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Abstract

This paper presents a study of small baseline stereovision. It is generally admitted that
because of the ¯nite resolution of images, getting a good precision in depth fromstereovision
demands a large angle between the views. In this paper, we show that under simple and
feasible hypotheses, small baseline stereovision can be rehabilitated and evenfavoured. The main
hypothesis is that the images should be band limited, in order to achieve sub-pixel precisions
in the matching process. This assumption is not satis¯ed for common stereo pairs. Yet, this
becomes realistic for recent spatial or aerian acquisition devices. In this context, block-matching
methods, which had become somewhat obsolete for large baseline stereovision, regain their
relevance. A multi-scale algorithm dedicated to small baseline stereovision is described along
with experiments on small angle stereo pairs at the end of the paper.

Keywords: Stereo, Discrete correlation, Shannon sampling, Digital Elevation Model (DEM), Numerical
Elevation Model (NEM).

1 Introduction

Stereopsis is the process of reconstructing depth from two images of the same scene. This relies
on the following fact: if two images of a scene are acquired1 from di®erent angles, the depth of
the scene creates a geometric disparity between them. If theacquisition system is calibrated, the
knowledge of this disparity function " allows one to determine the digital elevation model (DEM)
of the observed scene. In this paper, we focus mainly on matching stereo pairs of satellite or aerial
images, that have been recti¯ed to epipolar geometry (see [7]). If the altitude of the cameras is high
enough for the parallel projection model to be accurate," and the depth function z are linked at a
¯rst approximation by the relation z = "

b=h, whereb=his a stereoscopic coe±cient2, only dependent
on the acquisition conditions. This coe±cient roughly represents the tangent of the angle between
the views (see Figure 1). The precisiondz of the depth measurement is consequently linked to the
precision d" of the disparity measurement by

dz =
d"
b=h

: (1)

1For example, in the satellite case, images are acquired by CCD retina matrices.
2This coe±cient is the ratio between the baseline b (i .e. the distance between the camera centers) and the distance

h between the scene and the camera system. In reality,b=h changes slowly in space.
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Figure 1: Stereopsis principle. O1 and O2 are the centers of the cameras. The projections of the
ground points M and N in the ¯rst image are M 1 and N1, and M 2 and N2 in the second one.
We see that the position ofM 1 in the ¯rst image is not the same as the position ofM 2 in the
second image. Let us denote with¢ M the shift between these positions (resp.¢ N for N ). The
di®erence of shifts¢ M ¡ ¢ N is proportional to the disparity ¢ " (the proportionality coe±cient is
actually the image resolution) and¢ " itself is roughly proportional to the depth di®erence¢ z (the
proportionality coe±cient is b=h).

It follows that for a given accuracy d" of the disparity measurement, the larger the coe±cient b
h ,

the smaller the depth error. It is commonly admitted that d" does not depend onb=h, but only on
the image resolution. For this reason, high stereoscopic coe±cients have always been preferred in
stereoscopy (typically, b

h = 1, which corresponds to an angle of approximately 53o). However, a large
coe±cient also means more changes between the images (more di®erent hidden surfaces, di®erences
in radiometry, larger geometrical deformations, moving objects, etc...), hence more di±culties in
the matching process. This is especially true in the case of urban images, where buildings create
a large amount of occluded areas, which change fast with the observation angle. Hence, a smaller
angle between the views should naturally yield a more accurate disparity measurement. The choice
of the coe±cient b=h should result from a compromise between these e®ects.

The objective of this paper is a mathematical study of small baseline stereovision. The e±ciency
of the human visual system clearly supports the use of small angles. Yet, this kind of stereovision
makes sense only under speci¯c acquisition conditions and with speci¯c matching methods. First,
the acquisition device needs to be perfectly known and calibrated. In addition, and this hypothesis
is essential, the images sampling must be controlled. Most stereo correspondence algorithms only
compute integer disparities. This may be completely adequate for a variety of applications but is
clearly insu±cient for small baseline stereovision. Indeed, when both views are separated by a very
small angle, the disparities observed on the images can be quite small in comparison with the pixel
size. A matching method of pixelian precision is unable to ¯nd any interesting depth information in
such a case3. Hence, small baseline stereovision requires matching methods speci¯c for subpixelian
disparities. We have mentioned that the depth precisiondz is linked to the disparity precision d"
by the relation dz = d"

b=h. Matching two frames with a small b=h coe±cient makes sense only if
the precision loss due to the angle is compensated by a betteraccuracy on" . Now, for subpixelian

3For instance, if b=h= 0 :04 and if the image resolution is 50cm, the best elevation accuracy of a matching method
of pixelian precision is 0:5=0:04 = 12:5m.
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precision to be achieved, the images of the pair have to be interpolated perfectly. For this reason,
they must be well sampled according to Shannon [15] theory4. These conditions (small baseline
and well sampling) are generally not satis¯ed by benchmark stereo pairs. Yet, these assumptions
are becoming valid with recent satellite acquisition systems.

The strategies used over the years to resolve the matching problem between both images can
be roughly divided in local and global methods. Local approaches compute the disparity of a given
element by observing only its close neighborhood. Among these methods, area-based (also called
"block-matching") approaches estimate the disparity at x by comparing a patch around x in the
¯rst frame with similar patches in the second frame, for a given metric or \matching cost". The
most standard cost, the normalized cross correlation [6], is merely a scalar product between nor-
malized image patches. Block-matching methods can produce dense subpixel maps, but are hardly
reliable in non-textured regions and su®er from adhesion artifacts [5]. However, these methods
remain very popular, especially in the industrial community. In contrast, global approaches solve
optimization problems on the entire disparity map ", by making global smoothness assumptions.
They involve sophisticated energy minimization methods [1], dynamic programming [12, 4], belief
propagation [17], or graph-cuts [10]. These methods show very good performance for standard large
baseline stereovision and common stereo pairs (see [14] foran instructive and documented com-
parison of stereo algorithms). However, they remain computationally too expansive to be applied
with subpixel accuracy. In addition, graph-cuts based methods produce strong staircasing artifacts
whenever the depth is not piecewise constant, like in the case of urban areas with pitched roofs.

Our focus here is to study the feasibility of small angle stereovision. Hence, for the sake of
simplicity, we'll concentrate on the most traditional loca l matching cost, namely the normalized
cross correlation. Correlation matching being both locally and analytically formulated, it allows
one to estimate at each point the matching error. Once this feasibility is demonstrated, this will
open the way to the use of more sophisticated global methods.The central result of next section
is a mathematical formulation of the correlation matching error. We show that this error can be
divided in two terms. One is due to the noise and is divided by the b=h coe±cient, and the other
one is inherent to the method andindependent of b=h. In other words, the ¯rst part of the error
is smaller with large stereoscopic angles, but the second part is independent of the angle. Since
small baseline generates less occlusions and much more similar images, this independence result
gives strong support to small baseline stereovision. To thebest of our knowledge, this fact, obvious
in animal and human vision, was never pointed out. The comparison of these two terms indicates
that in non homogeneus, informative image regions, the noise term can be neglected before the
other even for very small baselines. Several questions linked to correlation will be addressed under
this new perspective, in particular the question of the sizeof the window used in block-matching
methods and the discrete formulation and interpolation of the correlation coe±cient. A multi-scale
algorithm based on these results and dedicated to small baseline stereovision will be described.

4Shannon sampling theory shows that well sampled images can be completely recovered from their samples, hence
interpolated with in¯nite precision.
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2 Analytic Study - Continuous Case

2.1 Notations, model and hypotheses

Let us denote with u and ~u the images of the stereoscopic pair. One assumes without loss of
generality that the images are 2¼£ 2¼ periodic and known on [¡ ¼; ¼] £ [¡ ¼; ¼]. Only discrete
versions of u and ~u are available. Thus, in what follows, the imagesu and ~u are supposed to
be band limited. According to Shannon sampling theory [15],this implies that the continuous
functions u and ~u can be reconstructed from their samples, provided that the sampling rate is
high enough5. The images are supposed to be well sampled, on a regular 2N £ 2N grid 6. Under
these hypotheses, it becomes easy to show thatu (respectively ~u) can be written as a trigonometric
polynomial

u(x; y) =
N ¡ 1X

n= ¡ N

N ¡ 1X

m= ¡ N

û(m; n)ei (nx + my ) ; (2)

where the coe±cientsû(m; n) represent the discrete Fourier transform (DFT) of the discrete version
of u (û can be obtained by FFT). Under these simple and realistic hypotheses, the discrete images
u and ~u can be interpreted as continuous periodic functions. As trigonometric polynomials, they
are smooth, bounded, and so are all their derivatives.

Suppose thatu and ~u satisfy the classical model

~u(x) = ¸ (x)u(x + "(x)) ; (3)

where ¸ variates slowly in space and where the disparity function" describes the geometrical
deformation betweenu and ~u. The function " is assumed to be bounded.

This model is of course false if the angle between the snapshots is too large (see Figure 2), but
is quite reasonable ifb=h is small. Indeed, the model assumes that the di®erences betweenu and
~u are purely geometrical, up to a multiplicative function ¸ with slow spatial variations, and that
almost no occlusion or radiometric change occurs. Ultimately, the model is more and more accurate
when b=h becomes small. Human eyes [13] almost satisfy these hypotheses.

Normalized Cross Correlation
Consider a smooth, positive, normalized and compactly supported window function ' . We shall

use the following notations:

² ' x0 the shifted function ' x0 : x ! ' (x0 ¡ x),

²
R

' x 0
f =

R
' x 0

f (x)dx =
R

' (x0 ¡ x)f (x)dx for every integrable function f ,

5More precisely, in one dimension, the Shannon-Whittaker theorem te lls us that if f̂ is supported in [¡ ¼=A; ¼=A],
then

f (t) =
1X

n = ¡1

f (nA )
sin(¼(t ¡ nA )=A)

¼(t ¡ nA )=A
:

6This hypothesis is not satis¯ed in any real acquisition system, but b ecomes valid for instance in the case of
SPOT5 satellites (two linear CCD arrays allow to create a quincunx grid adapted to the modulation transfer function
spectrum [3]).
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Figure 2: Di®erences of occlusion zones in function ofb=h. Occlusions in the left image of the stereo
pair are signaled by horizontal lines, occlusions in the right image of the stereo pair are signaled by
slanted lines. We observe that with a largeb=h, the occlusion di®erences are much more critical
than with a small coe±cient. This is especially true in urban zones, where the depth can change
very fast.

² k f k' x 0
the weighted norm

q R
' x0 (x)f 2(x)dx for every square integrable functionf ,

² < :; : > ' x 0
the corresponding scalar product< f; g > ' x 0

=
R

' x0 (x)f (x)g(x)dx (the e®ective
way to compute correctly discrete scalar products and normswill be discussed in the last
section).

We also note¿m u the shifted image x ! u(x + m). For each point x0 of ~u, the normalized cross
correlation computes the disparity m(x0) between u and ~u at x0 by maximizing a local similarity
coe±cient between the images:

m(x0) = arg max
m

½x0 (m); where (4)

½x0 (m) =
< ¿m u; ~u > ' x 0

k¿m uk' x 0
k~uk' x 0

: (5)

This function ½x0 is called the correlation product at x0 and ' is called the correlation window.
The value ½x0 (m) measures the similarity between the neighborhood ofx0 in the image ~u and the
neighborhood ofx0 + m in the image u. Schwarz inequality 7 ensures that ½x0 is always between
¡ 1 and 1. It is not ensured, though, that the shift m(x0) at which ½x0 is maximum is exactly equal
to the real disparity " (x0) at x0. The relation between the functions m and " is the heart of the
next section. In the following, we set¸ = 1 in model (3) since its slow variations hardly alter the
correlation coe±cient.

Traditionally, most authors consider a centered correlation coe±cient, which means thatu (resp.
~u) becomesu ¡

R
' x 0

u (resp. ~u ¡
R

' x 0
~u) around x0. The results of the following sections can be

easily generalized to this case, but one will see in paragraph 2.4.1 why this choice is not always
judicious.

7Schwarz inequality tells us that for any square-integrable functions f anf g, one has

¯
¯
¯
¯

Z
f (x)g(x)dx

¯
¯
¯
¯ ·

s Z
jf (x)j2dx :

Z
jg(x)j2dx:
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2.2 Analytic formulation of the correlation. Case without n oise.

In all the following, one makes the classical assumption that the images have been recti¯ed to
epipolar geometry: the search for corresponding points canbe reduced to one dimension. Hence,
all the derivatives used (and written as 1-D derivatives) must be understood \along the direction"
of these epipolar lines.

De¯nition 1 The following function is called correlation density of u at x0

du
x0

: x ¡!
kuk2

' x 0
u02(x)¡ < u; u 0 > ' x 0

u(x)u0(x)

kuk4
' x 0

: (6)

The function du
x0

only depends on the imageu, the window ' and the correlation point x0. We
will see why this function indicates where the correlation is sensible and can be accurate. The
next proposition formulates the relation between the measured disparity m(x0) at x0 and the real
disparity function " .

Central equation of correlation.

Proposition 1 Assume that the disparity function " and the shift m(x0) which maximizes ½x0

satisfy j" (x) ¡ m(x0)j ¿ 1 on the support of ' x0 . Then m(x0) is linked to " by the ¯rst order
approximation

< d
¿m ( x 0 ) u
x0 ; m(x0) > ' x 0

' < d
¿m ( x 0 ) u
x0 ; " > ' x 0

: (7)

Proof : The ¯rst derivative of ½x0 is

½0
x0

(m) =
< ¿m u0; ~u > ' x 0

k¿m uk' x 0
k~uk' x 0

¡
< ¿m u; ~u > ' x 0

< ¿m u0; ¿m u > ' x 0

k¿m uk3
' x 0

k~uk' x 0

: (8)

Consequently,

½0
x0

(m) = 0 , k ¿m uk2
' x 0

< ¿m u0; ~u > ' x 0
= < ¿m u; ~u > ' x 0

< ¿m u0; ¿m u > ' x 0
: (9)

Now, let m(x0) be the shift which maximizes½x0 , then ½0
x0

(m(x0)) = 0. Under the assumption that
j" ¡ m(x0)j is small enough, a ¯rst order approximation gives

~u(x) = u(x + "(x)) ' u(x + m(x0)) + u0(x + m(x0))( " (x) ¡ m(x0)) :

Thus, the ¯rst order development of the equality ½0
x0

(m(x0)) = 0 gives

k¿m(x0 )uk2
' x 0

< ¿m(x0 )u
02; " ¡ m(x0) > ' x 0

' (10)

< ¿m(x0 )u; ¿m(x0 )u0 > ' x 0
< ¿m(x0 )u ¿m(x0 )u

0; " ¡ m(x0) > ' x 0
; (11)

which can be rewritten

< d
¿m ( x 0 ) u
x0 ; m(x0) > ' x 0

' < d
¿m ( x 0 ) u
x0 ; " > ' x 0

: (12)
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We will call equation (7) the central equation of correlation . For a given image u, this
equation clari¯es the relation between the disparity function " and the shift m(x0) measured by
correlation at x0 between u and ~u when j" (x) ¡ m(x0)j is small enough in the neighborhood of
x0. This hypothesis means that the variations of" are small on the window' x0 and that the shift
m(x0) is a close approximation of the values of" on this window. Of course, this hypothesis is all
the more true sinceb=h is small.

Interpretation of Proposition 1: This equation shows that" is linked with m via a deconvo-
lution relation. If " is constant on the support of' x0 , i.e. on x0 + supp(' ), the equation becomes
m(x0) = " (x0), which means that the shift computed by correlation is equalto the local shift between
the views. Now, if " is not constant on the support of ' x0 , (7) shows that the values"(x) that
matter the most in the measurementm(x0) are taken at points x at which d

¿m ( x 0 ) u
x0 (x) is large.

This property can be interpreted as anadhesion phenomena, as we will see in the consequences
section. In zones whereu and ~u are °at (constant), the correlation density is null, which m eans
that no reliable relation between m and " can be recovered from (7). This con¯rms the intuition
that correlation needs texture information in order to succeed.

Second derivative.
Equation (7) characterizes the point m(x0) at which ½x0 is maximum. Now, it is interesting to look
more closely at½00

x0
in the neighbourhood of m(x0) in order to get an idea of the behaviour of½x0

around its maximum.

Proposition 2 (See Appendix for the proof) Under the hypotheses of Proposition 1, the ¯rst order
development of½00

x0
at m(x0) is

½00
x0

(m(x0)) ' ¡ < d
¿m ( x 0 ) u
x0 ; 1 > ' x 0

: (13)

As expected, this approximation satis¯es½00
x0

(m(x0)) · 0 (see footnote 7 on Schwarz inequality),
which is coherent with the fact that ½x0 (m(x0)) is maximum. It is interesting to note that this
equation can also be approximated by

½00
x0

(m(x0)) ' ¡ < d ~u
x0

; 1 > ' x 0
: (14)

This approximation, that we will call correlation curvature , just relies on the knowledge of ~u,
independently of " . This expression gives ana priori information about the locations where the
maximum can be accurate. The larger the absolute second derivative is, the sharper the maximum
is, and the more precisely localized it can be. We will see in the next section the importance of
this quantity when noise is added to the images.

Weighted L 2-distance.
Instead of maximizing the correlation coe±cient, we can try to minimize the L 2-distance

m ! ex0 (m) = ku(x + m) ¡ ~u(x)k' x 0
: (15)
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This minimization can work as soon as the images radiometries are close enough, which is all the
more true sinceb=h is small. In this case, the analytic link betweenm(x0) and " becomes

< ¿m(x0 )u
02; m(x0) > ' x 0

' < ¿m(x0 )u
02; " > ' x 0

: (16)

This equation is similar to the correlation one, except that the function du
x0

is replaced byu02=kuk2
' x 0

.

2.3 Case with noise

We suppose here that white Gaussian noises8 are added to the images of the pair. The noisy
images are denoted withu and ~u. In order to regularize the problem, a convolution with a small
and smooth normalized function g (a prolate or a Gaussian) is applied to both images. For the
sake of simplicity, we will still denote the regularized images with u and ~u. The model becomes

~u(x) = u(x + "(x)) + gb(x); (17)

where we denote withgb the convolution g ¤b between a Gaussian noiseb of standard deviation ¾b

and the function g.

2.3.1 Central and morphological equations

Before studying the in°uence of noise on the correlation process, let us start with a more simple
case.

Weighted L 2-distance .
Assume that we try to minimize the weighted L 2-distance m ! ex0 (m) = ku(x + m) ¡ ~u(x)k' x 0

.
As we have seen, it makes sense as soon asu and ~u are radiometrically similar enough, i.e. as soon
as b=h is small enough.

Proposition 3 Assume thatu and ~u satisfy relation (17), that " and the location m(x0) at which
ex0 is minimal satisfy j" ¡ m(x0)j ¿ 1 on the support of' x0 and that the noise satis¯es the relation

kgbk' x 0
k¿m ( x 0 ) u0k' x 0

¿ 1 . Then, equation (16) holds.

Proof : If m(x0) is the location at which ex0 is minimal, then e0
x0

(m(x0)) = 0, i.e.

< ¿m(x0 )u
0; ~u > ' x 0

¡ < ¿m(x0 )u
0; ¿m(x0 )u > ' x 0

= 0 : (18)

If jm(x0) ¡ " j is small enough on the support of' x0 , a ¯rst order expansion of ~u gives

~u(x) ¡ ¿m(x0 )u(x) ' (" (x) ¡ m(x0))¿m(x0 )u
0+ gb(x): (19)

It follows that

m(x0) '
< ¿m(x0 )u02; " > ' x 0

k¿m(x0 )u0k2
' x 0

+
< ¿m(x0 )u0; gb > ' x 0

k¿m(x0 )u0k2
' x 0

: (20)

8For a sake of simplicity, the formulations are continuous. In the discr ete case the noise is supposed to be a
Shannon white noise (see [16]).
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Schwarz inequality (footnote 7) tells us that the second term is smaller than
kgbk' x 0

k¿m ( x 0 ) u0k' x 0
. If this

quantity, due to the noise, is smaller than the desired precision on the measurem(x0), equation (16)
holds.

2
The previous proof tells us that m(x0) and " are linked in ¯rst approximation by relation (20).

The computation of the value m(x0) is distorted by a noise term. Now, kgbk' x 0
can be estimated

by its expectation

E(kgbk2
' x 0

) = E

ÃZ

' x 0

µ Z
g(x ¡ t)b(t)dt

¶ 2

dx

!

=
Z

' x0 (x)kgk2
L 2 ¾2

bdx = kgk2
L 2 ¾2

b: (21)

Thus, kgbk' x 0
=k¿m(x0 )u0k' x 0

can be approximated by¾bkgkL 2 =k~u0k' x 0
, which just depends on¾b,

kgbk and ~u. This term is an approximation of the error made in the estimation of m(x0). As a
consequence, equation (16) is seen as valid if this additiveterm can be neglected in comparison
with the desired precision on the measurementm(x0).

Order of magnitude: if we take ¾b ' 1, k~u0k' x 0
' 10 and kgkL 2 ' 0:5 (which is the case if

g is a 2-D Gaussian of standard deviation¾= 0 :56), then ¾bkgkL 2 =k~u0k' x 0
' 0:05. In this case,

equation (20) tells us that we cannot hope a better precisionon m(x0) than 0:05 pixels. We can
also remark that the lower the slope of ~u is, the more g has to be spread in order to neglect this
additive term. This con¯rms the property that the more const ant the image, the more in°uent the
noise.

Correlation .
The generalization of the previous proposition to the correlation case is obvious if we remark that
the role played by the function j~u0j2 is now played by the density function k~uk2

' x 0
d~u

x0
. Let us make

things a little more precise.

Proposition 4 Assume thatu and ~u satisfy relation (17), that " and the location m(x0) at which
½x0 is maximal satisfy j" ¡ m(x0)j ¿ 1 on the support of ' x0 and that

kgbk' x 0

k¿m uk' x 0

¡
< d ¿m u

x0 ; 1 > ' x 0

¢1=2
¿ 1: (22)

Then, equation (7) holds.

Proof : See proof in appendix. 2
Again, the computation of m(x0) is distorted by a noise term. In practice, the error due to the

noise in the computation of m(x0) can be approximated by

N (~u; g; ¾b; '; x 0) :=
¾bkgkL 2

k~uk' x 0

q
< d ~u

x0
; 1 > ' x 0

: (23)

This approximation of the additive \bias" indicates where t he correlation makes sense, where it
can be accurate, and allows one to decide which window size should be used at these locations.
One can recognize the correlation curvature (de¯ned in (14)) in the denominator of this term. This
curvature plays the same role ask~u0k' x 0

in the L 2 case. For a given amount of noise, the larger the
correlation curvature in (23), the smaller the error induced by the noise bias atx0.
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2.4 Consequences of the central equation.

2.4.1 Matching costs and reliability

The previous results point out the link between the form of the matching cost and the reliability
of the disparity measured by block-matching methods. If the matching cost is reduced to a local
weighted L 2-distance, relations (16) and (20) underline the importanceof the image derivatives in
the matching reliability. It con¯rms the idea that block-mat ching needs contrast in order to make
sense.

In the case of the normalized cross correlation, the image derivatives are replaced in the equa-
tions by the correlation density d~u

x0
(de¯ned in (6)). The values of d~u

x0
not only depend on ~u, but

also on the local geometry of the pair (~u; ~u0) in the neighborhood of the point x0: the more ~u and
~u0 are orthogonal for the scalar product<; > ' x 0

, the larger d~u
x0

. This is not easy to interpret. For
that reason, the results obtained by correlation can be considered as somewhat less reliable than
those of L 2-minimization. The weaker the constraint of similarity betw een the images is, the less
reliable the results will be when the images are only geometrically shifted. This conclusion also
applies to the question of the centering of the correlation coe±cient.

2.4.2 Optimal matching window.

Assume that the noise standard deviation of the image is known (it can be deduced from the
knowledge of the acquisition system). The images being given, we want to restrict ourselves to
points x0 at which (23) is small. In this prospect, the size of the correlation window ' can be
chosen at each point in order to minimize the term (23). At the same time, this size must be as
small as possible if we want the measurementm(x0) to be a good approximation of " (x0). If all
the windows used are of the forms' (sx) where ' is a given function (a Gaussian or a prolate
spheroidal function, for instance), s can be chosen atx0, when it is possible, as the smallest sizes
such that

N (~u; g; ¾b; ' s; x0) < ®; (24)

where ® is the desired precision on the measurementm(x0) and N the function de¯ned in (23).
Points where this inequality can be achieved for a given sizes are calledvalid points . These points
are those at which the results of the correlation can be considered as reliable. We can expect the
chosen size to be small at points of information (near edges)and larger in °at zones.

2.4.3 Adhesion e®ect reduction

Adhesion is a well-known artefact of block-matching methods.This artefact appears in the neigh-
bourhood of depth discontinuity, especially when this discontinuity is strengthened by a grey level
discontinuity. It results in a dilatation of the upper-groun ds in the disparity map. It can be illus-
trated by the following example (see Figure 3 (a)): a textured building lies on a textured ground, in
such a way that a part of the ground is occluded by the buildingin the left frame. One assumes that
the grey level di®erence between the ground and the buildingis larger than the intensity variations
in the textured areas. Let Q be a point whose distance to the building is less than half of the
matching window. If we look in the right image for the best correspondent for Q, a block-matching
method will probably choose P, which means that the disparity accorded to Q will be the same as
the one of the building. As a consequence, the reconstructedbuilding will be dilated by the size of
a half window.
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P Q

PQ Q

left image right image

rightleft

(a) The point Q of the left image is matched with the point P of the right im age. Thus, the disparity assigned
to Q is the same as the disparity of the building. As a consequence, the reconstructed building is larger than
the real one.

(b) On the left: synthetic stereo pair, the dark part of the images cor responds to the "upper-ground". This
part is shifted to the left in the second image. As a consequence, a small central strip of the ground appears in
the second image and is occluded in the ¯rst one. Top right: disparity m easured by correlation. The adhesion
around the edge is clear, the reconstructed "upper-ground" is dilated by a half-window. Bottom right: same
disparity after a barycentric correction. The gray points are those wh ere no information remains.

Figure 3: Adhesion phenomenon.
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Equation (7) gives a very simple analytic explanation to the adhesion artifact. Indeed, assume
that the density function d

¿m ( x 0 ) u
x0 at x0 is in reality concentrated around a point x1, such that

d
¿m ( x 0 ) u
x0 can be well approximated by the delta function ±x1 , then equation (7) yields

"(x1) ' m(x0): (25)

This means that the shift measured by correlation at x0 is in reality the disparity of the point
x1. In two dimensions, if the neighbourhood of x0 is composed of °at zones on both sides of
an edge, the shift measured atx0 is an average of the real disparities on the edge. This fact
has no e®ect if the elevation has no variations over the window ' x0 , but it obviously produces
adhesion if the grey level edge coincides with an elevation discontinuity. This con¯rms the previous
intuitive explanation of adhesion, and explains the dilatation of the upper-ground which can be
often observed in numerical elevation models (NEM). This drawback is inherent to any block-
matching process, but is particularly strong in the correlation case [5]: theL 2 similarity measure
favours naturally points at which information is located, i.e. near the edges or in textured areas.

The explanation of this phenomena allows one to propose a practical correction: instead of
assigning the measurementm(x0) to x0, it can be assigned to the pointG(x0) which is the most
likely to have the disparity m(x0). This point G(x0) is computed as the barycenter of all the points
of the correlation window, weighted by the values of the density function,

G(x0) =
< d ~u

x0
; M > ' x 0

< d ~u
x0

; 1 > ' x 0

; (26)

where M (x) covers all the physical points of the support of ' x0 and where d~u
x0

is used as an
approximation of the density d

¿m ( x 0 ) u
x0 . In the case considered previously (when the density is

concentrated at x1), it gives G(x0) = M (x1) and the shift measured at x0 is correctly attributed
to x1. This procedure, called barycentric correction , is illustrated in a very simple case in
Figures 3 (b). This correction shifts the disparities to informative points. As a consequence, some
points loose their disparity, but the disparities so assigned are much more reliable.

2.4.4 On the link between baseline and precision

Let us denote byzreal the real depth function, and with zmeas the depth recovered by the correlation
process. We have seen thatzreal and the disparity function " are linked by the relation zreal = "

b=h.
According to this, the equation (7) can be rewritten as

zmeas(x0) =
m(x0)

b=h
'

< z real ; d
¿m ( x 0 ) u
x0 > ' x 0

< 1; d
¿m ( x 0 ) u
x0 > ' x 0

'
< z real ; d~u

x0
> ' x 0

< 1; d~u
x0

> ' x 0

: (27)

It follows that in the absence of noise, the accuracy of the measured depth does not depend on the
angle between the views (hence on theb=hvalue). The only error encountered in this measurement
is due to the bad estimation of the disparity by the correlation process and can be written

E1(x0) :=

¯
¯
¯
¯
¯
zreal (x0) ¡

< z real ; d~u
x0

> ' x 0

< 1; d~u
x0

> ' x 0

¯
¯
¯
¯
¯
: (28)

This ideal case clearly advocates for weakb=h, which reduce all the matching di±culties encountered
with high stereoscopic coe±cients.
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In the real world (where images are altered with additive noise), if the angleb=h decreases too
much, the results lose precision. Indeed, in the previous relation, a term due to the noise is added,
and divided by b=h. Proposition 4 shows that this term can be approximated by

E2(x0; b=h) :=
¾bkgkL 2

b=hk~uk' x 0

q
< 1; d~u

x0
> ' x 0

: (29)

Two errors appear in the estimation of zreal : the error E1, inherent to the block-matching process
and the error due to the noise, bounded byE2. Only the second one depends on the valueb=h.

Proposition 5 Let x0 be a point of u, and b0=h0 an angle which satis¯es the relationE1(x0) >>
E2(x0; b0=h0). Then, as long asb=h¸ b0=h0, the precision of the depth measured by correlation at
x0 is independent of the value ofb=h.

Following this proposition, it is absurd to increase the angle b=h while E1 >> E 2. The value
of E1 clearly depends of the variations of the functionzreal . If these variations are large on the
support of ' , E1 will predominate.

Order of magnitude: we do not have access tozreal , so the comparison betweenE1 and E2

is not possible in general. However, for a ¯xed expected accuracy on zmeas, the evaluation of E2

tells us whereb=h should stand. If x0 is such that k~u0k' x 0
' 10 and if ¾bkgkL 2 ' 0:5, we see that

E2 ' 0:05
b=h . This means that for a given image resolution¸ (meters by pixel), the error due to the

noise at x0 will be less than 0:05¸
b=h meters. If the resolution of u is ¯fty centimeters by pixel, this

error in depth will be approximately ¯fty centimeters for b=h = 0 :05. This b=h value is already
very small. We will see in experiments that the \acceptable" values ofb=hfor a given precision are
much smaller than the values generally used in aerial stereocopy (where b=h' 0:8).

In a way, this idea can be linked with some aspects of human vision. Indeed, the human eyes
are very close (let say approximately 7cm). If we look at a scene located 70cm from our eyes, the
stereoscopic coe±cient is already 0:1. If the distance increases to 7m, b=h becomes 0:01. Even if
stereopsis is not the only process used by the brain for reconstructing depth, the e±ciency of the
visual system is also supporting the use of small angles ([13]).

3 Discrete formulation and experiments.

The previous analytic study tends to rehabilitate small baseline stereovision, at least theoretically.
In order to support these results, a multi-scale algorithm dedicated to small baseline stereo pairs
was developed.

This section presents the outline of this algorithm and its most signi¯cant points. The discrete
aspects of the procedure (that is to say sampling and interpolation) are described in depth because
of their decisive in°uence on the matching process. Experiments on simulated and real stereo pairs
follow.

3.1 Multi-Scale Algorithm

The central hypotheses of this study are that the deformation between the images of the stereo
pair is purely geometric, of the form ~u(x) = u(x + "(x)) with an eventual additive noise, and that
the disparity function " has small variations on the correlation window support.

13



This hypothesis on " is not true in full generality. Even for small baseline stereo pairs, the
variations of " on the correlation window can still be relatively important.

In order to make this assumption valid, the correlation procedure is embedded into a discrete
scale-space framework. The scale-space theory has already been used for stereovision, for example
by Jones and Malik [9] or by Alvarez et al. [1]. The main idea here is to replace the regularization
function g by a family (gs)s, where gs(x) = 1

sg(x=s), and to re¯ne through the scales the computa-
tion of the disparity function. At each scale s the images are sampled on an adapted grid ¦¡ s such
that the remaining disparity function at this scale is everywhere smaller than the pixel size.

The complete algorithm can be splitted in two phases: a learning phase, devoted to the compu-
tation of window sizes at every scale and every point, and a muti-scale matching phase which uses
a sequence of given scales (sk )k=1 :::n and corresponding grids (¡k )k=1 :::n , ¡ 0 being the roughest grid
and ¡ n the ¯nest one.

Learning phase

1. Compute the bound (23) for each scales, each size of window' and each point of the grid at
scales;

2. For each point x0, use this bound to determine the minimum size of the correlation window
at x0. Compute also the validity ofx0 at each scale (clearly, the larger the scale is, the larger
the number of valid points is);

3. Compute the barycentric correction (26) at each point andeach scale. This correction just
depends on the images and on the optimal window computed previously.

Multi-scale algorithm

1. Start with the roughest scales0 and let "0 = 0 and k = 0 ;

2. Compute the imageuk (x) = u(x + " k (x)) ;

3. Use a correlation algorithm to compute the disparity map~" k+1 between(gsk ¤uk ) and (gsk ¤~u)
at each valid point of ¡ k . This step requires to use the images sampled on the grid¦ ¡ k +1 (see
next section);

4. Correct ~" k+1 with the barycentric correction;

5. Let " k+1 = ~" k+1 + " k ±(Id + ~" k+1 ). The values of the function" k+1 are not known everywhere.
Interpolate it (for instance by isotropic di®usion). At thi s point, u ±(Id + " k+1 ) = uk ±(Id +
~" k+1 ) should be closer to~u than u ± (Id + " k ) was.

6. Replacek by k + 1 and repeat steps 2 to 6 until the ¯ner scale is reached.

The actual algorithm works with dyadic scales. At each scalecorresponds a sampling grid. If
the sampling grid of the ¯nest scale is ¡, the previous scale is sampled in 2¡, etc... The largest
scale, which corresponds to 2n ¡, is chosen such that 2n¡ 1 · k "k1 < 2n . This way, the real shift at
the ¯rst scale is everywhere smaller than one pixel. We assume that the correction made at each
scale is such that the shift map is always everywhere smallerthan one pixel. Note that the ¯ner
the scale is, the larger the noise is, thus the less points will be considered as valid (in proportion).
Now, all the informative points (corners, edges...) shouldremain valid through the scales if the
density information at these points is large enough to override the noise.
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3.2 Sampling and subpixelian disparities computation.

Sampling and interpolation are two critical points in stereovision. These aspects are often disre-
garded in spite of their decisive in°uence on the matching process. Subpixelian disparities can be
obtained by computing the correlation map on a grid ¯ner than the sampling grid ¡ of the images.
To this purpose, many algorithms estimate the correlation map at points of ¡ and compute a local
continuous (parabolic for instance) ¯t in order to re¯ne the disparity.

Now, as shown in [18], this direct interpolation is not adequate. The correlation coe±cient is
not well sampled on this grid and interpolating it directly m ay result in the apparition of false
maxima.

In real acquisition systems, the continuous image before sampling is of the form h ¤O where O
is the landscape andh the impulse response of the camera. LetS be the compact support of ĥ.
Then, h ¤ O is also spectrally supported onS. Let ¡ be the sampling grid and let ¦ ¡ be the Dirac
Comb

P
° 2 ¡ ±° . The sampled image isu = ( h ¤ O):¦ ¡ . If we suppose thatS is contained in a cell

R of the dual grid, the weak form of the Shannon-Whittaker theorem [15] tells us that h ¤ O can
be recovered fromu via the interpolation formula:

h ¤ O = u ¤
1

jRj
F (1R ); (30)

where F (1R ) denotes the inverse Fourier transform of the caracteristic function of the cell R.

Numerical consequence: Let N and D be respectively the numerator and denominator of the
continuous correlation coe±cient ½. N (m) = ( ' x0 ~u) ¤ u(m), thus N̂ = [' x0 ~ubu. Now, if we assume
that the window ' x0 has a spectral support included in the reciprocal cellR, the support of [' x0 ~u
is in R + R = f x + y; (x; y) 2 R2g. It follows that if the numerator N is computed in the spectral
domain, its accurate computation must be done on the grid ¡=2. This means that both images
must be oversampled at least by a factor 2 before computingN in the Fourier domain. In the same
way, the spectral support of D 2 is included in S + S. Thus, to properly reconstruct the continuous
version ofD 2, its discrete version must be computed in ¡=2. Finally, we can recover the continuous
versions ofN and D 2 thanks to their values on ¡ =2, and the continuous correlation at x is just the
division of N (x) by

p
D 2(x).

3.3 Results

A multi-scale algorithm, called MARC (Multiresolution algo rithm for re¯ned correlation) has been
tested on both simulated and real stereo pairs.

The ¯rst experiments are realized from a one meter sampled orthophoto of Marseille and a
precise numerical terrain model of the same area (see Figure4) provided by the society ISTAR.
In this experiment, the Shannon principle is satis¯ed. Indeed, the modulation transfer function of
the orthophoto is spectrally supported on the reciprocal cell of the sampling grid. From this single
image, several stereoscopic pairs are simulated with di®erent b

h values. A Gaussian white noise
of standard deviation ¾ = 1 is added to the pairs (the images are 8 bits coded). The resulting
disparity computed by the multiscale algorithm for b

h = 0 :025 is shown on Figure 4. The interest
of this academic example is the possibility to compare the method accuracy in function of the b

h
value.
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Figure 5 shows the altitude accuracy in function of b
h for three di®erent versions of the correlation

algorithm: the standard correlation with a rectangular win dow (top line), the correlation with a
prolate spheroidal window (middle line) and the multiscale algorithm presented above (bottom
line). Since the multiscale algorithm computes a validity value at each point of the grid image,
the elevation mean square error is only computed on points which remain valid at the ¯nest scale.
As expected, if b=h becomes too small (b=h < 0:01), the noise error becomes dominant and the
elevation error increases, then explodes whenb=h ! 0. If b=h becomes too large (b=h > 0:2),
the di®erences between the images become too large and the elevation precision also decreases. In
this experiment, the accuracy of the measured depth on validpoints is minimal around the value
b=h= 0 :1.

The next experiment uses a pair of 25cm aerial images of Toulouse with a b=h factor of 0:045.
This pair presents a disadvantage: the large interval of time between the shots (more than 20
minutes) results in several changes due to motion or shadow shiftings. Besides, the ground truth
of the area is known but incomplete, several depth informations are missing, in particular the wall
surrounding the prison. For these reasons, another secondary image is simulated using the ¯rst
one and the ground truth with the same b=h ratio. The new pair is shown on the ¯rst line of
Figure 6. With such a small baseline, the images are very similar, they present disparities with
values between -2 and 2 pixels. In a way, this similarity makesthe matching process easier. On the
other hand, the matching needs to be applied with subpixel accuracy, since a traditional matching
algorithm computing integer disparities would yield a depth map with only 5 levels of depth. The
second line of Figure 6 shows the ground truth and the result of the multiscale algorithm MARC
on this pair (the third line shows the corresponding 3D projections). We can observe that the
depth map computed is smoother than the ground truth. This property is the main drawback of
the previous modelization and may be the price to pay to get a good accuracy almost everywhere.
Figure 7 shows the result of the graph-cuts algorithm proposed by Kolmogorov et al. in [10] with
a smoothness parameteŗ = 5. In many global stereo algorithms, the data term naturall y favours
piecewise constant depth maps. This property has a noticeable advantage since it permits to get
precise and sharp discontinuities. Yet, in the case of smallbaseline stereovision, global optimization
is faced with two shortcomings. First, in order to get relevant elevation levels, the algorithm must
be applied with sub-pixel precision, which is computationally expensive. This can eventually be
done by oversampling images before matching (in the exampleof Figure 7, both images have been
oversampled by a factor 2, which yields a resulting map with 7depth levels). However, this also
increases greatly the computing time. Secondly, in the caseof urban areas, which present slanted
surfaces, this kind of algorithm produces severe staircasee®ects. Now, global optimization yields
all the same a very good ¯rst estimation of the elevation map and its application to small baseline
stereovision should be further studied.

Figure 8 shows the results of MARC on two excerpts of a real aerial pair of images of Marseille.
The images have been taken with less than a minute of di®erence, with a 50cm resolution and ab=h
ratio of 0.04. The ground truth of the area is unknown. This case is particularly di±cult. Indeed,
a 10m elevation di®erence (which is large, even for urban areas) corresponds in these images to a
40cm ground disparity, which is smaller than the pixel size. The results obtained on these images
are visually good, apart from a few zones of motion: several cars or buses have moved in the interval
of time and result in isolated peaks in the elevation map.
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Figure 4: First line: one meter sampling photo of Marseille and numerical terrain model of the
same area, provided by ISTAR. Several stereoscopic pairs aresimulated from these two images for
di®erent b=h ratios. Second line: Results of the multiscale algorithm onthe pair simulated with
b=h= 0 :025. The left image shows the size of the window used at each point. The lighter the point
is, the larger the window used by the algorithm was. The blackpoints correspond to the zones where
the correlation process is considered as not reliable. At these points, the disparity map is completed
by isotropic di®usion. The right image shows the resulting disparity map computed by MARC.
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Figure 5: Mean square error in elevation in function of the b
h ratio for the experiment of Figure 4.

The top line correspond to the results of the standard correlation algorithm, the middle line to the
results obtained with a prolate spheroidal window and the bottom line to the multiscale algorithm.
We observe that the simple use of the prolate spheroidal window in the standard correlation algo-
rithm improves the results. The multiscale algorithm MARC improves the precision by a factor
2.

4 Conclusion

Stereoscopic vision relies on the fact that when a scene is observed from two di®erent viewpoints, the
depth of a point is approximately proportional to the di®erence of position between its projections
in both views. The proportionality coe±cient is actually th e tangent of the angle between the
views, also calledb=h. Usually, the b=h ratios used in stereo are equal to 1 or have this order of
magnitude. Indeed, it is always assumed that the angle between the views has to be large to yield a
good depth reconstruction. However, the di±culties of the matching process increase rapidly with
the b=h factor.

In this paper, the di®erence between the images of the pair was assumed to be purely geomet-
rical, up to a proportionnality coe±cient variating slowly in space. This hypothesis is sound in
small baseline stereovision. An analytic study of the correlation process shows that it is possible to
predict where the matching results can be reliable and whichrange ofb=hvalues can yield optimal
results. In this range, the precision obtained by correlation matching is independent ofb=h. This
conclusion supports the idea that among these acceptable angles, the smallest ones, which generate
fewer occlusions and much more similar images, both from thegeometrical and radiometric view-
points, are preferable. These results have given rise to a multi-scale correlation algorithm, tested
on simulated and real aerial pairs. Such pairs will be available in the next satellite generation.

Acknowledgement The multi-scale algorithm, called MARC (Multiresolution al gorithm for re-
¯ned correlation), has been coded by Nathalie Camlong ([2])and Vincent Muron ([11]). It is a part
of the CNES patent [8]. Many thanks to Jean-Michel Morel and Andrµes Almansa for their con-
stant help, to Vincent Muron and Nathalie Camlong for the realisation of the multi-scale algorithm
MARC. This work has been partially ¯nanced by the Centre Nati onal d'Etudes Spatiales (CNES),
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Figure 6: First line: pair of 512£ 512 aerial images of Toulouse with a resolution of 25cm. The
second image is simulated using the ¯rst one and the ground truth with a b=hratio of 0:045. Second
line: ground truth of the pair and result of the MARC algorithm. Third line : corresponding 3D
projections. 19



Figure 7: Left: 3D projection of the Toulouse pair ground truth ; Middle: 3D projection of the
MARC result ; Right: result of the Graph-Cuts algorithm presented by Kolmogorow et al. in [10]
with a smoothness factoŗ = 5 (the software used here is kindly provided by V.Kolmogorov on its
web page www.adastral.ucl.ac.uk/» vladkolm/software.html).

Figure 8: First and second columns: two1000£ 1000 excerpts of a real pair of aerial images of
Marseille with a resolution of 50cm and ab=h ratio of 0.04. Third column: the corresponding
MARC results.
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5 Appendix

Proof of Proposition 2
We have

½0
x0

(m) =
< ¿m u0; ~u > ' x 0

k¿m uk' x 0
k~uk' x 0

¡
< ¿m u; ~u > ' x 0

< ¿m u0; ¿m u > ' x 0

k¿m uk3
' x 0

k~uk' x 0

: (31)

Thus,

½00
x0

(m) =
< ¿m u00; ~u > ' x 0

k¿m uk' x 0
k~uk' x 0

¡ 2
< ¿m u0; ~u > ' x 0

< ¿m u; ¿m u0 > ' x 0

k¿m uk3
' x 0

k~uk' x 0

¡
< ¿m u; ~u > ' x 0

< ¿m u; ¿m u00> ' x 0

k¿m uk3
' x 0

k~uk' x 0

¡
< ¿m u; ~u > ' x 0

< ¿m u0; ¿m u0 > ' x 0

k¿m uk3
' x 0

k~uk' x 0

+ 3
< ¿m u; ~u > ' x 0

< ¿m u; ¿m u0 > 2
' x 0

k¿m uk5
' x 0

k~uk' x 0

:

But at m = m(x0), ½0
x0

(m) = 0, consequently

½00
x0

(m) =
< ¿m u00; ~u > ' x 0

k¿m uk2
' x 0

+ < ¿m u0; ~u > ' x 0
< ¿m u; ¿m u0 > ' x 0

k¿m uk3
' x 0

k~uk' x 0

¡
< ¿m u; ~u > ' x 0

< ¿m u; ¿m u00> ' x 0
+ < ¿m u; ~u > ' x 0

k¿m u0k2
' x 0

k¿m uk3
' x 0

k~uk' x 0

:

Replacing ~u by its ¯rst order approximation ¿m(x0 )u, it ¯nally gives

½00
x0

(m(x0)) '
< ¿m(x0 )u; ¿m(x0 )u0 > 2

' x 0
¡k ¿m(x0 )uk2

' x 0
k¿m(x0 )u0k2

' x 0

k¿m(x0 )uk4
' x 0

= ¡ < d
¿m ( x 0 ) u
x0 ; 1 > ' x 0

: (32)

Proof of Proposition 4
The proof is similar to the one of Proposition 3. Indeed,

½0
x0

(m) = 0 () k ¿m uk2
' x 0

< ¿m u0; ~u > ' x 0
= < ¿m u; ~u > ' x 0

< ¿m u0; ¿m u > ' x 0
:
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Let us de¯ne the function

wm (x) =
k¿m uk2

' x 0
¿m u0(x) ¡ ¿m u(x) < ¿m u; ¿m u0 >

k¿m uk2
' x 0

< ¿m u0; ¿m u0 > ' x 0
¡ < ¿m u; ¿m u0 > 2

' x 0

: (33)

The function wm clearly satis¯es

< w m ; ¿m u > ' x 0
= 0 ; < w m ; ¿m u0 > ' x 0

= 1 ; and (34)

kwm k2
' x 0

=
1

k¿m uk2
' x 0

< d ¿m u
x0 ; 1 > ' x 0

: (35)

Now, the equation ½0
x0

(m) = 0 can be rewritten

< w m ; u(x + "(x)) > ' x 0
+ < w m ; gb > ' x 0

= 0 : (36)

The ¯rst order expansion of this equality gives

< w m ; ¿m u + ( " (x) ¡ m)¿m u0 > ' x 0
+ < w m ; gb > ' x 0

' 0: (37)

Thus

m '
< d ¿m u

x0
; " (x) > ' x 0

< d ¿m u
x0 ; 1 > ' x 0

+ < w m ; gb > ' x 0
; (38)

The second term can be bounded from above thanks to Schwarz inequality (footnote (7)),

< w m ; gb > ' x 0
·

kgbk' x 0

k¿m uk' x 0

¡
< d ¿m u

x0 ; 1 > ' x 0

¢1=2
: (39)

If this quantity is small enough in comparison with the desired precision onm, equation (7) holds.
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