
A Logical Encoding for k-m-Realization of
Extensions in Abstract Argumentation?

Jean-Guy Mailly[0000−0001−9102−7329]

Université Paris Cité, LIPADE, F-75006 Paris, France
jean-guy.mailly@u-paris.fr

Abstract. We study the notion of realization of extensions in abstract
argumentation. It consists in reversing the usual reasoning process: in-
stead of computing the extensions of an argumentation framework, we
want to determine whether a given set of extensions corresponds to some
(set of) argumentation framework(s) (AFs); and more importantly we
want to identify such an AF (or set of AFs) that realizes the set of
extensions. While deep theoretical studies have been concerned with re-
alizability of extensions sets, there are few computational approaches for
solving this problem. In this paper, we generalize the concept of realiz-
ability by introducing two parameters: the number k of auxiliary argu-
ments (i.e. those that do not appear in any extension), and the number
m of AFs in the result. We define a translation of k-m-realizability into
Quantified Boolean Formulas (QBFs) solving. We also show that our
method allows to guarantee that the result of the realization is as close
as possible to some input AF. Our method can be applied in the context
of AF revision operators, where revised extensions must be mapped to a
set of AFs while ensuring some notion of proximity with the initial AF.

Keywords: Abstract Argumentation · Semantics Realizability · Logic-
based Encoding.

Abstract argumentation frameworks (AFs) [11] are one of the most promi-
nent models in the domain of computational argumentation. Reasoning with
such AFs usually relies on the notion of extensions, i.e. sets of jointly acceptable
arguments. There are now many efficient approaches for computing the exten-
sions and determine the acceptability of arguments (see e.g. [19, 6, 24, 31, 14, 20]).
However, the opposite question (how to find an AF that corresponds to a given
set of extensions) has mainly received an attention on the theoretical side. This
is the notion of realizability [12, 3], i.e. given a set of extensions and a semantics,
is there an AF such that its extensions w.r.t. the given semantics correspond to
the expected ones? But there are almost no study of computational approaches
for building this AF in the case where it exists. This question has a practical
interest in the context of AF revision [7, 10] and merging [9], where the notion
of generation operators is closely related to realizability. Intuitively, these works

? This work benefited from the support of the project AGGREEY ANR-22-CE23-0005
of the French National Research Agency (ANR).

2 J.-G. Mailly

revise or merge AFs at the level of their extensions (in a way, using extensions as
models in propositional belief revision [16] or merging [18]). Then, the generation
step consists in mapping the revised (or merged) extensions with an AF or a set
of AFs that realizes them. While some generation operators have been defined
from a theoretical point of view, there has been no proposal of an algorithmic
approach that would compute them.

In this paper, we study the realization problem, i.e. instead of answering the
question “Can this set of extensions be realized?”, we produce an AF (or a set
of AFs) which realizes the given set of extensions. We propose an approach for
solving the realization problem based on Quantified Boolean Formulas. More
precisely, we generalize the concept of realizability by introducing two parame-
ters: k the number of auxiliary arguments (i.e. those which do not belong to any
extension) that may appear in the result AF(s), and m the number of AFs in the
result. The question of k-m-realizability is then “Using k auxiliary arguments,
can we find m AFs F1, . . . ,Fm such that the union of their extensions is exactly
equal to a given set of extensions S?”. We provide Quantified Boolean Formulas
(QBFs) encodings that allow to solve this problem for some prominent seman-
tics, and to obtain the resulting AF (or set of AFs). Then we study the question
of minimal change which is of utmost importance in the application context of
belief revision [7, 10] (or merging [9]). More precisely, we provide a QMaxSAT
[15] variant of our encoding which guarantees that the resulting AF(s) will be
as close as possible to the initial AF.

The paper is organized as follows. Section 1 describes background notions on
argumentation and propositional logic (in particular, Quantified Boolean For-
mulas and Quantified MaxSAT). In Section 2, we introduce the generalization
of realizability with two parameters: the number of auxiliary arguments and the
number of AFs in the result. Section 3 describes the encoding of our new form of
reasoning into QBFs, and Section 4 shows how QMaxSAT can be used to solve
the optimization version. Finally, Section 5 discusses related work, and Section 6
concludes the paper.

1 Background Notions

1.1 Abstract Argumentation

Let us introduce the basic notions of abstract argumentation.

Definition 1. An argumentation framework (AF) [11] is a directed graph F =
〈A,R〉 where A is the set of arguments, and R ⊆ A×A is the attack relation.

Given an AF, for a, b ∈ A, we say that a attacks b if (a, b) ∈ R. Moreover,
a set S ⊆ A defends an argument c ∈ A if, ∀b ∈ A s.t. (b, c) ∈ R, ∃a ∈ S s.t.
(a, b) ∈ R. Different notions of collective acceptance of arguments are defined by
Dung, based on the notion of extension. An extension semantics is a function σ
that maps an AF F = 〈A,R〉 to its set of extensions σ(F) ∈ 2A. Most semantics
are based on two simple notions: a set S ⊆ A is

k-m-Realization of Extensions in Abstract Argumentation 3

– conflict-free iff ∀a, b ∈ S, (a, b) 6∈ R;
– admissible iff S is conflict-free and S defends all its elements.

We only introduce the extension semantics that are used in this work:

Definition 2. Given F = 〈A,R〉 an AF, the set of arguments S ⊆ A is

– a stable extension iff S is conflict-free and ∀b ∈ A\S, ∃a ∈ S s.t. (a, b) ∈ R;
– a complete extension iff S is admissible and ∀a ∈ A that is defended by S,
a ∈ S.

Given an AF F , we use cf(F), ad(F), co(F) and st(F) to denote (respec-
tively) the conflict-free sets, the admissible sets, the complete extensions and the
stable extensions of F . Although we focus on these semantics, let us also mention
the preferred extensions pr(F) which are the ⊆-maximal complete extensions,
and the (unique) grounded extension gr(F) which is the ⊆-minimal complete
extension. We refer the interested reader to [2] for a more detailed overview of
extension semantics.

Example 1. The AF F depicted at Figure 1 admits a single complete (and stable)
extension: co(F) = st(F) = {{a, c, e}}.

a b cde

Fig. 1: F from Example 1

The notion of realizability of a set of extensions is defined as follows.

Definition 3. Given A a set of arguments and σ a semantics, the set S ⊆ 2A

is σ-realizable [12] (or just realizable, if σ is clear from the context) iff there is
an AF F = 〈A,R〉 such that σ(F) = S.

Moreover, we say that S is compactly σ-realizable [3] iff there is a compact
AF F = 〈A,R〉 such that σ(F) = S, i.e. (

⋃
E∈σ(F)E) = A (or, with words, each

argument in F appears in at least one extension).

We can easily give examples of (non-)realizable sets.

Example 2. Let S1 = {{a, b}, {a, c}} be a set of extensions. The AF F1 given at
Figure 2 realizes S1 with respect to the stable semantics (i.e. st(F1) = S1).

It is also easy to exhibit a set of extensions that is not realizable w.r.t.
the stable semantics. Let S2 = {{a, b}, {a, c}, {b, c}} be a set of extensions. We
suppose that S2 is st-realizable. In that case, let F2 = 〈A2,R2〉 be an AF with
st(F2) = S2 and {a, b, c} ⊆ A2. By definition of the stable semantics, if {a, b} is a
stable extension then each argument in A2\{a, b} is attacked by a or b, including
c. If (a, c) ∈ R2, we have a contradiction with the fact that {a, c} is a stable
extension. Similarly if (b, c) ∈ R2, then {b, c} cannot be a stable extension. So
we conclude that F2 does not exist, and S2 is not st-realizable.

4 J.-G. Mailly

a b c

Fig. 2: F2 from Example 2

1.2 Propositional Logic, Quantified Boolean Formulas and
Quantified MaxSAT

Now we recall some basic notions of propositional logic. A propositional formula
is built on a set of Boolean variables V , i.e. variables that can be assigned a
(truth) value in B = {0, 1}, where 0 is interpreted as false, and 1 as true. A well-
formed propositional formula is either an atomic formula (i.e. simply a Boolean
variable), or built with connectives following the recursive definition:

– negation: if φ is a formula, then ¬φ is a formula;
– conjunction: if φ, ψ are formulas, then φ ∧ ψ is a formula;
– disjunction: if φ, ψ are formulas, then φ ∨ ψ is a formula;
– implication: if φ, ψ are formulas, then φ→ ψ is a formula;
– equivalence: if φ, ψ are formulas, then φ↔ ψ is a formula.

The semantics of propositional formulas is defined with interpretations, i.e. map-
pings ω : V → B, that can be extended to arbitrary formulas:

– ω(¬φ) = 1− ω(φ);
– ω(φ ∧ ψ) = min(ω(φ), ω(ψ));
– ω(φ ∨ ψ) = max(ω(φ), ω(ψ));
– ω(φ→ ψ) = ω(¬φ ∨ ψ);
– ω(φ↔ ψ) = ω((φ→ ψ) ∧ (ψ → φ)).

Some normal forms are defined based on these notions: a literal is either an
atomic formula or the negation of an atomic formula, a clause is a disjunction
of literals, and a cube is a conjunction of literals. A propositional formula is a
CNF (Conjunctive Normal Form) if it is a conjunction of clauses. CNF formulas
can also be represented as sets of clauses. A DNF (Disjunctive Normal Form) is
a disjunction of cubes.

Now, let us introduce Quantified Boolean Formulas (QBFs). QBFs are a
natural extension of propositional formulas with two quantifiers: ∀ (universal
quantifier) and ∃ (existential quantifier). Any propositional formula is a partic-
ular QBF. Then, if Φ is a QBF, then for x ∈ V , ∃x, Φ and ∀x, Φ are well formed
QBFs as well. ∃x, Φ is true if it is possible to assign a truth value to x such that
Φ is true, and ∀x, Φ is true if Φ is true for both possible truth values of x. If
Qx,Qy, Φ is a QBF where Q is either ∃ or ∀, then we simply write Q{x, y}, Φ.

In the rest of the paper, we focus on prenex QBFs, which are QBFs that are
written Q1V1,Q2V2 . . . ,QnVn, φ where:

– V1, . . . , Vn are disjoint sets of Boolean variables such that V1 ∪ · · · ∪Vn = V ;
– ∀i ∈ {1, . . . , n}, Qi ∈ {∀,∃} is a quantifier;
– ∀i ∈ {1, . . . , n− 1}, Qi 6= Qi+1 (i.e. quantifiers are alternated);

k-m-Realization of Extensions in Abstract Argumentation 5

– φ is a propositional formula called the matrix of the QBF.

We write
−→
Qφ for any prenex QBF, i.e.

−→
Q is a shorthand for Q1V1,Q2V2 . . . ,QnVn.

Finally, we introduce an optimization problem related to QBFs, which is
a generalization of MaxSAT [21] to quantified formulas. Consider a formula
−→
QφH ∧ φS where the matrix is the conjunction of two types of constraints: the
hard constraints φH and the soft constraints φS represented as a CNF formula
(i.e. a set of clauses). Then QMaxSAT (Quantified MaxSAT) [15] is the problem
consisting in finding the largest possible subset of clauses φ∗S ⊆ φS such that
−→
QφH ∧ φ∗S is true.

Example 3. The QBF formula ∃{x, y}x ∨ y is true: there is at least one truth
value for x and y such that x∨y is true (for instance, the interpretation ω(x) = 1
and ω(y) = 0). Now, if one needs to obtain an interpretation of the variables
which makes the formula true such that its cardinality is maximal, one can
transform the QBF formula into an instance of QMaxSAT: ∃{x, y}(x ∨ y) ∧ φS ,
where the soft constraints are given by φS = x ∧ y.1 The interpretation of the
variables {x, y} which satisfies x∨y and maximizes the number of satisfied (soft)
unit clauses is ω′ such that ω′(x) = ω′(y) = 1, which satisfies both soft clauses.

2 Generalizing Realizability

Now we define our new types of realizability, where two natural numbers are
given as parameters, k and m representing respectively the number of auxiliary
arguments (i.e. those which do not appear in any extension) and the number
of AFs in the result. We have described previously the interest of this new
approach for representing the result of AF revision or merging operators [7, 9].
Both parameters k and m are necessary in this case, since it is possible that
some arguments from the initial AF do not appear in any extension of the result
(then, k is the number of these arguments) and not any set of extensions can
be represented by a single AF (which explains the need for the parameter m).
We can also think to a variant of the rationalisation problem [1] where agents
provide (sets of) extensions instead of AFs, i.e. we assume a scenario where the
set of arguments involved in a debate is known (but not the full processing of a
debate, i.e. the attack relation), and several agents provide their opinion about
the acceptability of arguments. Realization is a means of constructing possible
representations of the debate.

We start this section with the special case where m = 1, thus defining k-
realizablity in Section 2.1. The more general k-m-realizability is introduced in
Section 2.2

1 Observe that φS is the conjunction of two unit clauses, x on the one hand, and y on
the other hand.

6 J.-G. Mailly

2.1 k-Realizability

In the literature, two types of realizability have been defined. Either the set of
extensions S is realizable with a compact AF (i.e. each argument that appears in
the AF belongs to at least one extension), or it is “simply” realizable (i.e. some
arguments may not appear in any extension). We define a variant of realizability
that takes into account the exact number of arguments that appear in the AF
but do not appear in any extension.

Definition 4 (k-Realizability). Given A a set of arguments, k ∈ N, a se-
mantics σ, and S ⊆ 2A a set of extensions s.t.

⋃
E∈SE = A, we say that S is

σ-k-realizable if there is an AF F = 〈A,R〉 s.t. σ(F) = S, with A = A ∪ A′,
where A ∩A′ = ∅ and |A′| = k.

We drop σ from the notation when it is clear from the context. Obviously,
compact realizability corresponds to 0-realizability, while the question “Is S re-
alizable?” is equivalent to “Is there some k ∈ N such that S is k-realizable?”.

Example 4. To show the importance of fixing a good value for k, we borrow an
example from [3]. Consider the sets of arguments A = {a1, a2, a3}, B = {b1, b2}
and C = {c1, c2, c3}. We focus on the set of extensions S = {{ai, bj , ck} | i ∈
{1, 2, 3}, j ∈ {1, 2}, k ∈ {1, 2, 3}} \ {a1, b1, c2}, i.e. each extension contains one
of the ai arguments, one of the bj , and one of the ck, but the combination
{a1, b1, c2} is forbidden. We have A = A ∪ B ∪ C. [3] proves that the set of
extensions S cannot be compactly realized under the stable semantics, i.e. it is
not st-0-realizable. On the contrary, it is st-1-realizable, choosing for instance
A′ = {z}. See Figure 3 for an example of F = 〈A ∪ A′,R〉 such that st(F) = S.

za3

a2a1 b1 b2

c3 c2

c1

Fig. 3: An AF that st-1-realizes S

Fixing the set of auxiliary arguments seems reasonable in situations where
one already knows all the possible arguments at hand (the set A), and the
result of the argumentative process (i.e. the extensions, and then A which is the
union of the extensions), but one needs to find the relations between arguments
(i.e. the structure of the graph) that would explain the arguments acceptability.
In this case, it is not possible to add any number of auxiliary arguments, but
only k = |A \ A|. Moreover, from a technical point of view, fixing k allows to
determine the number of Boolean variables required to encode the problem in
logic, as described in Section 3.

k-m-Realization of Extensions in Abstract Argumentation 7

2.2 k-m-Realizability

Now, we focus on how to realize a set of extensions with a set of AFs. Indeed, if
the set S cannot be realized by a single AF, whatever the number k of arguments,
we need several AFs to do it, as it is the case when AFs are revised [7] or merged
[9]. So we introduce a second parameter, m, that represents the number of AFs
that are used to realize the set of extensions. This means that the goal is now
to obtain a set of m AFs such that the union of their extensions corresponds to
the given set S.

Definition 5 (k-m-Realizability). Given A a set of arguments, k,m ∈ N
with m > 0, a semantics σ, and S ⊆ 2A a set of extensions s.t.

⋃
E∈SE =

A, we say that S is σ-k-m-realizable if there exists a set of AFs F = {F1 =
〈A,R1〉, . . . ,Fm = 〈A,Rm〉} such that (

⋃
F∈F σ(F)) = S, with A = A ∪ A′,

where A ∩A′ = ∅ and |A′| = k.

Again, we drop σ from the notation when it is clear from the context. The
generation operators from [7, 9] are a special case of 0-m-realizability.

Notice that any set of extensions S is 0-m-realizable under most semantics
when m = |S|. If ∅ 6∈ S, we can define F = {F1, . . . ,Fm} such that, in Fi, the
arguments in the extension Ei ∈ S are unattacked, and the arguments that do
not appear in Ei are attacked by some argument in Ei. Then, σ(Fi) = Ei and
thus F 0-m-realizes S. If ∅ ∈ S, this particular extension can be realized under
most semantics by an AF where all the arguments are self-attacking. Among
the main semantics studied in the literature, only the stable semantics cannot
realize ∅, thus S is 0-m-realizable under the stable semantics when ∅ 6∈ S.2 While
this is a proof that S is 0-m-realizable, it does not mean that the set F is an
adequate solution in any situation. For instance, in a context of AF revision [7],
it is unlikely that the Fi AFs will be related to the initial AF, and then this
result F would not comply with the minimal change principle. Also, we show
here that m = |S| is only an upper bound, but S may be realizable with only m′

AFs (where m′ < |S|).
This discussion can be summarized by Proposition 1.

Proposition 1. Let S be a set of extensions. S is 0-|S|-realizable under σ ∈
{co, gr, pr}. Moreover, if ∅ 6∈ S, then S is 0-|S|-realizable under σ = st.

Example 5. Consider again S2 = {{a, b}, {a, c}, {b, c}} from Example 2. As stated
previously, it cannot be realized by a single AF under the stable semantics, i.e.
it is not st-0-1-realizable (neither st-k-1-realizable with any k ∈ N). However, it
is st-0-2-realizable, as can be seen with F = {F1,F2} from Figure 4. We have
st(F1) = {{a, b}, {a, c}} and st(F2) = {{a, c}, {b, c}}, hence

⋃
F∈F st(F) = S2.

2 Formally, if we allow empty AFs, then F∅ = 〈∅, ∅〉 realizes the empty set under the
stable semantics. However authorizing such an empty AF means that A = ∅, and
then no other extension can be realized.

8 J.-G. Mailly

a b c

(a) F1

a b c

(b) F2

Fig. 4: F = {F1,F2} st-0-2-realizes S2

3 k-m-Realizability as QBF Solving

Now we propose a QBF-based approach for solving k-m-realizability, i.e.

– determining whether a set of extensions S is k-m-realizable,
– and providing a set of AFs which realizes S, when it exists.

We start with the simpler case of k-realizability in Section 3.1, and then we
explain how we generalize the encoding to represent the set of m AFs in Sec-
tion 3.2.

3.1 Encoding k-realizability with QBFs

We suppose that we know A the set of all the arguments that appear in the
extensions, and A′ (with |A′| = k) the set of arguments that do not appear in any
extension but appear in the argumentation framework(s). Then, let A = A∪A′
be the set of all the arguments. We will define propositional formulas such that
each model represents a set of arguments X ⊆ A and attacks in A × A. The
approach is inspired by [4]. Our goal is to write these formulas directly as sets of
clauses, in order to be able to feed a QBF solver with them without a (possibly)
expensive translation from an arbitrary formula into a CNF formula. We define
the following Boolean variables:

– for a ∈ A, ina is true iff a is in the set of arguments of interest;
– for a, b ∈ A, atta,b is true iff a attacks b.

Conflict-freeness We define φcf that represents the conflict-free sets in a classical
way:

φcf =
∧

a∈A,b∈A

(atta,b → ¬ina ∨ ¬inb)

Stable Semantics Now, we focus on the stable semantics. Let us recall that a
stable extension is a conflict-free set X ⊆ A that attacks every argument in
A \X, i.e. any argument is either a member of X, or attacked by a member of

X. Thus, the stable semantics can be encoded by the formula φ̂st:

φ̂st = φcf ∧ (
∧
a∈A

(ina ∨
∨
b∈A

(inb ∧ attb,a)))

k-m-Realization of Extensions in Abstract Argumentation 9

The second part of the formula expresses that each argument a is either in the
set (ina), or attacked by an argument b in the set (inb ∧ attb,a). This enforces
the set {a ∈ A | ina = 1} as a stable extension of the AF F = 〈A,R〉, with
R = {(a, b) ∈ A×A | atta,b = 1}. We need to transform the second part into a
set of clauses. For facilitating this transformation, we introduce new variables.
We remark that for each a ∈ A,

ina ∨
∨
b∈A

(inb ∧ attb,a) ≡ ina ∨
∨
b∈A

detb,a

where detb,a is a newly introduced variable that means that b defeats a (i.e. b is
accepted and b attacks a). We formally encode the meaning of these variables
by:

φdet =
∧

a∈A,b∈A

deta,b ↔ (ina ∧ atta,b)

So now, we define φst:

φst = φcf ∧ (
∧
a∈A

(ina ∨
∨
b∈A

detb,a)) ∧ φdet

This formula is equi-satisfiable with φ̂st. Moreover, the models of φst can be

bijectively associated with the models of φ̂st, since the values of the det-variables
are completely determined by the values of the in and att-variables. Now, to
express φst as a CNF formula, we need to rewrite φdet as an equivalent set of
clauses. This is done as follows:

deta,b ↔ (ina ∧ atta,b) ≡ (¬deta,b ∨ ina)
∧(¬deta,b ∨ atta,b)
∧(¬ina ∨ ¬atta,b ∨ deta,b)

Admissibility For encoding admissibility, we need to express that an argument
is defended by the set of arguments which is characterized. Thus we introduce a
new kind of variable, for each a ∈ A, defa means that a is defended. Formally,
this is encoded by

φdef =
∧
a∈A

(defa ↔
∧
b∈A

(attb,a →
∨
c∈A

detc,b))

This means that admissible sets can be encoded by

φad = φcf ∧ φdet ∧ φdef ∧
∧
a∈A

ina → defa

Complete Semantics Finally, since a complete extension is an admissible set
which contains exactly what it defends, we can encode the complete semantics
by

φco = φad ∧
∧
a∈A

defa → ina

Again, classical transformations allow to obtain φad and φco as CNF formulas.

10 J.-G. Mailly

Encoding k-Realizability For A a set of arguments, we suppose that
S = {E1, . . . , En}, such that Ei ⊆ A for each i ∈ {1, . . . , n}, is the set of
extensions to be realized. The approach is generic: for any semantics σ, we sup-
pose that φσ is the propositional formula that encodes the relationship between
an AF and its extensions, for the semantics σ. It works for any semantics such
that reasoning is at most at the first level of the polynomial hierarchy, which
can thus be polynomially encoded into propositional logic. So in the rest of the
section, σ ∈ {cf, ad, st, co}. We need to encode S into a propositional formula as
well:

φS =
∨
Ei∈S

φEi
with φEi

=
∧
a∈Ei

ina ∧
∧

a∈A\Ei

¬ina

The fact that the extensions of the AF must correspond to the extensions in
S can be encoded as an equivalence:

φ̂Sσ = φσ ↔ φS

In order to facilitate the transformation of this formula into a CNF, we introduce
two new variables, xσ and xS, such that xσ ↔ φσ and xS ↔ φS. So we obtain

φSσ = (xσ ↔ xS) ∧ (xσ ↔ φσ) ∧ (xS ↔ φS)

The different parts of this formula can be easily written as sets of clauses, either
by standard manipulations of the formula, or (in the case where a DNF appears
because of the standard manipulations) by a simple application of the Tseytin
transformation method [32].

Finally, the set S is σ-k-realizable if there is a valuation of the att-variables
such that each possible valuation of the in-variables satisfies φSσ, or said otherwise
if the QBF

∃ATT, ∀IN, φSσ
is valid, where ATT = {atta,b | a, b ∈ A} and IN = {ina | a ∈ A}. In order to
obtain a fully defined prenex QBF that can be given as input to a QBF solver,
let us remark that the det-variables, the def -variables, xσ, xS and the variables
introduced by the Tseytin transformation must be existentially quantified at the
third level of the QBF. The truth values assigned to the ATT variables can be
obtained from a QBF solver (e.g. CAQE [29]), providing ω : ATT → {0, 1}.
The AF F that realizes S is then defined by F = 〈A,R〉, with R = {(a, b) |
ω(atta,b) = 1}.

3.2 Encoding k-m-realizability with QBFs

Now, to encode k-m-realizability instead of k-realizability, we need to introduce
variables that will represent the structure of the m AFs that realize S. For
a, b ∈ A and i ∈ {1, . . . ,m}, attia,b is true iff a attacks b in Fi and detia,b is true

iff a defeats b in Fi (i.e. detia,b ↔ ina ∧ attia,b). Then, we call φiσ the formula

φσ where each att or det variable is replaced by the corresponding atti or deti.

k-m-Realization of Extensions in Abstract Argumentation 11

To represent the fact that the union of the extensions of F = {F1, . . . ,Fm}
corresponds to S, we write:

φ̂m,Sσ = (
∨

i∈{1,...,m}

φiσ)↔ φS

In order to write this formula as a CNF, we apply the same technique as
for k-realizability. For each i ∈ {1, . . . ,m}, we introduce a variable xiσ, and we
consider the formula xiσ ↔ φiσ, that can be easily transformed into a set of

clauses. Thus, we can replace φ̂m,Sσ by the CNF

φm,Sσ = ((
∨

i∈{1,...,m}

xiσ)↔ xS) ∧ (
∧

i∈{1,...,m}

(xiσ ↔ φiσ)) ∧ (xS ↔ φS)

where the first part of the formula is equivalent to the set of clauses
(
∧
i∈{1,...,m}(¬xiσ ∨ xS)) ∧ (¬xS ∨ x1σ ∨ · · · ∨ xmσ). Finally, we encode the k-m-

realizability with a QBF
∃ATT, ∀IN, φm,Sσ

where ATT = {attia,b | a, b ∈ A, i ∈ {1, . . . ,m}} and IN = {inia | a ∈ A, i ∈
{1, . . . ,m}}. Then each Fi can be obtained, as previously, from the values of the
atti-variables provided by the QBF solver.

4 Optimal k-m-Realization

Now we suppose that the realization process is guided by a minimal change
principle, i.e. there is an input AF F∗ = 〈A∗,R∗〉, and the AFs produced must
be as close as possible to F∗. This is, for instance, an important feature of belief
revision operators [7].

Before introducing optimal realization, we introduce the tools required to
quantify the closeness between AFs.

Definition 6. The Hamming distance between two AFs F1 = 〈A,R1〉 and F2 =
〈A,R2〉 is dH(F1,F2) = |(R1 \ R2) ∪ (R2 \ R1)|.

The distance dH simply counts the number of attacks which differ between
two AFs. To quantify the closeness between an AF and a set of AFs (the result
of the realization), we sum these distances:

Definition 7. Given F = 〈A,R〉 and F = {F1 = 〈A,R1〉, . . . ,Fm = 〈A,Rm〉},
we define d

∑
H by d

∑
H (F ,F) =

∑
Fi∈F dH(F ,Fi).

Definition 8 (Optimal k-m-Realization). Given F∗ = 〈A∗,R∗〉 an AF, A
a set of arguments, k,m ∈ N with m > 0, a semantics σ, and S ⊆ 2A a set
of extensions s.t.

⋃
E∈SE = A, we say that S is optimally σ-k-m-realized by

F = {F1 = 〈A∗,R1〉, . . . ,Fm = 〈A∗,Rm〉} with A∗ = A∪A′, where A∩A′ = ∅
and |A′| = k, if

12 J.-G. Mailly

– (
⋃
F∈F σ(F)) = S, and

– for any F′ satisfying the conditions above, d
∑
H (F∗,F) ≤ d

∑
H (F∗,F′).

Now we show how to adapt the QBF-based approach for k-m-realizability

into a QMaxSAT approach for optimal k-m-realization. Assume that
−→
Qφk,m,Sσ is

the formula allowing to determine the k-m-realizability of S under the semantics
σ (as described in the previous section). We introduce new variables that describe
the attack relation of the initial AF F∗ = 〈A∗,R∗〉: for each pair of arguments
(a, b) ∈ A∗ ×A∗, att∗a,b means that (a, b) ∈ R∗.

Then, for every i ∈ {1, . . . ,m}, and every pair of arguments (a, b) ∈ A∗×A∗,
we introduce the variable ndia,b which means that there is no difference between
the existence of the attack (a, b) in F∗ and Fi. This is formally characterized by
the formula

ψia,b = ndia,b ↔ (att∗a,b ↔ attia,b)

(which can be easily transformed into a set of four clauses made of three literals
each).

Finally, we need a way to represent the attack relation in the initial AF F∗.
To do that, we define

θ(F∗) =
∧

(a,b)∈R∗

att∗a,b ∧
∧

(a,b)∈(A∗×A∗)\R∗

¬att∗a,b.

Now, we can define the QMaxSAT instance
−→
QφH ∧ φS where the hard con-

straints are

φH = φk,m,Sσ ∧ (

m∧
i=1

∧
(a,b)∈A∗×A∗

ψia,b) ∧ θ(F∗)

and the soft constraints are

φS =

m∧
i=1

∧
(a,b)∈A∗×A∗

ndia,b.

An optimal solution of this QMaxSAT instance can be decoded into a set
of AFs F = {F1, . . . ,Fm} which optimally realizes the set of extensions S. This
optimal solution can be obtained thanks to dedicated algorithms like the ones
from [15, Section 4.1].

Observe that the generation operator AFcard,AFσ from [7] (which searches a
set of AFs that minimizes the cardinality of the result, and then the distances
between graphs as a tie-breaker) can be computed by iteratively solving the
QMaxSAT encoding for optimal k-m-realization, with m varying from 1 to |S|.
In the case of the operator AFdg,AFσ (which minimizes the distances between
graphs, and then the cardinality to break ties) we can solve k-m-realizability for
every m ∈ {1, . . . , |S|}, select the sets of AFs which minimize the distance, and
then (in case of ties) choose the one such that m is minimal.

k-m-Realization of Extensions in Abstract Argumentation 13

The approach for AF revision defined in [10] guarantees that the revised set
of extensions is (classically) realizable. This means that the resulting AF can be
obtained by solving (optimal) k-1-realization.

The generation operators for AF merging [9] cannot be computed with our
approach, since they require to compare a set of AFs with another set of AFs
(while here, we only compare one AF with a set of AFs, see Definition 7). Adapt-
ing our approach to AF merging generation operators is left for future work.

5 Discussion

The initial work on extension realizability [12] defines the concept of canonical
AF, i.e. a specific AF that realizes a set of extensions S if this set is realiz-
able. This canonical AF is useful for proving the existence of some AF (i.e.
answering the question “Is S realizable?”), but this construction may not be
sensible for concrete applications. Especially, when extension realization is used
in a context of AF revision or merging [7, 10, 9], the canonical AF that realizes
the revised/merged extensions may not be a desirable outcome in general, since
it can be completely unrelated with the initial AF(s), contrary to the result of
optimal k-m-realization as described in Section 4.

The UNREAL system3 [22] allows deciding realizability for Abstract Dialec-
tical Frameworks [5] and various subclasses thereof, including standard AFs.
There are various differences between this approach and our work. First of all,
it only considers “classical” realizability in the sense that the result of the op-
eration is a single AF, i.e. it does not solve k-m-realizability with m > 1. This
means that this approach will simply return “unsatisfiable” when the set of ex-
tensions S is not realizable by a single AF. Then, the system can provide one AF
realizing the given set of extensions, and iterate over the (potentially exponen-
tially large) set of AFs that solve the problem, but it cannot provide an optimal
one like the QMaxSAT-based approach from Section 4 (or do to so, one would
need to enumerate all the potential solutions, compute their cost and keep only
the ones with the minimal cost, which is unlikely to be feasible in practice).

A problem similar to realization is studied under the name inverse problem
[17]. However, their hypothesis is that the information about arguments accept-
ability is noisy, hence the use of a probabilistic approach to obtain the AF. It is
not the case in the context of AF revision or merging which motivates our study.

The synthesis of AFs [26] shares a similar intuition with realization: given
a set of extensions P and a set of extensions N (called respectively positive
examples and negative examples, each of them being associated with a weight),
the goal is to obtain an AF of minimal cost, where the cost is the sum of the
weights of positive examples which are not an extension of the AF, and the
weights of the negative examples which are extensions of the AF. Realization
can be captured by stating P = S, and N = 2A \ S, which is not efficient from
the point of view of space, and by assuming that all examples have a infinite
weight (i.e. no example should be violated).

3 https://www.dbai.tuwien.ac.at/proj/adf/unreal

14 J.-G. Mailly

The case of the grounded semantics is particular. Since there is exactly
one grounded extension for any AF, a set of extensions S requires exactly
m = |S| to be realized. A possible way to do it is strict extension enforce-
ment [25] which modifies an AF in order to obtain a new one with the expected
grounded extension. Performing this operation for each Ei ∈ S can provide the
set F = {F1, . . . ,Fm} such that Ei is the grounded extension of Fi, for each
i ∈ {1, . . . ,m}.

Recent work has shown that any set of extensions S can be represented by
a single Constrained Incomplete Argumentation Framework (CIAF) [23]. Such a
CIAF is based on the Incomplete AF model, where arguments and attacks can
be labeled as uncertain, and reasoning is made through completions, i.e. a set
of classical AFs. CIAFs add a constraint on the set of completions, which allow
to finely select the completions that will be used for reasoning. [23] shows that
any set of extensions is 0-1-realizable if such a CIAF is expected as the result,
instead of (classical) AFs. Adapting our technique to generate a CIAF instead
of a (set of) AF(s) is an interesting future work.

Finally, realizability has been studied in the context of ranking-based [30] or
gradual semantics [28]. In the former case, the goal is to obtain an AF F such
that applying a given ranking-based semantics on F produces a given ranking;
it is shown that any ranking is realizable for various semantics. In the latter
case, given the graph structure of a weighted AF, and an acceptability degree
for each argument, one wants to obtain arguments weights such that applying a
given gradual semantics to the weighted AF produces the expected acceptability
degrees. In the same vein, [27] focuses also on gradual semantics of weighted
AFs, but this time the arguments weights are known, and the goal is to obtain
the graph structure. All the works are intuitively connected with the question of
realizability, but strongly differ from our work because the notion of acceptability
semantics is not based on extensions.

6 Conclusion

In this paper, we have proposed a generalization of the notion of extension real-
izability, with two parameters representing respectively the number of auxiliary
arguments and the number of AFs in the result. We have defined a logic-based
computational approach for this problem, paving the way to practical implemen-
tations based on QBF solvers. Our work also induces a computational approach
for generating the result of AF revision [7]. This means that we do not only fo-
cus on realizability (i.e. answer to the question “is there a solution?”), but more
generally on the issue of realization (i.e. “if there is a solution, then provide it”).

This preliminary study opens several interesting research tracks. First, a
natural extension of our work is to consider other semantics. In particular, the
semantics that cannot be (polynomially) encoded into a propositional formula
(e.g. the preferred semantics) may need some particular attention. At least two
options can be considered: directly encoding φσ as a QBF [13], or using an
iterated resolution approach (in the spirit of the CEGAR-based approaches used

k-m-Realization of Extensions in Abstract Argumentation 15

for extension enforcement [33] or AF synthesis [26]). We also plan to implement
our approach in order to empirically evaluate its efficiency, and the influence of
the various parameters (the semantics σ, the number of auxiliary arguments k,
the number of AFs in the result m) on the possibility to realize the given set of
extensions. While the encoding described here are constructed step by step from
the logical translation of argumentation basic principles (e.g. conflict-freeness,
defense) and semantics (e.g. stable, complete), on the practical side our approach
can benefit from some insights provided by existing logic-based argumentation
tools (e.g [19, 24]) in order to improve the implementation of the QBF encoding.
Then, another interesting question is how to define (and encode in QBF) optimal
k-m-realization when the optimality is not based on the distance between the
result and one input AF, but on the distance between the result and a set
of AFs, like in the case of generation operators for AF merging [9]. Finally,
recent work has shown how deep learning can be used to improve the efficiency
of enforcement tools [8]. Studying whether such techniques can be used in a
context of realization is an appealing question for future work.

References

1. Airiau, S., Bonzon, E., Endriss, U., Maudet, N., Rossit, J.: Rationalisation of
profiles of abstract argumentation frameworks: Characterisation and complex-
ity. J. Artif. Intell. Res. 60, 149–177 (2017). https://doi.org/10.1613/jair.5436,
https://doi.org/10.1613/jair.5436

2. Baroni, P., Caminada, M., Giacomin, M.: Abstract argumentation frameworks and
their semantics. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.)
Handbook of Formal Argumentation, pp. 159–236. College Publications (2018)

3. Baumann, R., Dvorák, W., Linsbichler, T., Strass, H., Woltran, S.: Compact ar-
gumentation frameworks. In: Proc. of ECAI’14. pp. 69–74 (2014)

4. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proc.
of NMR’04. pp. 59–64 (2004)

5. Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks revisited. In: Proc. of IJCAI’13. pp. 803–809 (2013),
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6551

6. Cerutti, F., Giacomin, M., Vallati, M.: How we designed winning algorithms for
abstract argumentation and which insight we attained. Artif. Intell. 276, 1–40
(2019)

7. Coste-Marquis, S., Konieczny, S., Mailly, J.G., Marquis, P.: On the revision of
argumentation systems: Minimal change of arguments statuses. In: Proc. of KR’14
(2014)

8. Craandijk, D., Bex, F.: Enforcement heuristics for argumentation with deep re-
inforcement learning. In: Proc. of AAAI’22. pp. 5573–5581. AAAI Press (2022),
https://ojs.aaai.org/index.php/AAAI/article/view/20497

9. Delobelle, J., Haret, A., Konieczny, S., Mailly, J.G., Rossit, J., Woltran, S.: Merging
of abstract argumentation frameworks. In: Proc. of KR’16. pp. 33–42 (2016)

10. Diller, M., Haret, A., Linsbichler, T., Rümmele, S., Woltran, S.: An extension-based
approach to belief revision in abstract argumentation. Int. J. Approx. Reason. 93,
395–423 (2018)

16 J.-G. Mailly

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

12. Dunne, P.E., Dvorák, W., Linsbichler, T., Woltran, S.: Characteristics of multiple
viewpoints in abstract argumentation. Artif. Intell. 228, 153–178 (2015)

13. Egly, U., Woltran, S.: Reasoning in argumentation frameworks using quantified
boolean formulas. In: Proc. of COMMA’06. pp. 133–144 (2006)

14. Gaggl, S.A., Linsbichler, T., Maratea, M., Woltran, S.: Design and results of the
second international competition on computational models of argumentation. Artif.
Intell. 279 (2020)

15. Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability.
Constraints An Int. J. 21(2), 277–302 (2016)

16. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1992)

17. Kido, H., Liao, B.: A bayesian approach to direct and inverse abstract argumenta-
tion problems. CoRR abs/1909.04319 (2019), http://arxiv.org/abs/1909.04319

18. Konieczny, S., Pino Pérez, R.: Merging information under constraints: A logical
framework. J. Log. Comput. 12(5), 773–808 (2002)

19. Lagniez, J.M., Lonca, E., Mailly, J.G.: CoQuiAAS: A constraint-based quick ab-
stract argumentation solver. In: Proc. of ICTAI’15. pp. 928–935 (2015)

20. Lagniez, J.M., Lonca, E., Mailly, J.G., Rossit, J.: Introducing the fourth inter-
national competition on computational models of argumentation. In: Proc. of
SAFA’20. vol. 2672, pp. 80–85. CEUR-WS.org (2020), http://ceur-ws.org/Vol-
2672/paper 9.pdf

21. Li, C.M., Manyà, F.: Maxsat, hard and soft constraints. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability, Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 613–631. IOS Press (2009). https://doi.org/10.3233/978-1-58603-929-5-613,
https://doi.org/10.3233/978-1-58603-929-5-613

22. Linsbichler, T., Pührer, J., Strass, H.: A uniform account of realizabil-
ity in abstract argumentation. In: Proc. of ECAI’16. pp. 252–260 (2016).
https://doi.org/10.3233/978-1-61499-672-9-252, https://doi.org/10.3233/978-1-
61499-672-9-252

23. Mailly, J.G.: Constrained incomplete argumentation frameworks. In: Proc. of
ECSQARU’21. pp. 103–116. Springer (2021). https://doi.org/10.1007/978-3-030-
86772-0 8, https://doi.org/10.1007/978-3-030-86772-0 8

24. Niskanen, A., Järvisalo, M.: µ-toksia: An efficient abstract argumentation reasoner.
In: Proc. of KR’20. pp. 800–804 (2020). https://doi.org/10.24963/kr.2020/82,
https://doi.org/10.24963/kr.2020/82

25. Niskanen, A., Wallner, J.P., Järvisalo, M.: Extension enforcement under grounded
semantics in abstract argumentation. In: Proc. of KR’18. pp. 178–183. AAAI Press
(2018)

26. Niskanen, A., Wallner, J.P., Järvisalo, M.: Synthesizing argumentation
frameworks from examples. J. Artif. Intell. Res. 66, 503–554 (2019).
https://doi.org/10.1613/jair.1.11758, https://doi.org/10.1613/jair.1.11758

27. Oren, N., Yun, B.: Inferring attack relations for gradual semantics.
CoRR abs/2211.16118 (2022). https://doi.org/10.48550/arXiv.2211.16118,
https://doi.org/10.48550/arXiv.2211.16118

28. Oren, N., Yun, B., Vesic, S., Baptista, M.S.: Inverse problems for
gradual semantics. In: Proc. of IJCAI’22. pp. 2719–2725 (2022).
https://doi.org/10.24963/ijcai.2022/377, https://doi.org/10.24963/ijcai.2022/377

k-m-Realization of Extensions in Abstract Argumentation 17

29. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Proc. of FMCAD’15.
pp. 136–143 (2015)

30. Skiba, K., Thimm, M., Rienstra, T., Heyninck, J., Kern-Isberner, G.: Realisabil-
ity of rankings-based semantics. In: Proc. of SAFA’22. pp. 73–85. CEUR-WS.org
(2022)

31. Thimm, M., Villata, S.: The first international competition on computational mod-
els of argumentation: Results and analysis. Artif. Intell. 252, 267–294 (2017)

32. Tseytin, G.S.: On the complexity of derivation in propositional calculus. In: Stud-
ies in Constructive Mathematics and Mathematical Logic, Part II, Seminars in
Mathematics. pp. 115–125 (1970), translated from Russian

33. Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for
extension enforcement in abstract argumentation. J. Artif. Intell. Res. 60, 1–40
(2017)

