantics can-
not (under the usual assumptions of complexity theory) be directly encoded as
propositional formulas, since the complexity of reasoning with weak and strong
preferred semantics is higher than the complexity of Boolean satisfiability (es-
pecially, skeptical acceptability is ΠP

2 -complete). However, other techniques
related to propositional logic have been used in the past for computing pre-
ferred extensions, e.g. quantified Boolean formulas [22], maximal satisfiable
subsets [32] or CEGAR (CounterExample Guided Abstraction Refinement) [41].
These techniques could be adapted for solving classical reasoning problems un-
der weakly or strongly preferred semantics.
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5 Implementation and Experimentation

5.1 Implementation Details

We have implemented the approach described in Section 4.2, and conducted an
empirical evaluation to assess the scalability of the approach. More precisely,
we have solved the problem of producing one extension of an IAF (called SE-
σx, see e.g. [33, 34]) for the semantics σx with σ ∈ {st, co} and x ∈ {w, s}.
This corresponds to obtaining one model (with a SAT solver) of the formula ϕxσ.
Recall that other classical reasoning tasks can be performed with a SAT solver
as well:

• EE-σx: enumerate all the σx extensions is done by enumerating the models
of ϕxσ;

• CE-σx: counting the σx extensions is done by counting the models of ϕxσ;

• DC-σx: deciding whether a given argument a is credulously accepted with
respect to the semantics σx is done by checking whether ϕxσ ∧ xa is satis-
fiable;

• DS-σx: deciding whether a given argument a is skeptically accepted with
respect to the semantics σx is done by checking whether ϕxσ ∧ ¬xa is un-
satisfiable.

We can expect that DC-σx and DS-σx will be more or less equivalent to SE-
σx regarding the hardness of practical resolution. Indeed, all these problems are
solved by a single call to a SAT solver, with almost the same CNF as input of the
SAT solver. On the contrary, enumeration and counting problems are in general
much harder. These general intuitions about the relative difficulty of reasoning
with abstract argumentation are in line with the results of the International
Competition on Computational Models of Argumentation (ICCMA): we can
observe that the scores of the solvers, during the last edition of the competition,
are generally higher for the problems SE, DS and DC than for CE [34]. The
same remark applies for the problem EE, as can be seen from the results of the
2017 edition of ICCMA [27].

We have implemented a Python script that reads a text file describing an
IAF (using the same format as [43, 7]),7 and produces the CNF encoding cor-
responding to ϕxσ. This SAT instance is solved by the Python API PySAT [31],
and the model obtained is then decoded in order to provide the extension to the
user. Our code and its documentation are available online.8

5.2 Benchmark Generation and Experimental Setup

The goal of this preliminary experimentation is to assess the scalability of the
approach, and to observe whether some parameters may influence the runtime.

7See https://bitbucket.org/andreasniskanen/taeydennae/src/master/.
8See https://github.com/jgmailly/SAT-IAFs/.

26



We have generated IAFs with the following method, based on Erdös-Rényi [23]
(ER) graphs, i.e. random graphs built with two parameters: the number of
nodes (n), and the probability, for two given nodes a and b, that there is an
edge from a to b (p). This type of graph has been widely used in the literature on
argumentation, including some past editions of the International Competition on
Computational Models of Argumentation (ICCMA) [27]. For our experiments,
we have used n ∈ {50, 100, 150, 200} and p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}:

• For each (p, n), generate 5 AFs

• For each AF F = ⟨A∗,R∗⟩, generate four IAFs by selecting some argu-
ments or attacks to be uncertain:

– I1,1 = ⟨A∗, ∅,R∗, ∅⟩, i.e. all arguments and attacks are certain;

– I1,0.5 = ⟨A∗, ∅,R,R?⟩ s.t. R∪R? = R∗, and each attack in R∗ has
a probability 0.5 to be added to R?;

– I0.5,1 = ⟨A,A?,R∗, ∅⟩, s.t. A ∪ A? = A∗, and each argument in A∗

has a probability 0.5 to be added to A?;

– I0.5,0.5 = ⟨A,A?,R,R?⟩ s.t. R ∪ R? = R∗, and each attack in R∗

has a probability 0.5 to be added to R? and A∪A? = A∗, and each
argument in A∗ has a probability 0.5 to be added to A?.

This generation model allows to test our SAT-based approach with various types
of IAFs, and to observe whether the presence or absence of uncertain elements
has an impact on runtime.

We have run the experiments on macOS 11.5, with a M1 Soc (3.2GHz) and
8GB of RAM.

5.3 Results

Tables 6 and 7 describe the results of the experiments for the (weak and strong)
stable semantics and the (weak and strong) complete semantics, respectively.
Lines correspond to pairs of values (p, n) used for generating the graphs, columns
labeled by IX,Y (with X,Y ∈ {1, 0.5}) correspond to the groups of instances
defined in the previous section (with different ratios of arguments or attacks
being uncertain), and the columns labeled “All” correspond to the union of the
four previous groups. Reported numbers are the average runtime, rounded to 1
millisecond, for solving all the instances of one group.

The general observation made from this data is that our approach scales up
well. Indeed, it solves the SE-σx problem in a few seconds in the worst case, for
IAFs with 200 arguments (and even less than 1 second in most of cases).

Then, for each semantics in this experiment, we observe a correlation be-
tween the density of the graph (i.e. the probability p) and the runtime: a
higher probability seems to imply a higher runtime (ceteris paribus). On the
contrary, increasing the uncertainty seems to decrease the runtime: instances
where half the arguments and half the attacks are uncertain (I0.5,0.5 groups) are
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(p, n)
stw sts

I1,1 I1,0.5 I0.5,1 I0.5,0.5 All I1,1 I1,0.5 I0.5,1 I0.5,0.5 All

(0.1, 50) 50 50 50 50 50 50 50 50 50 50
(0.1, 100) 54 50 50 50 51 52 50 50 50 51
(0.1, 150) 114 60 60 50 71 110 60 60 60 73
(0.1, 200) 2388 296 70 60 704 2376 80 86 70 653

(0.3, 50) 50 50 50 50 50 50 50 50 50 50
(0.3, 100) 74 60 50 50 59 72 60 60 60 63
(0.3, 150) 144 196 78 60 120 138 90 108 80 104
(0.3, 200) 402 1920 106 84 628 382 154 186 124 212

(0.5, 50) 50 50 50 50 50 50 50 50 50 50
(0.5, 100) 80 70 60 50 65 80 70 74 70 74
(0.5, 150) 162 150 90 70 118 152 120 132 106 128
(0.5, 200) 320 676 146 102 311 294 214 258 180 237

(0.7, 50) 50 50 50 50 50 50 50 50 50 50
(0.7, 100) 100 76 66 60 76 90 80 88 76 84
(0.7, 150) 200 172 106 80 140 190 140 164 130 156
(0.7, 200) 404 440 186 126 289 370 270 320 230 298

(0.9, 50) 60 50 50 50 53 50 50 50 50 50
(0.9, 100) 110 82 70 60 81 110 90 100 80 95
(0.9, 150) 246 164 122 96 157 226 170 200 152 187
(0.9, 200) 510 320 226 146 300 464 330 400 290 371

Table 6: Average Runtime in Milliseconds for SE-stx, x ∈ {w, s}

solved faster than instances with only arguments or only attack can be uncer-
tain (I1,0.5 and I0.5,1), which in turn are solved faster than instance where all
elements are certain (I1,1). Naturally, these conclusions are only preliminary,
given the size of the benchmark. Further study will be conducted for deter-
mining whether the claim hold in general. It is interesting to notice that both
cases where the average is higher than 1 second are very similar: they are the
category of IAFs I1,1 with p = 0.1 and n = 200, respectively for stw and sts.
For all the IAFs in this category, the runtime is higher than 1 second, and up
to 3.5 seconds, which is (relatively) much higher than all the other runtimes.
In particular, even for this category of graphs, runtimes for the variants of the
complete semantics are below 0.2 second for each instance. Determining the
cause of this difference is an interesting question for future work. Finally, let us
conclude this analysis of the preliminary experiments by noticing that the cho-
sen semantics (among {stw, sts, cow, cos}) has no strong impact (for the chosen
benchmarks) on the average runtime.

6 Related Work

As mentioned in the introduction, most of the work on incomplete argumenta-
tion frameworks are strongly different, by nature, with our contribution, since
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(p, n)
cow cos

I1,1 I1,0.5 I0.5,1 I0.5,0.5 All I1,1 I1,0.5 I0.5,1 I0.5,0.5 All

(0.1, 50) 50 50 50 50 50 50 50 50 50 50
(0.1, 100) 62 50 50 60 56 60 60 58 56 59
(0.1, 150) 92 70 70 60 73 90 80 78 70 80
(0.1, 200) 156 102 100 78 109 150 130 116 110 127

(0.3, 50) 50 50 50 50 50 50 50 50 50 50
(0.3, 100) 90 70 70 72 76 90 80 78 70 80
(0.3, 150) 190 122 120 80 128 180 154 138 130 151
(0.3, 200) 368 212 200 128 227 350 290 244 230 278

(0.5, 50) 60 50 50 50 53 60 52 50 50 53
(0.5, 100) 120 90 82 74 92 120 106 92 90 102
(0.5, 150) 280 170 156 106 178 270 224 190 182 217
(0.5, 200) 584 322 306 178 348 554 456 384 352 437

(0.7, 50) 62 56 52 54 56 60 60 60 60 60
(0.7, 100) 156 100 96 82 109 150 138 122 110 130
(0.7, 150) 380 216 202 130 232 370 306 258 244 295
(0.7, 200) 824 448 408 232 478 760 620 522 474 594

(0.9, 50) 70 60 58 50 60 70 60 60 60 63
(0.9, 100) 190 120 112 98 130 180 150 132 130 148
(0.9, 150) 480 276 240 162 290 450 372 312 294 357
(0.9, 200) 1028 558 530 302 605 960 780 658 602 750

Table 7: Average Runtime in Milliseconds for SE-cox, x ∈ {w, s}

they rely on the set of completions of an IAF to define various decision problems
[9, 7, 25, 26, 29, 38, 40]. Control Argumentation Frameworks (CAFs) [17, 37, 42]
are highly related to IAFs. They add another kind of uncertainty (about the
direction of an attack), and a “control part”, which is a set of arguments and
attacks that must be selected by the agent, the goal being to enforce the ac-
ceptability of a set of arguments in each (or some) completion, by means of
the selected control arguments. Reasoning with CAFs is (again) only based on
completions, and generally the computational complexity is high (at least the
same as reasoning with completions of IAFs, and sometimes higher).

Reasoning with weighted AFs (i.e. AFs with weights on the attacks) [19]
consists, somehow, in relaxing conflict-freeness in order to jointly accept con-
flicting arguments, as soon as the total amount of conflict (i.e. the sum of the
weights of the attacks) is lower than a given inconsistency budget. We could
adapt this principle for IAFs, by accepting only a given amount of conflict in
extensions. Notice that weighted AFs, as defined in the literature, do not al-
low to distinguish between two types of arguments or attacks, which would
be necessary to capture uncertain arguments or attacks. Other frameworks
have “conflict tolerant” semantics, where sets of accepted arguments may not
be conflict-free with respect to the initial attack relation, like Preference-based
AFs [2], Valued-based AFs [10] or Strength-based AFs [44]. In all cases, the
presence of conflicting arguments in the same extension can be explained by
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their relative priority: when the target has a higher priority than its attacker,
then they can appear in the same extension. This is not the same intuition as
ours, since only uncertainty justifies conflict-tolerance of our weak semantics.

The work by [28] shares some of the basic intuitions of our own contribu-
tion. The notions of conflict-freeness and self-defense are re-defined to take into
account the number of attackers and defenders of arguments. Then, combin-
ing different types of conflict-freeness and self-defense induces different types
of admissibility-based semantics. Moreover, this work introduces constraints
to ensure that the semantics behave well (namely, that some extensions exist).
These constraints can be reminiscent of the fact that, here, the notion of defense
should be as strong as the notion of conflict-freeness to induce a “fundamental”
(in the sense of Dung’s fundamental lemma) notion of admissibility. However,
the contribution of [28] focuses on standard AFs, i.e. no concept of uncertainty
is involved. Adapting this approach to IAFs would then be an interesting re-
search topic, that may provide intermediate solutions between our weak and
strong semantics.

Finally, let us mention the work by [36] on Probabilistic Argumentation
Frameworks (PrAFs). The relation between PrAFs and IAFs has already been
discussed in the literature. Indeed, from the probability attached to arguments
and attacks in a PrAF, one can deduce the probability of its completions (called
induced AFs there), and then the probability that a set of arguments is an ex-
tension. So, reasoning with such PrAFs can be seen as a probabilistic extension
of completion-based reasoning with IAFs [7, Section 8]. Intuitively, our direct
approach for reasoning with IAFs (without relying on completions) could be
extended to PrAFs as well, for instance, weak conflict-freeness could be pa-
rameterized by the probability of conflicts that can be tolerated in the set of
arguments.

7 Conclusion

In this paper, we have continued an effort started by [14], and defined extension-
based semantics for Incomplete Argumentation Frameworks (IAFs) that do not
rely on the completions of the IAF. We have studied the properties of our new
semantics, and provided complexity results and logical encodings for them. We
have proven that the complexity of reasoning with these semantics is not harder
than reasoning with classical extension-based semantics for abstract argumen-
tation frameworks (in spite of the higher complexity of IAFs), and an exper-
imental study shows that reasoning can be done efficiently thanks to modern
SAT solving techniques.

Future work include, naturally, missing complexity results (i.e. tight results
for the skeptical acceptability under weakly and strongly complete semantics)
and a deeper experimental evaluation of the approach (e.g. using other types
of graphs like Barabási-Albert [1], Watts-Strogatz [47] or thoses from the last
ICCMA competition [34], or solving other problems than SE-σ). In particular,
deeper experiments will allow to determine more accurately the impact of the
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number of uncertain elements on the runtime, as well as the impact of the
choice of the semantics. Regarding the implementation, we have focused on
the semantics that can be solved by a “simple” use of a SAT solver, i.e. such
that the corresponding decision problem is at the first level of the polynomial
hierarchy. The comparison of the various methods that reach the second level
of the polynomial hierarchy (e.g. CEGAR-style algorithms [21], QBFs [22] or
maximal satisfiable subsets [32]) for computing the preferred extensions is an
enthralling question. The study of the grounded semantics will fulfill our study
of Dung-style semantics for IAFs. Further theoretical results can be interesting,
like e.g. a principle-based study in the spirit of [46]. A fundamental question
concerns the weak stable semantics. The fact that weak stable extensions are
not weakly admissible is quite surprising. The principle-based study will allow
to determine whether the weak stable semantics satisfies interesting properties
all the same, or whether an alternative definition is desirable (in particular, an
alternative definition that would imply weak admissibility). We also plan to
apply this kind of semantics to Control Argumentation Frameworks [17, 37],
which would be a possible method to decrease the complexity of controllability.
This requires to take into account the additional type of information, namely
the uncertainty about the direction of attacks. The link with weighted AFs,
i.e. integrating an inconsistency budget in the weak variants of our semantics,
is also a promising line for future research.
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