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Optimal Geographic Caching in Cellular Networks
with Linear Content Coding

Jocelyne Elias∗ and Bartłomiej Błaszczyszyn†

Abstract—We state and solve a problem of the optimal geo-
graphic caching of content in cellular networks, where linear com-
binations of contents are stored in the caches of base stations. We
consider a general content popularity distribution and a general
distribution of the number of stations covering the typical location
in the network. We are looking for a policy of content caching
maximizing the probability of serving the typical content request
from the caches of covering stations. The problem has a special
form of monotone sub-modular set function maximization. Using
dynamic programming, we find a deterministic policy solving the
problem. We also consider two natural greedy caching policies. We
evaluate our policies considering two popular stochastic geometric
coverage models: the Boolean one and the Signal-to-Interference-
and-Noise-Ratio one, assuming Zipf popularity distribution. Our
numerical results show that the proposed deterministic policies
are in general not worse than some randomized policy considered
in the literature and can further improve the total hit probability
in the moderately high coverage regime.

Index terms— Cellular caching, Network coding, Hit
probability, Coverage model, Optimization, Stochastic Ge-
ometry.

I. INTRODUCTION

The rapid proliferation of smartphones, tablets and other
smart mobile devices over the last few years has come hand in
hand with content-oriented services, which are actually dom-
inating the Internet traffic. According to [1], video streaming
for example accounts for 54% of the total Internet traffic, and
the ratio is expected to grow to 71% by the end of 2019. This
phenomenon has posed new challenges for mobile network
operators and has pushed them to implement novel schemes
to efficiently operate their cellular infrastructure, dealing with
the explosive growth in mobile data traffic.

A promising approach to deal with this phenomenon is to
introduce caching at Base Stations (BSs). Content caching
at BSs is indeed very beneficial for mobile operators for
several reasons, the most important are: 1) it reduces the
data traffic on the backhaul links, 2) it reduces the delay
experienced by cellular network’s users, and 3) it contributes in
reducing the congestion during the peak hours. Therefore, this
issue has attracted the attention of the research and industrial
communities. A comprehensive survey on caching in cellular
networks, and more specifically in 5G networks, along with its
benefits and challenges is given in [2].

Furthermore, very recently, some ideas taken from network
coding have been applied to caching in cellular networks [3],
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[4], [5], [6] and it was shown that network coding-based
caching policies further improve the performance obtained
so far by classical caching schemes. The core idea of this
technique is to use random linear network coding, where linear
combination of contents (or chunks of files) are stored in the
caches of BSs.

In this work we combine linear content coding techniques
and cellular network coverage models from stochastic geom-
etry, to propose and evaluate some novel geographic caching
policies that further improve the hit probability obtained in
previous works. The idea is to store in the caches of base
stations linear combinations of contents so as to increase the
cache-hit probability by leveraging the probability of covering
the request location by more than one base station. For a gen-
eral content popularity distribution and a general distribution
of the number of stations covering a typical location in the
network, we formulate a problem of the optimal deterministic
policy of content caching with network coding, maximizing
the probability of serving the typical content request from
the caches of covering stations. We find the solution to
this problem using the dynamic programming approach. We
also consider two natural greedy caching policies. Theoretical
bounds can be given on the sub-optimality of one of these
greedy policies leveraging the classical theory of monotone
sub-modular set functions.

We evaluate numerically our policies considering two pop-
ular stochastic geometric coverage models: the Boolean one
and the Signal-to-Interference-and-Noise-Ratio (SINR) one,
and compare their performance (the hit probability) to those
offered by the caching of the most popular content in all
base stations and an optimal random, independent, caching
strategy from [7], both considered as reference strategies in
the literature. Our numerical results show that the proposed
policies employing network coding are in general not worse
than the two reference policies and can further improve the
total hit probability offered by the independent caching policy
in the moderately high coverage regime.

Related Work
There is a considerable number of papers dealing with

cellular caching. In what follows we mention only the most
relevant to our approach.

Bastug et al in [8] provide some early stochastic geometry
results on the user outage probability and average delay expe-
rienced in cache-enabled cellular networks, further developed
in [9].

The optimized independent caching policy, used here as
a reference one, was proposed in [7] and evaluated under
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the same Boolean and SINR coverage models. Networks of
wireless caches in the plane with geometric constraints and
linear network coding were first studied by Altman et al in [5].

Avrachenkov et al in [6] considered an approach with linear
network coding very similar to ours, addressing the hit prob-
ability maximization as a generalized unbounded knapsack
problem. Having proved that the problem can be solved in
general using dynamic programming, they mainly focus on
the explicit solution for a special case when no coding is
applied (each file is stored or not in a single chunk). They
also consider a relaxation of the problem in which the average
constraints on the storage space are imposed. This latter model
with one chunk happens to be equivalent to the one considered
in [7]. Our formulation of the hit maximization problem as
a monotone sub-modular set function maximization, while
sub-optimal with respect to the generalized knapsack prob-
lem of [6], cf Remark 2, has a two-fold advantage: (1) the
optimal (dynamic programming) solution has much simpler
structure allowing one for efficient numerical evaluation of
its performance in a general case and (2) it admits natural
approximations by greedy policies. Both approaches prove to
be competitive with respect to the reference policies considered
so far in the literature.

Further related works include [10], where some auction-
based collaborative caching mechanism for wireless streaming
is studied. In [11], the authors studied the on-line collaborative
caching problem for a multicell-coordinated system from the
point of view of minimizing the total cost paid by the Content
Providers. Similar scenarios are considered in [12], [13].
Cooperative caching and cooperative redundancy elimination
models were proposed in [14] for an intra-Autonomous Sys-
tem.

The remaining part of the paper is organized as follows.
Section II introduces the caching and network coding as well
as the user coverage models used in the paper. Section III
describes the optimal and greedy caching policies that we
propose to solve the hit probability maximization problem.
Evaluation of the proposed policies under the considered
coverage models is done in Section IV. Finally, concluding
remarks and future research are discussed in Section V.

II. CACHING WITH NETWORK CODING MODEL

A. Network Coverage Distribution
We consider a general cellular-network germ-grain type [15,

Section 6.5] coverage model generated by stationary marked
point process Φ = {(Xi, Ci)}, where Xi model the positions
of Base Stations (BSs) and Xi ⊕ Ci their cells (service
zones) 1. In fact, the only characteristics of this model, used
in the remaining part of this paper, is the coverage (number)
distribution defined as

pk := P{N = k }, k = 0, 1, . . . ,

where N :=
∑
i 1(0 ∈ Xi⊕Ci) is the number of cells covering

the typical location, assumed without loss of generality (due
to stationarity of the model) to be the origin 0 of the plane.

1Ci are assumed to be random closed sets and Xi⊕Ci means the translation
of the set Ci by Xi.

We consider P := {pk : k = 0, 1, . . .} as a (given)
probability distribution on N0 := {0, 1, . . .}. We shall use also
the following notation for the tail-distribution function of the
coverage number

P (k) := P{N ≥ k} =

∞∑
n=k

pn.

1) Boolean Model: An important special case of the cov-
erage model considered in the literature and in this paper
is the Boolean Model (BM), where Φ is a homogeneous
Poisson point process and {Ci} are independent, identically
distributed closed sets of finite mean surface E[|Ci|] <∞. In
this case the coverage number N has a Poisson distribution
with parameter λ′ := λE[|Ci|], where λ > 0 is the intensity of
Φ (corresponding to the density of BSs); cf [16, Lemma 3.1].
Consequently, for the BM we have

pk = eλ
′ λ′

k

k!
, k = 0, 1, . . . (1)

2) SINR model: In a more adequate model for cellular
network, called Signal-to-Interference-plus-Noise Ratio (SINR)
coverage model 2, the coverage number distribution is given
by a more complicated expression; cf [17]. For this model we
have

pk :=

d1/τe∑
n=k

(−1)n−k
(
n

k

)
Sn(τ) , (2)

where

Sn(τ) = τ−2n/β
n In,β((W )a−β/2)Jn,β(τn) (3)

represents the expected number of n-tuples of BSs the typical
user can select among those which cover it with the SINR
greater than τ . The notation used in the above expressions is
as follows: τn := τ

1−(n−1)τ , β is the path-loss exponent3, W
is the external noise power, and the two special functions

In,β(x) :=

2n
∞∫
0

u2n−1e−u
2−uβxΓ(1−2/β)−β/2du

βn−1Γ(1− 2/β)nΓ(1 + 2/β)n(n− 1)!
(4)

with a = λπE[(PS)
2
β ]

K2 , where λ is the density of BSs, S is the
fading/shadowing random variable, P is the BS transmission
power, K is the path-loss constant, and

Jn,β(x) :=
(1 + nx)

n

∫
[0,1]n−1

∏n−1
i=1 v

i(2/β+1)−1
i (1− vi)2/β∏n
i=1(x+ ηi)

dv1 . . . dvn−1, (5)

with η1 = v1v2 . . . vn−1, η2 = (1− v1)v2 . . . vn−1, η3 = (1−
v2)v3 . . . vn−1, . . ., ηn = 1 − vn−1. Note that in contrast to
the Boolean model, the coverage number distribution in the
SINR model has a bounded support; N is not larger than the
constant d1/τe depending on the required SINR threshold τ .

2Also called shot-noise germ-grain model in [15, Section 6.5.4].
3The path-loss function is (Kr)−β , with constants K > 0 and β > 2, and

r is the distance between the BS and the user.
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B. Content Popularity Distribution

We consider a finite 4 set of contents, indexed by a subset
of integers J := {1, 2, . . . , J}, J < ∞. Popularity of these
contents is modeled by a probability distribution {aj : j ∈ J},
called (content) popularity distribution. The value aj is in-
terpreted as the probability that a typical user (located at
the origin 0) requests the content I = j from the network;
aj := P{I = j}, where I is the index of the requested
content. Without loss of generality we assume that the content
items are indexed according to the decreasing popularity:
a1 ≥ a2 ≥ . . . ≥ aJ . In what follows, we always assume
that the requested content I and the coverage number N are
independent random variables.

An important special case of the content popularity distri-
bution, having some empirical justifications, is the truncated
Zipf distribution, with

aj = A−1j−γ , j = 1 . . . J, (6)

where γ is the (Zipf) exponent and A =
∑J
j=1 j

−γ .

C. Content Placement and Recovery Using Network Coding

We assume that a cache memory consisting of L ≥ 1 blocks
is available at each BS. The size of each block corresponds
to the size of exactly one content item (all content items are
assumed to have the same size). In this paper we assume
that all BSs store exactly the same subset of contents. The
spatial diversity (leveraging multiple coverage) is achieved by
using some network coding techniques in the contents storage
implementation, allowing one to store linear combinations of
more content items than the number of memory blocks.

More precisely, in each block i = 1, . . . , L a linear com-
bination of the content items from Ci ⊂ J of cardinality
|Ci| := #(Ci) ≥ 1 is stored. All base stations encode in their
memory blocks i = 1, . . . , L exactly the same subsets Ci of
content items using mutually independent linear combinations
of the contents. Motivated by this, we assume that a user (say
located at the origin) requesting some content item j ∈ J can
effectively recover it from the caches of the BSs covering it
when j is encoded in some block Ci of contents of cardinality
|Ci| not greater than the coverage number N , i.e., when

min{|Ci| : j ∈ Ci, i = 1, . . . , L} ≤ N . (7)
When the condition (7) is satisfied, we say the requested
content item j is hit in the network.

Denoting by δj , j ∈ J, the indicator of the event (7) we
can write the hit probability of the content item I randomly
selected according to the popularity distribution as a function
of the choice of the subsets {Ci}Li=1 of contents encoded in
the memory blocks of BSs as

Phit = Phit({Ci}) := P{δI = 1}

=

∞∑
j=1

ajP
(

min{|Ci| : j ∈ Ci}
)
, (8)

with min{∅} =∞.

4Finiteness of the content set simplifies the model analysis.

III. HIT PROBABILITY OPTIMIZATION PROBLEM

By a content caching policy we mean in what follows a
configuration of L sets of contents {Ci}Li=1 to be encoded
in L memory blocks of all BSs. Our main goal in this
section consists in finding a caching policy maximizing the
hit probability, that is solving

max
C1,...,CL⊂J

Phit({Ci}) . (9)

We shall also present a few reasonable sub-optimal content
caching policies. Let us first remark the following relations to
some previously considered caching policies.

Remark 1. Caching the L most popular contents corresponds
to taking Cj = {j}, j = 1, . . . , L. This policy is obviously
the optimal one in the case of the 1-coverage regime (pk = 0
for k ≥ 2.). Independent caching proposed in [7] leverages
multiple coverage to increase the hit probability, without using
network coding. In contrast to the policies considered in this
paper, it is a randomized policy providing all BSs with some
probability distribution on the set of content items (in fact the
sequence of caching probabilities for all contents) and letting
BSs independently sample the composition of their cached
contents from this distribution. This distribution is calculated
(as in the current paper) in function of the content popularities
and BS coverage probabilities so as to maximize the average
(cache) hit probability. Note this policy maximizes the hit
probability but in a different class of policies and hence, in
general, one cannot easily compare it to policies considered in
this paper.

Remark 2. Our current optimization problem is a restriction
of the knapsack problem stated in [6]. The restriction comes
from the fact that our policy {Ci} assumes coding content
items separately for each memory block i = 1, . . . , L and
using for all contents j ∈ Ci present in a given block i the
same number of equations ni = M/|Ci|, where M is the
number of chunks of each item considered in [6]. While this
latter assumption is not restrictive (ni 6= M/n for some n can
be shown sub-optimal), coding separately different memory
blocks is indeed sub-optimal. This assumption however has an
important consequence: it transforms the generalized knapsack
problem to a simpler sub-modular set function maximization
problem, as will be shown in what follows.

A. Properties of the Optimal Caching Policies
In what follows we present some properties satisfied by any

policy maximizing (9).

Lemma 3. There exists a policy {Ci} maximizing (9) having
the following properties:

⋃L
i=1 Ci = {1, . . . , jmax}, |C1| ≤

. . . ≤ |CL|, and all elements of Ci precede those of Ci+1; i.e.,
Ci = {|C1|+. . .+|Ci−1|+1,. . . ,|C1|+. . .+|Ci−1|+|Ci|}.

Proof: Let {Ci} maximizing (9). Suppose an item x ∈⋃L
i=1 Ci is present in more than one set Ci. Keeping x only

in one set of smallest cardinality does not decrease the hit
probability. Assume hence that {Ci} are pairwise disjoint and
suppose there exist x ∈

⋃̇L
i=1Ci and y 6∈

⋃̇L
i=1Ci, such

that y < x. Replacing x by y does not decrease the hit
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probability. Consider hence the case
⋃̇L
i=1Ci = {1, . . . , jmax}.

Assume now that {Ci} is indexed in the increasing order of
cardinalities. Suppose that x ∈ Ci, y ∈ Cj with |Ci| ≤ |Cj |
and x > y. Then, swapping x and y does not decrease the
hit probability and we can construct a new partition {Ci} of
{1, . . . , jmax} in which all elements of Ci precede those of
Ci+1.

Note that a policy {Ci} satisfying the conditions of
Lemma 3 has pairwise disjoint sets Ci. It is easy to see that
this simplifies the expression (8) of the hit probability to the
following one.

Lemma 4. For pairwise disjoint Ci, i = 1, . . . , L.

Phit({Ci}) =

L∑
k=1

A(Ck)P (|Ck|) , (10)

where A(Ck) =
∑
j∈Ck aj .

In view of Lemma 3 we can simplify the problem (9)
restricting ourselves to the policies of the form Ci = [m1 +
. . .+mi−1+1,m1+. . .+mi], where [k, l] := {k, k+1, . . . , l} for
integers k, l and mi the number of contents cached in block i.
By Lemma 3 and Lemma 4:

Proposition 5. We have
max

C1,...,CL⊂J
Phit({Ci}) (11)

= max
1≤m1≤...≤mL

L∑
k=1

A([m1+. . .+mk−1+1,m1+. . .+mk])P (mk) .

B. Dynamic Programming Solution of the Optimal Caching
Problem

The idea consists in finding first the optimal cardinality mL

of the last block CL in function of the assumed (unknown
beforehand) total number n of contents cached in previous
blocks. Then proceed recursively with cardinalities ml of
blocks Cl, 2 ≤ l ≤ L−1, maximizing them in function of the
assumed total number n of contents cached in C1, . . . , Cl−1

while taking into account already calculated contribution of
the blocks l + 1, . . . , L. This leads to the following Dynamic
Program (DP):

We express the optimal number of contents cached in the
L-th block as a function of the total number n ∈ J of contents
cached in previous blocks and the corresponding hit probability
as:

mL(n) := arg max
x

A([n+ 1, n+ x])P (x),

Phit(L, n) := max
x

A([n+ 1, n+ x])P (x).

By the induction, for a block l, with 2 ≤ l ≤ L−1, we define:
ml(n) := arg max

x

(
A([n+ 1, n+ x])P (x) + Phit(l + 1, n+ x)

)
,

Phit(l, n) := max
x

(
A([n+ 1, n+ x]) + Phit(l + 1, n+ x)

)
.

Finally, for the first block we consider only n = 0 since in
this case we should start with the first content item

m1 := arg max
x

(
A([1, x])P (x) + Phit(2, x)

)
,

Phit(1) := max
x

(
A([1, x]) + Phit(2, x)

)
.

The above DP approach leads to the following solution of our
optimal caching problem (11).

Proposition 6. The maximal hit probability in (11) is equal
to Phit(1) and it is achieved on (m∗1, . . . ,m

∗
L) defined as

m∗1 := m1

m∗2 := m2(m∗1)

. . .

m∗L−1 := mL−1(m∗1 +m∗2 + . . .+m∗L−2)

m∗L := mL(m∗1 +m∗2 + . . .+m∗L−1) .

(12)

C. Greedy Sub-Optimal Caching Policies

The DP approach to the hit probability maximization (9)
completely solves the problem but presents a considerable
numerical complexity. Greedy algorithms are supposed to
propose simpler policies, reasonably approaching the maximal
hit probability (9). Depending on whether we apply the greedy
approach to the class of general policies {Ci}, using the
expression (8) as the definition of the hit probability, or we
restrict ourselves to the class of structured policies Ci =
[m1 +. . .+mi−1 +1,m1 +. . .+mi], using the expression (10)
for this probability, we obtain two, in general different, greedy
policies, both in general suboptimal. The former one, using
general {Ci}, has interesting theoretical bounds regarding
its sub-optimality, but still represents considerable numerical
complexity. The latter one, assuming the structured policies, is
numerically much simpler, but we do not have any theoretical
guarantees regarding its performance. Numerical evidences
suggest its utility. Finally, note that, even if the optimal policy
is known to have the structured form, a greedy algorithm
operating in this class is in general worse than the greedy
algorithm operating in the set of all non-structured policies.

1) Greedy Caching Policy with General Blocks: Let us
choose the first set Cg1 of items as a subset maximizing the
one-block hit probability Phit({C}). Since ai are decreasing
Cg1 has the form Cg1 = [1, . . . ,mg

1] for some mg
1 ≥ 1. Thus

Cg1 ∈ arg max
C⊂J

A(C)P (|C|) = arg max
m1≥1

A([1,m1])P (m1).

(13)
Then recursively, let us choose sets Cgl , 2 ≤ l ≤ L maxi-
mizing the increment of the hit probability they offer, without
assuming mutual disjointness of the sets
Cgl ∈ arg max

C⊂J
Phit({Cg1 , . . . , C

g
l−1, C})− Phit({Cg1 , . . . , C

g
l−1})

= arg max
C⊂J

∞∑
j∈C

aj

(
P (|C|)− P

(
min{|Cgi | : j ∈ C

g
i , i ≤ l − 1}

))+

,

(14)
where (x)+ = max(x, 0).

The following result not only gives a lower bound on the hit
probability achieved by {Cgi } but also allows one to mitigate
the decrease of this probability by increasing the number of
memory blocks.

Proposition 7. Let {Cgi }Ki=1 be contents sets selected by the
greedy caching policy (13), (14) applied for K ≥ L memory



5

blocks and {C∗i }Li=1 an optimal solution of the problem (9)
for L memory blocks. Then

Phit({Cgi }
K
i=1) ≥ (1− e−L/K)Phit({C∗i }Li=1) . (15)

Proof: Consider Phit(·) defined by (8) as a set function
on the space of finite subsets {C1, . . . , Ci} of finite subsets
Ci ⊂ J, i ≥ 1. Clearly Phit(·) is non-negative, increasing

Phit({C1, . . . , Ci}) ≤ Phit({C1, . . . , Ci, Ci+1, . . . , Ci+k})
and sub-modular

Phit({C,C1, . . . , Ci})− Phit({C1, . . . , Ci})
≥Phit({C,C1, . . . , Ci, Ci+1, . . . , Ci+k})−
Phit({C1, . . . , Ci, Ci+1, . . . , Ci+k}) .

Indeed, for this latter property observe that the right hand
side of (14) is decreasing with respect to l. The result follows
thus by the classical result [18] for sub-modular set functions.

2) Greedy Caching Policy with Disjoint Blocks: The first
set Cgd1 := Cg1 = [1,mg

1] is chosen by this policy as for the
previous greedy policy (13). Then recursively, let us choose
sets Cgdl = [mg

1 +mg
2 + . . .+mg

l−1 + 1,mg
1 +mg

2 + . . . ,mg
l ],

2 ≤ l ≤ L maximizing the increment of the hit probability
they offer, assuming mutual disjointness of the sets, thus using
expression (10) for this probability

Cgdl ∈ arg max
C⊂J

Phit({Cg1 , . . . , C
g
l−1, C})− Phit({Cg1 , . . . , C

g
l−1})

= arg max
ml≥m1+...+ml−1

A([m1+. . .+ml−1 + 1,m1+. . .+ml])P (ml).

(16)

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
caching policies described previously considering the BM and
SINR coverage models. In particular we study the dependence
of our policies on the mean number of stations E[N ] covering
a given location and the Zipf exponent γ of the content
popularity distribution. We first describe the numerical setup,
including adopted coverage models (Sec. IV-A), and then we
analyze and discuss the numerical results (Sec. IV-B).

A. Numerical Setup

Let us first give more details about the coverage models
used in our results.

1) Boolean Model: We assume that the interference is small
compared to noise (noise-limited case) and hence we use the
Boolean model to calculate the probability of user coverage by
k BSs (pk in (1)). The signal-to-noise ratio can be expressed
as P (Kr)−β

W , where P is the BS transmit power, K is the path-
loss constant, r is the distance between the BS and the user, β
is the path-loss exponent and W is the noise power. Let B =
K( PW )1/β . Hence, we have E[|Ci|] = πτ−2/βB−2 and λ′ =
λπτ−2/βB−2 (see Section II-A1). Note, the mean coverage
number is equal to E[N ] = πλτ−2/βB−2.
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(a) L = 5, λ = 1, γ = 0.9, Boolean model
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(b) L = 5, λ = 1, γ = 0.56, Boolean model
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(c) L = 5, λ = 1, γ = 0.9, SINR model
Figure 1. Hit probability Phit versus the mean coverage for τ ∈ [-
12 dB, 12 dB], cache size L = 5, λ = 1 and γ ∈ {0.9, 0.56}.

2) Signal-to-Interference Ratio (SIR) Model: For general
shadowing conditions, the coverage probability pk is calculated
in (2), Section II-A2. We use a package developed in Matlab,
available at [19], to compute the numerical values of the
probabilities pk for this model. The mean coverage is equal to
E[N ] = S1(τ).

To evaluate the effectiveness of the proposed content caching
policies, we conduct calculations using Matlab. Default values
of key numerical parameters are as follows: density of BSs
λ = 1, number of cache blocks L = 5, total number of
content items J = 40, Zipf exponent γ ∈ {0.9, 0.56}, path-
loss exponent β = 3 and constant K = 1, noise power W = 0
in SIR model and P/W = 1 in BM.

B. Performance Evaluation

We evaluate the optimal policy considered in Section III-B,
called in what follows the Optimal Network Coding (ONC)
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policy, and the greedy policy proposed in Section III-C2 called
the Greedy Disjoint-Blocks Network Coding (GDBNC) policy.
We plot the hit probability Phit versus the mean coverage E[N ]
for the BM and the SINR models.

We further compare our policies to the Most Popular (MP)
and Independent (IND) caching policy discussed in Remark 1.

The results are discussed in the next subsections.
1) Hit probability under the Boolean model:

Figure1 (a) and Figure1 (b) show the total hit probability
versus the mean coverage, when τ varies in the range [-12 dB,
12 dB], L = 5, λ = 1, and for γ = 0.9 and 0.56, respectively.
It can be observed that both the optimal and the greedy policies
give us a very good performance compared to MP. This is
especially true for a mean coverage value higher than 2. For
small mean coverage values (or equivalently for high τ values),
all considered policies perform similarly to MP.

Furthermore, ONC performs better than IND for larger
mean coverage values. The gain is more important when
the content popularity distribution is more flat (smaller γ).
The greedy policy GDBNC is close to the optimal ONC in
some intermediate coverage regime and joins IND when the
coverage ultimately increases. It is an open question whether
the same holds true for the greedy policy with general bocks
considered in Section III-C1, which is in between GDBNC
and ONC.

2) Hit probability under the SINR model:
We now evaluate our policies under the SINR model. In this
case, the number of BSs covering the user is very much limited
(i.e., E[N ] < 3). As before, we plot in Figure1(c) Phit versus
the mean coverage. So, it is not surprising to obtain the same
behavior under all policies, except for mean coverage bigger
than 1.5. In fact, in this latter case, some performance gains
could be obtained by our policies with respect to the MP
policy. However, for the considered parameters of the SINR
model, there is no much enough room to improve Phit with
respect to MP.

V. CONCLUSION

In this paper we show how network coding ideas can
be used to improve the performance of caching in cellular
networks. Specifically, we study a geographic caching problem
in cellular networks allowing for linear content coding at base
stations. Three policies are proposed: an optimal for our model
and two natural greedy ones. We show that all considered
policies are equivalent to caching in every base station the
most popular content (without any coding) when there is no
coverage diversity. However, when the number of stations
covering a typical user increases, our policies perform much
better than this trivial policy and sometimes even better, in
terms of the hit rate, than the randomized caching policy [7]
previously proposed for such regimes.
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