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Abstract

This paper presents a study of small baseline stereovision. It is generally adnigd that
because of the Tnite resolution of images, getting a good precision in depth fronstereovision
demands a large angle between the views. In this paper, we show that under simple and
feasible hypotheses, small baseline stereovision can be rehabilitated and evlemoured. The main
hypothesis is that the images should be band limited, in order to achieve sub-pixel m@cisions
in the matching process. This assumption is not satis ed for common stereo pai. Yet, this
becomes realistic for recent spatial or aerian acquisition devices. In this céext, block-matching
methods, which had become somewhat obsolete for large baseline stereovisioegain their
relevance. A multi-scale algorithm dedicated to small baseline stereovision is desbed along
with experiments on small angle stereo pairs at the end of the paper.

Keywords:  Stereo, Discrete correlation, Shannon sampling, Digital Elevation Model (DEM, Numerical
Elevation Model (NEM).

1 Introduction

Stereopsis is the process of reconstructing depth from twoniages of the same scene. This relies
on the following fact: if two images of a scene are acquired from di®erent angles, the depth of
the scene creates a geometric disparity between them. If thacquisition system is calibrated, the
knowledge of this disparity function " allows one to determine the digital elevation model (DEM)
of the observed scene. In this paper, we focus mainly on matatg stereo pairs of satellite or aerial
images, that have been recti ed to epipolar geometry (see [J. If the altitude of the cameras is high
enough for the parallel projection model to be accurate;" and the depth function z are linked at a
“rst approximation by the relation z = ﬁ whereb=his a stereoscopic coexcient, only dependent
on the acquisition conditions. This coezcient roughly represents the tangent of the angle between
the views (see Figure 1). The precisiordz of the depth measurement is consequently linked to the
precisiond" of the disparity measurement by

dll
dz= 1)

1For example, in the satellite case, images are acquired by CCD retina matrices.
2This coexcient is the ratio between the baseline b (i.e. the distance between the camera centers) and the distance
h between the scene and the camera system. In reality,b=h changes slowly in space.
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Figure 1: Stereopsis principle. O; and O, are the centers of the cameras. The projections of the
ground points M and N in the rst image are M1 and N1, and M, and N» in the second one.
We see that the position ofM in the rst image is not the same as the position ofM; in the
second image. Let us denote witlt M the shift between these positions (resp¢ N for N). The
di®erence of shiftst M j ¢ N is proportional to the disparity ¢ " (the proportionality coexcient is

actually the image resolution) and¢ " itself is roughly proportional to the depth di®erencet z (the
proportionality coexcient is b=h).

It follows that for a given accuracy d" of the disparity measurement, the larger the coe+cient2,
the smaller the depth error. It is commonly admitted that d" does not depend orb=h but only on
the image resolution. For this reason, high stereoscopic @*cients have always been preferred in
stereoscopy (typically, ﬁb = 1, which corresponds to an angle of approximately 58). However, a large
coezxcient also means maore changes between the images (mori®drent hidden surfaces, di®erences
in radiometry, larger geometrical deformations, moving ohects, etc...), hence more ditculties in
the matching process. This is especially true in the case ofrban images, where buildings create
a large amount of occluded areas, which change fast with thelservation angle. Hence, a smaller
angle between the views should naturally yield a more accutta disparity measurement. The choice
of the coexcient b=hshould result from a compromise between these e®ects.

The objective of this paper is a mathematical study of small taseline stereovision. The exciency
of the human visual system clearly supports the use of smallragles. Yet, this kind of stereovision
makes sense only under speci ¢ acquisition conditions anditth speci ¢ matching methods. First,
the acquisition device needs to be perfectly known and calitated. In addition, and this hypothesis
is essential, the images sampling must be controlled. Mosttereo correspondence algorithms only
compute integer disparities. This may be completely adequie for a variety of applications but is
clearly insuzcient for small baseline stereovision. Inded, when both views are separated by a very
small angle, the disparities observed on the images can be f@ small in comparison with the pixel
size. A matching method of pixelian precision is unable to rd any interesting depth information in
such a cas€. Hence, small baseline stereovision requires matching metds speci ¢ for subpixelian
disparities. We have mentioned that the depth precisiondz is linked to the disparity precision d"
by the relation dz = deh Matching two frames with a small b=h coexcient makes sense only if
the precision loss due to the angle is compensated by a betterccuracy on". Now, for subpixelian

3For instance, if b=h= 0:04 and if the image resolution is 50cm, the best elevation accuracy of a matching method
of pixelian precision is 0:5=0:04 = 12:5m.



precision to be achieved, the images of the pair have to be ietpolated perfectly. For this reason,
they must be well sampled according to Shannon [15] theory. These conditions (small baseline
and well sampling) are generally not satis ed by benchmark tereo pairs. Yet, these assumptions
are becoming valid with recent satellite acquisition systens.

The strategies used over the years to resolve the matching pblem between both images can
be roughly divided in local and global methods. Local approahes compute the disparity of a given
element by observing only its close neighborhood. Among thee methods, area-based (also called
"block-matching") approaches estimate the disparity at x by comparing a patch aroundx in the
“rst frame with similar patches in the second frame, for a given metric or \matching cost". The
most standard cost, the normalized cross correlation [6],9 merely a scalar product between nor-
malized image patches. Block-matching methods can produceathse subpixel maps, but are hardly
reliable in non-textured regions and su®er from adhesion aifacts [5]. However, these methods
remain very popular, especially in the industrial community. In contrast, global approaches solve
optimization problems on the entire disparity map ", by making global smoothness assumptions.
They involve sophisticated energy minimization methods [], dynamic programming [12, 4], belief
propagation [17], or graph-cuts [10]. These methods show vgigood performance for standard large
baseline stereovision and common stereo pairs (see [14] fan instructive and documented com-
parison of stereo algorithms). However, they remain compudtionally too expansive to be applied
with subpixel accuracy. In addition, graph-cuts based methals produce strong staircasing artifacts
whenever the depth is not piecewise constant, like in the casof urban areas with pitched roofs.

Our focus here is to study the feasibility of small angle steeovision. Hence, for the sake of
simplicity, we'll concentrate on the most traditional local matching cost, namely the normalized
cross correlation. Correlation matching being both localy and analytically formulated, it allows
one to estimate at each point the matching error. Once this fasibility is demonstrated, this will
open the way to the use of more sophisticated global methodsThe central result of next section
is a mathematical formulation of the correlation matching error. We show that this error can be
divided in two terms. One is due to the noise and is divided by he b=h coezxcient, and the other
one is inherent to the method andindependent of b=h In other words, the rst part of the error
is smaller with large stereoscopic angles, but the second pais independent of the angle. Since
small baseline generates less occlusions and much more damiimages, this independence result
gives strong support to small baseline stereovision. To théest of our knowledge, this fact, obvious
in animal and human vision, was never pointed out. The compaison of these two terms indicates
that in non homogeneus, informative image regions, the nois term can be neglected before the
other even for very small baselines. Several questions liekl to correlation will be addressed under
this new perspective, in particular the question of the sizeof the window used in block-matching
methods and the discrete formulation and interpolation of the correlation coexcient. A multi-scale
algorithm based on these results and dedicated to small bafire stereovision will be described.

4Shannon sampling theory shows that well sampled images can be completey recovered from their samples, hence
interpolated with in nite precision.



2 Analytic Study - Continuous Case

2.1 Notations, model and hypotheses

Let us denote with u and u the images of the stereoscopic pair. One assumes without l®sf
generality that the images are 24£ 2Y4periodic and known on [ Y4, YhE [ Y;% Only discrete
versions ofu and o are available. Thus, in what follows, the imagesu and u are supposed to
be band limited. According to Shannon sampling theory [15],this implies that the continuous
functions u and ¢ can be reconstructed from their samples, provided that the ampling rate is
high enougl?. The images are supposed to be well sampled, on a regulaN2£ 2N grid . Under
these hypotheses, it becomes easy to show that(respectively o) can be written as a trigonometric
polynomial

i1 il

u(x;y) = a(m; n)e (™+my). 2)

n=i Nm=j N
where the coexcientsd{m; n) represent the discrete Fourier transform (DFT) of the discrete version
of u (0 can be obtained by FFT). Under these simple and realistic hymtheses, the discrete images
u and u can be interpreted as continuous periodic functions. As trgonometric polynomials, they
are smooth, bounded, and so are all their derivatives.

Suppose thatu and w satisfy the classical model

t(x) =, (u(x + "(x)); 3)

where | variates slowly in space and where the disparity function” describes the geometrical
deformation betweenu and w. The function " is assumed to be bounded.

This model is of course false if the angle between the snapstsois too large (see Figure 2), but
is quite reasonable ifb=his small. Indeed, the model assumes that the di®erences betenu and
t are purely geometrical, up to a multiplicative function , with slow spatial variations, and that
almost no occlusion or radiometric change occurs. Ultimatly, the model is more and more accurate
when b=hbecomes small. Human eyes [13] almost satisfy these hypotes.

Normalized Cross Correlation
Consider a smooth, positive, normalized and compactly supprted window function ' . We shall
use the following notations:

2 ', the shifted function ' », : x! ' (X0 X),

R R R
2, ‘o f= ‘o f(x)dx= " (Xoi X)f(x)dx for every integrable function f ,

*More precisely, in one dimension, the Shannon-Whittaker theorem te lls us that if fis supported in [j Ya=A,; ¥a=A,
then
sin({t i nA)=A).

%
rm= FOA) = nA)=A

n=ijl
5This hypothesis is not satis ed in any real acquisition system, but b ecomes valid for instance in the case of

SPOTS satellites (two linear CCD arrays allow to create a quincunx grid adapted to the modulation transfer function
spectrum [3]).
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Figure 2: Di®erences of occlusion zones in function ab=h Occlusions in the left image of the stereo

pair are signaled by horizontal lines, occlusions in the rigt image of the stereo pair are signaled by
slanted lines. We observe that with a largd=h the occlusion di®erences are much more critical

than with a small coexcient. This is especially true in urban zones, where the depth can change
very fast.

q D
2 kf k-, the weighted norm i xo (X)f 2(x)dx for every square integrable functionf ,

R
2 <>, the corresponding scalar product< f;g > -, = ' x,(X)f (x)g(x)dx (the e®ective
way to compute correctly discrete scalar products and normswill be discussed in the last
section).

We also note ¢nu the shifted imagex ! u(x + m). For each point X of &, the normalized cross
correlation computes the disparity m(xg) betweenu and u at x¢ by maximizing a local similarity
coezcient between the images:

m(Xo) = arg max Y%,(m); where (4)
m

<imUie>,
kémuke . kek ©)

X0 X0

This function %, is called the correlation product at xo and ' is called the correlation window.
The value %,(m) measures the similarity between the neighborhood ok in the image u-and the
neighborhood ofxo + m in the image u. Schwarz inequality ’ ensures that%, is always between
i 1and 1. It is not ensured, though, that the shift m(xo) at which %, is maximum is exactly equal
to the real disparity "(xo) at xg. The relation between the functionsm and " is the heart of the
next section. In the following, we set, =1 in model (3) since its slow variations hardly alter the
correlation coezcient.

Traditionally, gnost authors consgider a centered correlaton coexcient, which means thatu (resp.
o) becomesu . u (resp. wi . ‘o &) around Xq. The results of the following sections can be

0
easily generalized to this case, but one will see in paragrdp2.4.1 why this choice is not always
judicious.

Yao(mM) =

"Schwarz inequality tells us that for any square-integrable functions f anf g, one has

- S = -
— ya L

f () g(x)dx— JEOjzdx s jg(x)jzdx:

!



2.2 Analytic formulation of the correlation. Case without n oise.

In all the following, one makes the classical assumption thiathe images have been recti ed to
epipolar geometry: the search for corresponding points cabe reduced to one dimension. Hence,
all the derivatives used (and written as 1-D derivatives) mug be understood \along the direction”
of these epipolar lines.

De nition 1 The following function is called correlation density of  u at xg

kuk?  u®(x)i <u;u®>-, u()uix) .
kuk# ' ©)
X0

U .y
dXO.X|!

The function d§, only depends on the imageu, the window ' and the correlation point xo. We
will see why this function indicates where the correlation B sensible and can be accurate. The
next proposition formulates the relation between the measted disparity m(xg) at xg and the real
disparity function "

Central equation of correlation.

Proposition 1  Assume that the disparity function " and the shift m(xg) which maximizes%,
satisfy j"(x) i m(Xo)j ¢ 1 on the support of' x,. Then m(xo) is linked to " by the rst order
approximation

<d;’fg(xo)u;m(xo)>‘xou <dgg(X0)u;ll>'X0 : (7)

Proof : The Trst derivative of %, is

<emWe> o <imUie>e <imUGimu>

kemuk: ke, Kém UKP,ketk:

19,(m) =

9 (8)
Consequently,
B (m)=0,k flmUk'Zxo <emUlu> =<imuit>, <omulinu>e, (9)

Now, let m(xo) be the shift which maximizes;,, then 1/20(m(x0)) = 0. Under the assumption that

i"i m(xp)j is small enough, a rst order approximation gives

B(X) = u(x+ "(x)) ' u(x + m(xo)) + uYx + m(xo))("(X) i M(xo)):
Thus, the rst order development of the equality 1/20(m(xo)) =0 gives
kérn(xo)Uk'ZXO < (.Jm(Xo)u(E; " i m(XO) > xo‘ (10)
< emxo)Ui ém(xo)U0>" o < Emexo)U m(x)US" T M(X0) >, (11)

which can be rewritten

u 1 4 lJ.II .
<d)(:g(X0) ;m(X0)>'xO <d)<(»ig(xo) : >'><0' (12)

6
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We will call equation (7) the central equation of correlation . For a given imageu, this
equation clari es the relation between the disparity function " and the shift m(xo) measured by
correlation at xo betweenu and & when j"(x) i m(Xg)j is small enough in the neighborhood of
Xo. This hypothesis means that the variations of" are small on the window' , and that the shift
m(Xg) is a close approximation of the values of' on this window. Of course, this hypothesis is all
the more true sinceb=his small.

Interpretation of Proposition 1: This equation shows that" is linked with m via a deconvo-
lution relation. If " is constant on the support of' x,, i.e. on Xg + supp(’' ), the equation becomes
m(Xo) = "(Xo), which means that the shift computed by correlation is equdb the local shift between
the views. Now, if" is not constant on the support of' »,, (7) shows that the values'(x) that
matter the most in the measurementm(xp) are taken at pointsx at which di’g‘x(’)u(x) is large.

This property can be interpreted as anadhesion phenomena, as we will see in the consequences
section. In zones whereu and u are °at (constant), the correlation density is null, which m eans
that no reliable relation between m and " can be recovered from (7). This con rms the intuition
that correlation needs texture information in order to succeed.

Second derivative.

Equation (7) characterizes the pointm(Xo) at which %, is maximum. Now, it is interesting to look
more closely atl/Qg in the neighbourhood of m(xp) in order to get an idea of the behaviour of%,
around its maximum.

Proposition 2 (See Appendix for the proof) Under the hypotheses of Proposin 1, the rst order
development of/4° at m(xo) is

B0(m(xo)) i <dm®0%1>. (13)

0"

As expected, this approximation satis_esl/Qg(m(xo)) - 0 (see footnote 7 on Schwarz inequality),
which is coherent with the fact that %,(m(xp)) is maximum. It is interesting to note that this
eqguation can also be approximated by

BO(m(xe)) i <di;l>, (14)

This approximation, that we will call correlation curvature , just relies on the knowledge ofus
independently of . This expression gives ana priori information about the locations where the
maximum can be accurate. The larger the absolute second destive is, the sharper the maximum
is, and the more precisely localized it can be. We will see inhe next section the importance of
this quantity when noise is added to the images.

Weighted L ?2-distance.
Instead of maximizing the correlation coe+cient, we can try to minimize the L2-distance

m! eg(m)= ku(x+ m)i w(x)k , : (15)



This minimization can work as soon as the images radiometrige are close enough, which is all the
more true sinceb=his small. In this case, the analytic link betweenm(xg) and " becomes

<empxouTiMX0) > " < e u%i ">, (16)
This equation is similar to the correlation one, except thatthe function dy is replaced byu°2:kuk-2xo.

2.3 Case with noise

We suppose here that white Gaussian noise8 are added to the images of the pair. The noisy
images are denoted withu and u. In order to regularize the problem, a convolution with a smdl
and smooth normalized function g (a prolate or a Gaussian) is applied to both images. For the
sake of simplicity, we will still denote the regularized images with u and & The model becomes

t(X) = u(x + "(x)) + go(x); 17)
where we denote withg, the convolution gab between a Gaussian noisé of standard deviation %,
and the function g.

2.3.1 Central and morphological equations
Before studying the in°uence of noise on the correlation praess, let us start with a more simple

case.

Weighted L ?2-distance .

Assume that we try to minimize the weighted L2-distancem ! e, (m) = ku(x + m) j t(x)k xg*
As we have seen, it makes sense as soonwaand w are radiometrically similar enough, i.e. as soon
as b=his small enough.

Proposition 3  Assume thatu and u satisfy relation (17), that " and the location m(xg) at which

&, IS minimal satisfy j"i m(xo)j ¢ 1 on the support of' x, and that the noise satis es the relation

Kgpk' « i .
mqg—xo ¢ 1. Then, equation (16) holds.

Proof : If m(xp) is the location at which ey, is minimal, then P&’o(m(xo)) =0, ie.
<emo) US> i < emxo)US ém(xo)U > o= O (18)
If jm(xo) i "J is small enough on the support of x,, a rst order expansion of u- gives
B(X) i ém@xo)U(X) " ("(X) i M(X0)) émxo)U+ Go(X): (19)
It follows that

. ®R.n . Q
<6m(xo)u ' >'XO <6m(x0)u lgb>'X0.

m(Xo) ' _ ,
kan(XO)UOr(-ZXO k(m(xo)uq('sz

(20)

8For a sake of simplicity, the formulations are continuous. In the discr ete case the noise is supposed to be a
Shannon white noise (see [16]).



. : . Kgok: .
Schwarz inequality (footnote 7) tells us that the second tem is smaller than %ﬁﬁ— If this
X0 X0

guantity, due to the noise, is smaller than the desired predion on the measuren(xg), equation (16)
holds.
2
The previous proof tells us that m(xp) and " are linked in rst approximation by relation (20).
The computation of the value m(xo) is distorted by a noise term. Now, kgyk: ,  can be estimated
by its expectation
Az uz 1, ' z
E (kgok?, ) = E | g(xi Hbt)dt dx = 'y (x)kgk?,¥gdx = kgk?,%¢: (21)
X0
Thus, kgpk: onk(;m(XO)u(k- «, can be approximated by ¥skgk, 2 =ke'%: «o» Which just depends on%,
kgok and . This term is an approximation of the error made in the estimation of m(xp). As a
consequence, equation (16) is seen as valid if this additiveerm can be neglected in comparison
with the desired precision on the measurementn(Xg).

Order of magnitude: if we take % ' 1, kak v, 10 andkgk 2 ' 05 (which is the case if
g is a 2D Gaussian of standard deviation¥= 0:56), then ¥pkgk, 2 =ktrk: v, 0:05. In this case,
equation (20) tells us that we cannot hope a better precisionon m(xg) than 0:05 pixels. We can
also remark that the lower the slope ofu~is, the more g has to be spread in order to neglect this
additive term. This con rms the property that the more const ant the image, the more in°uent the
noise.

Correlation .

The generalization of the previous proposition to the corrdation case is obvious if we remark that
the role played by the function jt:r(]2 is now played by the density function kuk?xod)b{o. Let us make
things a little more precise.

Proposition 4 Assume thatu and u satisfy relation (17), that " and the location m(xg) at which
Y, 1S maximal satisfy j" i m(Xg)j ¢ 1 on the support of' 4, and that

kgok:

i ]
kémuk: ,<dggt 1>

¢ ¢ L (22)

Then, equation (7) holds.

Proof : See proof in appendix. 2

Again, the computation of m(xp) is distorted by a noise term. In practice, the error due to the
noise in the computation of m(xg) can be approximated by

j/@,kgkL 2
\1

<dgo;1>l)(0

N (& 9; % X o) = (23)

kerk:

X0

This approximation of the additive \bias" indicates where t he correlation makes sense, where it
can be accurate, and allows one to decide which window size ashld be used at these locations.
One can recognize the correlation curvature (de ned in (14) in the denominator of this term. This
curvature plays the same role askuk ., in the L2 case. For a given amount of noise, the larger the
correlation curvature in (23), the smaller the error induced by the noise bias atxg.

9



2.4 Consequences of the central equation.
2.4.1 Matching costs and reliability

The previous results point out the link between the form of the matching cost and the reliability
of the disparity measured by block-matching methods. If the nmatching cost is reduced to a local
weighted L 2-distance, relations (16) and (20) underline the importanceof the image derivatives in
the matching reliability. It con rms the idea that block-mat ching needs contrast in order to make
sense.

In the case of the normalized cross correlation, the image dvatives are replaced in the equa-
tions by the correlation density d§; (de ned in (6)). The values of df, not only depend onu; but
also on the local geometry of the pair (&9 in the neighborhood of the point Xo: the more 4 and
t° are orthogonal for the scalar product<;> - <o+ the larger dif . This is not easy to interpret. For
that reason, the results obtained by correlation can be coniglered as somewhat less reliable than
those of L2-minimization. The weaker the constraint of similarity betw een the images is, the less
reliable the results will be when the images are only geomeitally shifted. This conclusion also
applies to the question of the centering of the correlation oexcient.

2.4.2 Optimal matching window.

Assume that the noise standard deviation of the image is know (it can be deduced from the
knowledge of the acquisition system). The images being give we want to restrict ourselves to
points Xg at which (23) is small. In this prospect, the size of the corréation window ' can be
chosen at each point in order to minimize the term (23). At the same time, this size must be as
small as possible if we want the measuremenm(xp) to be a good approximation of "(xg). If all
the windows used are of the forms' (sx) where ' is a given function (a Gaussian or a prolate
spheroidal function, for instance), s can be chosen aixg, when it is possible, as the smallest size
such that

N (t9;%: " s;X0) < ®; (24)

where ® is the desired precision on the measurementn(xg) and N the function de ned in (23).
Points where this inequality can be achieved for a given size are calledvalid points . These points
are those at which the results of the correlation can be condired as reliable. We can expect the
chosen size to be small at points of information (near edgesind larger in °at zones.

2.4.3 Adhesion e®ect reduction

Adhesion is a well-known artefact of block-matching methods.This artefact appears in the neigh-
bourhood of depth discontinuity, especially when this disontinuity is strengthened by a grey level
discontinuity. It results in a dilatation of the upper-groun ds in the disparity map. It can be illus-
trated by the following example (see Figure 3 (a)): a textured building lies on a textured ground, in
such a way that a part of the ground is occluded by the buildingin the left frame. One assumes that
the grey level di®erence between the ground and the building larger than the intensity variations
in the textured areas. Let Q be a point whose distance to the bilding is less than half of the
matching window. If we look in the right image for the best corespondent for Q, a block-matching
method will probably choose P, which means that the dispariyy accorded to Q will be the same as
the one of the building. As a consequence, the reconstructebluilding will be dilated by the size of
a half window.

10
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(a) The point Q of the left image is matched with the point P of the right im age. Thus, the disparity assigned
to Q is the same as the disparity of the building. As a consequence, the reconstructed building is larger than
the real one.

(b) On the left: synthetic stereo pair, the dark part of the images cor responds to the "upper-ground”. This

part is shifted to the left in the second image. As a consequence, a sall central strip of the ground appears in

the second image and is occluded in the rst one. Top right: disparity m easured by correlation. The adhesion
around the edge is clear, the reconstructed "upper-ground” is dilated by a half-window. Bottom right: same

disparity after a barycentric correction. The gray points are those wh ere no information remains.

Figure 3: Adhesion phenomenon.
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Equation (7) gives a very simJoIe analytic explanation to the adhesion artifact. Indeed, assume
that the density function dxy " at xo is in reality concentrated around a point x1, such that

dfz’;‘“(”u can be well approximated by the delta function %,, then equation (7) yields
"(x1) " m(Xo): (25)

This means that the shift measured by correlation atxq is in reality the disparity of the point
x1. In two dimensions, if the neighbourhood ofxg is composed of °at zones on both sides of
an edge, the shift measured atxp is an average of the real disparities on the edge. This fact
has no e®ect if the elevation has no variations over the winde ' ,, but it obviously produces
adhesion if the grey level edge coincides with an elevationiscontinuity. This con rms the previous
intuitive explanation of adhesion, and explains the dilatation of the upper-ground which can be
often observed in numerical elevation models (NEM). This dawback is inherent to any block-
matching process, but is particularly strong in the correlaion case [5]: thelL? similarity measure
favours naturally points at which information is located, i.e. near the edges or in textured areas.

The explanation of this phenomena allows one to propose a patical correction: instead of
assigning the measuremenim(Xgp) to Xp, it can be assigned to the pointG(xg) which is the most
likely to have the disparity m(Xxp). This point G(Xo) is computed as the barycenter of all the points
of the correlation window, weighted by the values of the deniy function,

B .
<dX01M>'xo

<dgo;l>lxo

G(xo) = ; (26)
where M (x) covers all the physical points of the support of' x, and where dg, is used as an
approximation of the density dirgw”. In the case considered previously (when the density is
concentrated at X;), it gives G(xg) = M (X1) and the shift measured at xg is correctly attributed
to x3. This procedure, called barycentric correction , is illustrated in a very simple case in
Figures 3 (b). This correction shifts the disparities to informative points. As a consequence, some
points loose their disparity, but the disparities so assiged are much more reliable.

2.4.4 On the link between baseline and precision

Let us denote byz., the real depth function, and with zyeas the depth recovered by the correlation
process. We have seen that,ey and the disparity function " are linked by the relation z,q5 = ﬁ

According to this, the equation (7) can be rewritten as

. qém (xp) U .
_ m(Xo) , <Zreaidxo O >, <Zready, >,
Zmeas(Xo0) = prowT—y : e (27)
b=h < 1 dXO(xo) > < 1 dg(*o >
! 0

It follows that in the absence of noise, the accuracy of the masured depth does not depend on the
angle between the views (hence on thb=hvalue). The only error encountered in this measurement
is due to the bad estimation of the disparity by the correlation process and can be written

- < Zreal; Oy, >, -
E1(X0) = Zreal (X0) i —— 7 oo (28)
1 ¥Xo X

0

This ideal case clearly advocates for weak=h which reduce all the matching ditculties encountered
with high stereoscopic coezxcients.

12



In the real world (where images are altered with additive nose), if the angleb=hdecreases too
much, the results lose precision. Indeed, in the previous tation, a term due to the noise is added,
and divided by b=h Proposition 4 shows that this term can be approximated by

?/h'kgkLZ .
b=hketk: qu < Ldg > .

X0

E2(Xo; b=h :=

(29)

Two errors appear in the estimation of z.¢5 : the error E4, inherent to the block-matching process
and the error due to the noise, bounded byE,. Only the second one depends on the valub=h

Proposition 5 Let xo be a point ofu, and hp=hy an angle which satis es the relationE(xg) >>
E»(Xo; p=hp). Then, as long asb=h, Iy=hg, the precision of the depth measured by correlation at
Xo is independent of the value ob=h

Following this proposition, it is absurd to increase the ande b=hwhile E; >> E ;. The value
of E; clearly depends of the variations of the functionz.e, . If these variations are large on the
support of ' , E; will predominate.

Order of magnitude: we do not have access t@.q5, SO the comparison betweerE; and E»
is not possible in general. However, for a xed expected accacy on zZmeas, the evaluation of E,
tells us whereb=hshould stand. If xq is such that ke%: «, 10 and if ¥kgk > " 05, we see that
E,' %. This means that for a given image resolution, (meters by pixel), the error due to the

noise at xg will be less than %; meters. If the resolution of u is fty centimeters by pixel, this

error in depth will be approximately fty centimeters for b=h= 0:05. This b=hvalue is already
very small. We will see in experiments that the \acceptable" values ofb=hfor a given precision are
much smaller than the values generally used in aerial sterampy (whereb=h" 0:8).

In a way, this idea can be linked with some aspects of human vien. Indeed, the human eyes
are very close (let say approximately tm). If we look at a scene located 70cm from our eyes, the
stereoscopic coezxcient is already (. If the distance increases to m, b=hbecomes @1. Even if
stereopsis is not the only process used by the brain for recasiructing depth, the exciency of the
visual system is also supporting the use of small angles ([1)3

3 Discrete formulation and experiments.

The previous analytic study tends to rehabilitate small baseline stereovision, at least theoretically.
In order to support these results, a multi-scale algorithm delicated to small baseline stereo pairs
was developed.

This section presents the outline of this algorithm and its most signi cant points. The discrete
aspects of the procedure (that is to say sampling and interplation) are described in depth because
of their decisive in°uence on the matching process. Experirants on simulated and real stereo pairs
follow.

3.1 Multi-Scale Algorithm

The central hypotheses of this study are that the deformation between the images of the stereo
pair is purely geometric, of the form u(x) = u(x + "(x)) with an eventual additive noise, and that
the disparity function " has small variations on the correlation window support.
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This hypothesis on" is not true in full generality. Even for small baseline stere pairs, the
variations of " on the correlation window can still be relatively important.

In order to make this assumption valid, the correlation procedure is embedded into a discrete
scale-space framework. The scale-space theory has alreadyelbeused for stereovision, for example
by Jones and Malik [9] or by Alvarez et al. [1]. The main idea here is to replace the regularization
function g by a family (gs)s, where gs(X) = %g(xzs), and to re ne through the scales the computa-
tion of the disparity function. At each scale s the images are sampled on an adapted grid |, such
that the remaining disparity function at this scale is everywhere smaller than the pixel size.

The complete algorithm can be splitted in two phases: a learing phase, devoted to the compu-
tation of window sizes at every scale and every point, and a mtirscale matching phase which uses
a sequence of given scalesy)k=1::n and corresponding grids (ik)k=1:n, i o being the roughest grid
and j , the nest one.

Learning phase

1. Compute the bound (23) for each scals, each size of window and each point of the grid at
scales;

2. For each point xo, use this bound to determine the minimum size of the correl&n window
at Xxo. Compute also the validity ofxg at each scale (clearly, the larger the scale is, the larger
the number of valid points is);

3. Compute the barycentric correction (26) at each point andeach scale. This correction just
depends on the images and on the optimal window computed pieysly.

Multi-scale algorithm
1. Start with the roughest scalesy and let"og =0 and k = 0;

2. Compute the imageuy(x) = u(x + "k(x));

3. Use a correlation algorithm to compute the disparity map*.+1 between(gs, @uy) and (gs, atr)
at each valid point of j x. This step requires to use the images sampled on the grid, ., (see
next section);

4. Correct “+1 with the barycentric correction;

5. Let "k+1 = *k+1 + "k £(ld + %41 ). The values of the function"y+1 are not known everywhere.
Interpolate it (for instance by isotropic di®usion). At thi s point, ux(ld + "x+1) = ux 2 (ld +
“x+1) should be closer ta+ than u £ (Id + ") was.

6. Replacek by k +1 and repeat steps 2 to 6 until the ner scale is reached.

The actual algorithm works with dyadic scales. At each scalecorresponds a sampling grid. If
the sampling grid of the nest scale is i, the previous scale $ sampled in 2j, etc... The largest
scale, which corresponds to 2, is chosen such that 2'i 1 . k "k; < 2". This way, the real shift at
the rst scale is everywhere smaller than one pixel. We assumthat the correction made at each
scale is such that the shift map is always everywhere smallethan one pixel. Note that the ner
the scale is, the larger the noise is, thus the less points wibe considered as valid (in proportion).
Now, all the informative points (corners, edges...) shouldremain valid through the scales if the
density information at these points is large enough to overide the noise.
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3.2 Sampling and subpixelian disparities computation.

Sampling and interpolation are two critical points in stereovision. These aspects are often disre-
garded in spite of their decisive in°uence on the matching pocess. Subpixelian disparities can be
obtained by computing the correlation map on a grid ner than the sampling grid j of the images.
To this purpose, many algorithms estimate the correlation map at points of j and compute a local
continuous (parabolic for instance) 't in order to re ne the disparity.

Now, as shown in [18], this direct interpolation is not adequate. The correlation coexcient is
not well sampled on this grid and interpolating it directly m ay result in the apparition of false
maxima.

In real acquisition systems, the continuous image before sapling is of the form ha O where O
is the landscape andh the impulse response of the camera. LeS be the compact support offi.
Then, E,DO is also spectrally supported onS. Let j be the sampling grid and let | ; be the Dirac
Comb ., +. The sampled image isu = (h=0): ;. If we suppose thatS is contained in a cell
R of the dual grid, the weak form of the Shannon-Whittaker theorem [15] tells us thath @ O can
be recovered fromu via the interpolation formula:

1 _
hoO=uo —-F(1R); (30)
IR
where F (1gr) denotes the inverse Fourier transform of the caracteristt function of the cell R.

Numerical consequence: Let N and D be respectively the numerator and denominator of the
continuous correlation coexcient %2 N (m) = (' x,t) @u(m), thus =1 xo 0. Now, if we assume
that the window ' y, has a spectral support included in the reciprocal celR, the support of [ xo

isinR+ R =1fx+y; (x;y) 2 R?g. It follows that if the numerator N is computed in the spectral
domain, its accurate computation must be done on the grid j=2. This means that both images
must be oversampled at least by a factor 2 before computingN in the Fourier domain. In the same
way, the spectral support of D? is included in S+ S. Thus, to properly reconstruct the continuous

version of D2, its discrete version must be computed in j=2. Finally, we can recover the continuous
versions ofN and D 2 thanks to their values on j =2, and the continuous correlation atx is just the

division of N (x) by = D?2(x).

3.3 Results

A multi-scale algorithm, called MARC (Multiresolution algo rithm for re ned correlation) has been
tested on both simulated and real stereo pairs.

The rst experiments are realized from a one meter sampled dhophoto of Marseille and a
precise numerical terrain model of the same area (see Figuré) provided by the society ISTAR.
In this experiment, the Shannon principle is satis ed. Indeed, the modulation transfer function of
the orthophoto is spectrally supported on the reciprocal cd of the sampling grid. From this single
image, several stereoscopic pairs are simulated with di®ent ﬁb values. A Gaussian white noise
of standard deviation %= 1 is added to the pairs (the images are 8 bits coded). The redting
disparity computed by the multiscale algorithm for ﬁb = 0:025 is shown on Figure 4. The interest
of this academic example is the possibility to compare the m#nod accuracy in function of the ﬁ
value.
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Figure 5 shows the altitude accuracy in function ofﬁb for three di®erent versions of the correlation
algorithm: the standard correlation with a rectangular win dow (top line), the correlation with a
prolate spheroidal window (middle line) and the multiscale algorithm presented above (bottom
line). Since the multiscale algorithm computes a validity value at each point of the grid image,
the elevation mean square error is only computed on points wieh remain valid at the nest scale.
As expected, if b=h becomes too small f=h < 0:01), the noise error becomes dominant and the
elevation error increases, then explodes wheb=h'! 0. If b=h becomes too large j=h > 0:2),
the di®erences between the images become too large and thewtion precision also decreases. In
this experiment, the accuracy of the measured depth on validyoints is minimal around the value
b=h=0:1.

The next experiment uses a pair of 25cm aerial images of Toulse with a b=hfactor of 0:045.
This pair presents a disadvantage: the large interval of tine between the shots (more than 20
minutes) results in several changes due to motion or shadowhgtings. Besides, the ground truth
of the area is known but incomplete, several depth informatbns are missing, in particular the wall
surrounding the prison. For these reasons, another secondaimage is simulated using the rst
one and the ground truth with the same b=hratio. The new pair is shown on the “rst line of
Figure 6. With such a small baseline, the images are very sirfdr, they present disparities with
values between -2 and 2 pixels. In a way, this similarity makethe matching process easier. On the
other hand, the matching needs to be applied with subpixel acuracy, since a traditional matching
algorithm computing integer disparities would yield a depth map with only 5 levels of depth. The
second line of Figure 6 shows the ground truth and the result bthe multiscale algorithm MARC
on this pair (the third line shows the corresponding 3D projections). We can observe that the
depth map computed is smoother than the ground truth. This property is the main drawback of
the previous modelization and may be the price to pay to get a god accuracy almost everywhere.
Figure 7 shows the result of the graph-cuts algorithm proposé by Kolmogorov et al. in [10] with
a smoothness parameter = 5. In many global stereo algorithms, the data term naturally favours
piecewise constant depth maps. This property has a noticedb advantage since it permits to get
precise and sharp discontinuities. Yet, in the case of smalaseline stereovision, global optimization
is faced with two shortcomings. First, in order to get relevant elevation levels, the algorithm must
be applied with sub-pixel precision, which is computationaly expensive. This can eventually be
done by oversampling images before matching (in the examplef Figure 7, both images have been
oversampled by a factor 2, which yields a resulting map with 7depth levels). However, this also
increases greatly the computing time. Secondly, in the casef urban areas, which present slanted
surfaces, this kind of algorithm produces severe staircase®ects. Now, global optimization yields
all the same a very good rst estimation of the elevation map ad its application to small baseline
stereovision should be further studied.

Figure 8 shows the results of MARC on two excerpts of a real aéal pair of images of Marseille.

The images have been taken with less than a minute of di®ereacwith a 50cm resolution and ab=h
ratio of 0.04. The ground truth of the area is unknown. This case is particularly ditcult. Indeed,
a 10m elevation di®erence (which is large, even for urban areaspoesponds in these images to a
40cm ground disparity, which is smaller than the pixel size. The results obtained on these images
are visually good, apart from a few zones of motion: severalars or buses have moved in the interval
of time and result in isolated peaks in the elevation map.
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Figure 4: First line: one meter sampling photo of Marseille and numereal terrain model of the
same area, provided by ISTAR. Several stereoscopic pairs asmulated from these two images for
di®erent b=h ratios. Second line: Results of the multiscale algorithm orthe pair simulated with
b=h=0:025 The left image shows the size of the window used at each poirithe lighter the point
is, the larger the window used by the algorithm was. The blagloints correspond to the zones where
the correlation process is considered as not reliable. At thse points, the disparity map is completed
by isotropic di®usion. The right image shows the resultingidparity map computed by MARC.
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Figure 5: Mean square error in elevation in function of theﬁb ratio for the experiment of Figure 4.

The top line correspond to the results of the standard corration algorithm, the middle line to the

results obtained with a prolate spheroidal window and the tom line to the multiscale algorithm.

We observe that the simple use of the prolate spheroidal wiog in the standard correlation algo-
rithm improves the results. The multiscale algorithm MARC improves the precision by a factor
2.

4 Conclusion

Stereoscopic vision relies on the fact that when a scene is sérved from two di®erent viewpoints, the

depth of a point is approximately proportional to the di®erence of position between its projections

in both views. The proportionality coexcient is actually th e tangent of the angle between the
views, also calledb=h Usually, the b=hratios used in stereo are equal to 1 or have this order of
magnitude. Indeed, it is always assumed that the angle betwen the views has to be large to yield a
good depth reconstruction. However, the ditculties of the matching process increase rapidly with

the b=hfactor.

In this paper, the di®erence between the images of the pair vgaassumed to be purely geomet-
rical, up to a proportionnality coezcient variating slowly in space. This hypothesis is sound in
small baseline stereovision. An analytic study of the corr&ation process shows that it is possible to
predict where the matching results can be reliable and whichrange ofb=hvalues can yield optimal
results. In this range, the precision obtained by correlaton matching is independent ofb=h This
conclusion supports the idea that among these acceptable ghes, the smallest ones, which generate
fewer occlusions and much more similar images, both from thgeometrical and radiometric view-
points, are preferable. These results have given rise to a nftirscale correlation algorithm, tested
on simulated and real aerial pairs. Such pairs will be availale in the next satellite generation.

Acknowledgement The multi-scale algorithm, called MARC (Multiresolution al gorithm for re-
“ned correlation), has been coded by Nathalie Camlong ([2])and Vincent Muron ([11]). It is a part
of the CNES patent [8]. Many thanks to Jean-Michel Morel and Andrgs Almansa for their con-
stant help, to Vincent Muron and Nathalie Camlong for the realisation of the multi-scale algorithm
MARC. This work has been partially nanced by the Centre Nati onal d'Etudes Spatiales (CNES),
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Figure 6: First line: pair of 512£ 512 aerial images of Toulouse with a resolution of 25cm. The
second image is simulated using the rst one and the ground dth with a b=hratio of 0:045. Second
line: ground truth of the pair and result of the MARC algorithm. Third line : corresponding 3D
projections. 19



Figure 7: Left: 3D projection of the Toulouse pair ground truth ; Middle: 3D projection of the
MARC result ; Right: result of the Graph-Cuts algorithm presented by Kolmogorow et al. in [10]
with a smoothness factor, =5 (the software used here is kindly provided by V.Kolmogorov orts

web page www.adastral.ucl.ac.uky vladkolm/software.html).

Figure 8: First and second columns: twol000£ 1000 excerpts of a real pair of aerial images of
Marseille with a resolution of 50cm and ab=h ratio of 0.04. Third column: the corresponding

MARC results.
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5 Appendix
Proof of Proposition 2
We have
W (m) = <¢emube> o <gimUie>e, <emUWimu>e 31)
0 kemuk: ke, Kém UKB,ketk: '
Thus,
() = <emUu> 0 <emubu> < omUiamu®>e
° kemuk: , kerke, ! kemUK? Ktk
< ouH>: <oUus U00>‘ <o uH>: < ; uO. U0>'
. omy, X0 ¢mUY, dm XQ . <m\4y, XQ om y dm X0
| |
Kém ukSXOkukv ‘o kanuk?’XOkbrk- ‘o
<émUit> < émU;ému®>?

0.
*3 Kémuk®, Ketk: '

But at m = m(Xgp), 1Qo(m) =0, consequently

; 00 s 2 s o) . .. 0
<emuie > kimUke, < gmUn > < émUiémUt>
kémuk? | Kok,

A(m) =

<émUier>r, <émUamU®% o+ <emuier>e o kamuke
i ——= :
K¢ém uk xokuk- Yo
Replacing u-by its rst order approximation ¢mx,) U, it nally gives
<¢ U émxo)U0>?, K émxo)UK?, Kém(xg) UK, :
YB(m(xg)) R I e SOt = <df*0" 1>, ¢ (32)

kc‘»{n(XO) Uk'4>(0

Proof of Proposition 4
The proof is similar to the one of Proposition 3. Indeed,

—_ . 2 . Q. — . . . Q. .
4,(m=0 0 Kk amUK?, < emUSE> =S<imUib > <emUGimU>,
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Let us de ne the function

kmuk?xogmuo(x) i émU(X) < émU; ému®>

wh(x) = k("muk.zXO < émUl ¢mud>. ol < (',mU;é,mU0>'2XO : (33)
The function w™ clearly satis es
<w™iimu>., =0; <Wm;anu°>-X0:1; and (34)
kwmk? = 1 : (35)
o kemuk?, <dggh1>
Now, the equation 1/20(m) =0 can be rewritten
<w™u(x+"(x) >, +<wmigy>, =0: (36)
The “rst order expansion of this equality gives
<W™gmu (") i M)emu®>, + <wMigy> O 37)
Thus <d)°'(fg“;"(x)>-x
| <d§%’g“;1>-x00+<wm;gb>'xo; (38)
The second term can be bounded from above thanks to Schwarz éguality (footnote (7)),
cwmig>e kgok: ,, ¢ (39)

. I imU.
kémuk . <dgg ;1>

If this quantity is small enough in comparison with the desired precision onm, equation (7) holds.
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