BANDWIDTH SELECTION FOR THE WOLVERTON-WAGNER
ESTIMATOR
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ABsTrACT. For n independent random variables having the same Hélder con-
tinuous density, this paper deals with controls of the Wolverton-Wagner’s
estimator MSE and MISE. Then, for a bandwidth h,(8), estimators of S
are obtained by a Goldenshluger-Lepski type method and a Lacour-Massart-
Rivoirard type method. Some numerical experiments are provided for this last

method.
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1. INTRODUCTION
Consider n € N* independent random variables X7,...,X,, having the same

probability distribution of density f with respect to Lebesgue’s measure.

The usual Parzen [11] - Rosenblatt [12] kernel estimator of f is defined by

1 ~ k— X
fnh :72 ( >;xER,

where h > 0 and K : R — R, is a kernel. In 1969, Wolverton and Wagner
introduced in [15] a variant of f,, ,(x) defined by

- 11 X, —x
1 n = — —K ,
8 Fan.(0)i= &30 i (2420
where h,, = (h1,...,h,) and 0 < h,, < --+ < hy. Thanks to its recursive form, this

type of estimator is well-suited to online treatment of data: by denoting h,; =
1
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(h/la .. -7hf’n7hf’n+1)7

~ n o~ 1 Xpy1 -
n = -1 n K .
f +1hn4 (z) n+1 frn, () + (n + Dhpaa ( By >

Thus, up-dating the estimator when new observations are available is easy and fast.

We can mention here that several variants or generalizations of the Wolverton
and Wagner (WW) estimator have been proposed: see Yamato [16], Wegman and
Davies [14], Hall and Patil [5]. They were studied from almost sure convergence
point of view, or asymptotic rates of convergence under fixed regularity assump-
tions. We choose to focus on Wolverton and Wagner estimator but our results and
discussions may be applied to these.

Theoretical developments concerning either classical Parzen-Rosenblatt or WW re-
cursive kernels estimators occurred recently following different and independent
roads.

On the one hand, several recent works are dedicated to efficient and data-driven
bandwidth selection, see Goldenshluger and Lespki [4] and several companion pa-
pers by these authors, or Lacour et al. [8] who proposed a modification of the
method. The original Goldenshluger and Lepski (GL) method was difficult to im-
plement because it turned out to be numerically consuming and with calibration
difficulties, see Comte and Rebafka [3]. This is why the improvement proposed in
Lacour et al. [8] has both theoretical and practical interest.

On the other hand, the increase of computer speed and of data sets sizes made fast
up-dating of estimators mandatory. The theoretical developments in this context
are in the field of stochastic algorithms (see e.g. Mokkadem et al. [10]) or in view
of specific applications (see Bercu et al. [2]).

Bandwidths have to be chosen for WW estimators as for Parzen-Rosenblatt ones,
and this choice is crucial to obtain good performances. This is why we propose to
extend to this context general risk study as described in Tsybakov [13] and the GL
method as improved by Lacour et al. [8]. More precisely, considering for instance
hi = k=7 for a parameter v > 0 in formula (1), we study adaptive selection of
~v. We prove risk bounds for the Mean Integrated Squares Error (MISE) of the
resulting estimator j;,l;ﬂ where fln = (ﬁl, e ,Bn) and Bk =k 7.

Amiri [1] proved that for f with regularity 2 and an adequate choice of the band-
width, Parzen-Rosenblatt’s estimator had asymptotical smaller risk than the WW
estimator. We propose an empirical finite sample study of this question, together
with an interesting insight on the gain brought by higher order kernels.

Now, clearly, plugging ¥ = 4(X1,...,X,) in the estimator makes the recursivity
fail. Therefore, a mixed strategy is required with initial estimation of v on the first
n-sample and recursive up-dating relying on this "freezed" value on the following
N-sample, where N should have the same order as n. This is what is experimented
in our final section, and empirically proved to be an appropriate strategy.

This paper provides in Section 2 controls of the MSE and of the MISE of the esti-
mator fn,hn under general regularity conditions on f. Then, in Section 3, the well-
known Goldenshluger-Lepski’s bandwidth selection method for Parzen-Rosenblatt’s
estimator is extended to Wolverton-Wagner’s estimator. Lastly, an estimator in the
spirit of Lacour et al. [8] is studied from both theoretical and practical point of view
in Section 4. Concluding remarks present a mixed strategy in Section 5. Proofs are
relegated in Section 6.
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Notations:

(1) Consider « €]0, 1[. The space of a-Holder continuous functions from R into
itself is denoted by C*(R) and equipped with the a-Hélder semi-norm ||.| 4
defined by

lolla := sup M ;i Vo € C*(R).
z,yER:zAYy |y - x|a
(2) For 8> 0and l:= |B8],

2(8) = {p € C'(R) : [ lp—1 < o0}.
(3) For every square integrable functions f,g: R — R,

(f xg)(z) = /jo flz=y)g(y)dy ; x € R.
(4) K. := (1/e)K(-/¢) for every € > 0.

2. BounDps oN THE MSE AND THE MISE oF WOLVERTON-WAGNER’S
ESTIMATOR

Consider 8 > 0 and [ := |8]. Throughout this section, the map K fulfills the
following assumption.

Assumption 2.1. The map y € R — y*K(y) is integrable for every i € [0,1],

oo

/ K(y)dy =1, / K2(y)dy < 400 and / y'K(y)dy =0, Vi € [1,1].

Let us establish a control of the MSE of Wolverton-Wagner’s estimator under the
following condition on f.

Assumption 2.2. The map [ belongs to 3(3).

Proposition 2.3. Under Assumptions 2.1 and 2.2, there exists a constant ¢ > 0,
not depending on n and hy, ..., hy,, such that

2
"1
2

k=1

E(|fon, (2) = F@)P) < =

n hﬁ
2
k=1

Now, let us establish a control of the MISE of Wolverton-Wagner’s estimator under
Nikolski’s condition on f.

Assumption 2.4. The map f belongs to C'(R) and there exists a constant N(f) >
0 such that

0o 1/2
([ 100+ - 1OwPar) < NOEP e e
Proposition 2.5. Under Assumptions 2.1 and 2.4, there exists a constant ¢ > 0,
not depending on n and hy, ..., hy,, such that
2 n
1
+ kZ i

=1

n hB

kz::l { —k1)!

Remark. Assumptions 2.1, 2.2 and 2.4 are standard for density estimation, see
Tsybakov (2009). Moreover, if we set hy = h, we recover the results stated in
Section 1.2.1 for Proposition 2.3 and in Theorem 1.3 for Proposition 2.5 in Tsy-
bakov (2009) (that is a squared bias term of order h?# and a variance term of order

/ T E(fun (o) — f@)P)de < &

2
oo n
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1/(nh)).

The estimator is consistent if the risk tends to zero when n grows to infinity, that
is if

1
2

(2) B, = -

2
1 — 1
d V,:=— —
an n2k§hk

S
k=1

satisfy
B, ——0 and V,——0.

n— 00 n—00
Let us consider
hy=k7"; ke [l,n]
with v €]0, 1] (otherwise B,, or V,, cannot tend to zero). Then

1
nQ’YB

(3) Bn:O<nlz) ify8>1 and Bn:O( )if76<1

with the intermediate case

B, — O (logg”)> if 73 =1.
n

Indeed, if v8 < 1, then

n 2

1 _
;Zk B

k=1

n—276

(1—9B)*

B, = —278 ~

1 kT
=L (5)

k=1

On the other hand,

(4) YV, =0(n"h).

As a consequence, we have the following result:

Corollary 2.6. Under Assumptions 2.1 and 2.4, choosing
he =k77; ke [1,n],

with
1

28 + 1

’}/ =
yields the rate
[l (@) - f@)P)do < cn”5H,

—00

where ¢ is a positive constant which does not depend on n.

Clearly, this is the optimal rate in the minimax sense, see Goldenshluger and Lepski
[4] and the references therein.

Proof. Consider
Pu(a) = n P

Then,
8@55’7) _ log(n)(—Qﬂe*%B log(n) + e(’yfl) log(n)).
Moreover, 09, (y) = 0 if and only if,
1 log(25 1
N (28)

T 2841 logn)(1+28)  28+1
Therefore, v = 1/(28 4+ 1) makes the upper bound on the risk minimal. O
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3. GOLDENSHLUGER-LEPSKI’S METHOD FOR WOLVERTON- WAGNER’S ESTIMATOR

This section provides an extension of the well-known Goldenshluger-Lepski’s
bandwidth selection method for Parzen-Rosenblatt’s estimator to Wolverton-Wagner’s
estimator.

Throughout this section, assume that
hi = hi(v) ; VEk € [1,n],
where v € [0,1] and the maps hi(.),...,h,(.) from [0,1] into ]0,o00[ fulfill the
following assumption.
Assumption 3.1. For every v’ € [0,1],
0<h,(y) < - <hi(®).

Moreover, h,(.) is decreasing and one to one from [0,1] into ]0,1].

For instance, one can take as above hy(y') := k=7 for every k € [1,n] and
~' € 0,1].

Consider
b (7)== (ha(v), -+ B (7))
and the set I';, := {v1,...,Yn(@m)} C [0, 1], where N(n) € [1,n] and
0<m < <YN@ < h, . (1/n).

Consider also
n

-~ 1
fryo (@) = n Z(th(’y/) * Ky () (Xi — ),
k=1
where 7 € [0, 1].

A way to extend the Goldenshluger-Lepski bandwidth selection method to Wolverton-
Wagner’s estimator is to solve the minimization problem

(5) ”I/IEnFI}z (An() + Va (7)),

where

An(r) = 3 (1o = Fraar B = Vol Des Valo') = ooy
el n

with v > 0 not depending on n and
1 n
hn g Z hk

In the sequel, the map b, (.) fulfills the followmg assumption.

v

Assumption 3.2. For every ¢ >0 and r € {1/2,1},

sup Z exp(—c/hn(y)") < co.

neN ~+'€ln
Example. Consider
he(v) = k™75 Vk € [1,n], ¥y € [0,1]

and

i 1/2
(6) L, = {(k)g(n)) ciel, [log(n)]]]} .
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For every v/ € Ty,

Then, for any ¢ > 0 and r € {1/2, 1},

c
sup Z exp(—c/bhn(7")") < sup log(n)exp (—27 exp(rlog(n)1/2)> < 00.
neNs T neN

Proposition 3.3. Under Assumptions 3.1 and 3.2, if f is bounded and 7, is a
solution of the minimization problem (5), then there exists a constant ¢ > 0, not
depending on n, such that

’ 1
E(|fan, G — fII3) <c A/ienrf Va(v) + o

n

= I IF = Knyi) * £z
k=1

If in addition Assumptions 2.1 and 2.4 hold, then

) Bl Fas — 1) < c{ int Balo)+ V) + 1}

n
where B, (v) and V,,(v) are defined in (2), (3) and (4).

Remark. By Corollary 2.6, the infimum in bound (7) has the order of the optimal
rate, and is reached automatically by the data driven estimator. This result is more
precise than the heuristics associated with cross-validation.

We mentioned previously that the optimal theoretical choice for v under Assump-
tions 2.1 and 2.4 is vy = 1/(28+1). Here, the selected «y should be at nearest of this
value, e.g. if Iy, is as in (6), distant from less than 1/4/log(n) of the good choice.
We may therefore consider that %,, provides an estimate of 1/(28 + 1) and thus an
estimate of the regularity 8 of f (at least for huge values of n).

4. THE LACOUR-MASSART-RIVOIRARD (LMR) ESTIMATOR

4.1. Estimator and main result. The Goldenshluger-Lepski method has been
acknowledged as being difficult to implement, due to the square grid in v, ~' required
to compute intermediate versions of the criterion and to the lack of intuition in the
choice of the constant v which should be calibrated from preliminary simulation
experiments. This is the reason why Lacour et al. [8] investigated and proposed a
simplified criterion relying on deviation inequalities for U-statistics due to Houdré
and Reynaud-Bouret [6]. This inequality applies in our more complicated context
and Lacour-Massart-Rivoirard’s result can be extended here as follows.

Let us recall that K. := (1/e)K(-/¢) for every € > 0 and set

n

Frir(@) 1= B () = + 3 (K * /) (@),

k=1
Let Ymax be the maximal proposal in I',, and consider
Crit(7) = [[fann(2) = Fhn (a2 + PER(Y)
with

2 n
pen = 2 E th ’Ymax)’th(’Y)>
k=1
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Then, we define
Fn € in Crit(7y).
Tn € arg min Cri (")
In the sequel, K, f and h,, fulfill the following assumption.

Assumption 4.1. The kernel K is symmetric, K(0) > 0,

0o K||o||K
[ Ky =1, LL=lEL
—o0

<1
nhp (Ymax)

and || flleo < 00.

Proposition 4.2. Consider \ € [1,00[ and € €]0,1[. Under Assumption 4.1, there
exists three deterministic constants ci,ca,c3 > 0, not depending on n, A and 7,
such that with probability larger than 1 — ¢, |T',|e™?,

r 2 . r 2
I frhn @) — fll2 < (14 5)361}% I o, — flI2

C2 C3 )\2 )\3
+gmwm—f@+€(+.

n n%hy(Ymax)

Remark. The term | f,,-.... — f||3 is negligible because it is a pure bias term for
smallest bandwidth (e.g., under Assumption 2.4, it has order n~2#7max_ see (3), and
thus o(1/n) if Ymax is near of 1 and 5 > 1/2). The terms following are of order
O(1/n) and are always negligible compared to nonparametric rates in our setting.
Therefore, the bound given in Proposition 4.2 says that the MISE of the adaptive
estimator has the order of the best estimator of the collection, up to a multplicative
factor larger than 1. This is the method we implement in the next section: it is
faster than GL method and with no constant to calibrate in the penalty.

4.2. Simulation experiments. We consider basic densities with different types
and orders of regularity:

X ~ N(0,1), density fi,

a mixed gaussian X ~ 0.5N(=2,1) + 0.5N (2, 1), density f, 1,
X ~ (3,3), density fa,

a mixed beta X ~» 0.5(3(3,3) — 1) + 0.53(3, 3), density f, .2,

X ~ ~(5,5)/10, density fs,

a mixed gamma X ~» 0.4.y(2,1/3) + 0.67(7,6)/10, density fy, 3,
X ~~ f4 with f4(z) = e~1*l, a Laplace density.

The densities f; and f,, ;1 have infinite regularity, f; and f, 2 should rather have
regularity of order less than 2, f3 and f,, 3 less than 4, and f4 less than 1. This
choice should allow to study the influence of the order of the kernel.

Denoting by n;(z) the density of a centered Gaussian random variable with variance
equal to j, we consider the following kernels:

e a Gaussian kernel, K;(x) = 6_12/2/\/% which is of order 1,

e a Gaussian-type kernel of order 3, K3(x) = 2n;(x) — na(x),

e a Gaussian-type kernel of order 5, K5(z) = 3n1(z) — 3na(z) + ns(x),

e a Gaussian-type kernel of order 7, K7(z) = 4ny(z)—6nz(x)+4ns(x) —n4(z).

With all these kernels, the penalty terms are computed analytically and without
approximation. Indeed, for n; ,(x) = (1/h)n;(x/h), it holds that

> 1 1
(M by Mg )2 = / 1, by (2150, (2)d = X — .
—oo V2m  \/ihi + jh3
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LMR for WW Original LMR,

n = K1 Kg K5 K7 Kl Kg K5 K7 ks
f 250 | 0.442 0.318 0.285 0.256 | 0.412 0.315 0.290 0.268 | 0.285
(0.252)  (0.213)  (0.193)  (0.162) | (0.241) (0.214) (0.205) (0.193) | (0.174)
1000 | 0.144 0.091 0.080 0.075|0.133 0.088 0.079 0.076 | 0.101
(0.079)  (0.065) (0.061)  (0.059) | (0.076) (0.064) (0.062) (0.061) | (0.059)
fma 250 | 0.400 0.316 0.287 0.255 | 0.387 0.327 0.291 0.256 | 1.115
(0.204)  (0.189)  (0.176)  (0.162) | (0.208)  (0.202) (0.179)  (0.170) | (0.150)
1000 | 0.141 0.101 0.090 0.084 | 0.135 0.101 0.094 0.091 | 0.585
(0.0623)  (0.051) (0.049) (0.046) | (0.062) (0.053) (0.051) (0.050) | (0.076)
fo 250 | 3.586 2.141 1.840 1.709 | 1.865 1.343 1.221 1.178 | 1.272
(1.403)  (1.230) (1.155) (1.116) | (1.108) (0.930) (0.884)  (0.885) | (0.789)
1000 | 1.056 0.646 0.555 0.515 | 0.602 0.429 0.382 0.372 | 0.506
(0.394)  (0.306) (0.283)  (0.270) | (0.312) (0.270)  (0.250)  (0.235) | (0.282)
fm,2 250 | 3.071 2.040 1.778 1.654 | 1.825 1.362 1.217 1.157 | 8.912
(0.851)  (0.743)  (0.706)  (0.681) | (0.655) (0.584) (0.605) (0.565) | (0.909)
1000 | 0.905 0.593 0.508 0.476 | 0.657 0.438 0.389 0.358 | 4.876
(0.246)  (0.201)  (0.187) (0.182) | (0.257) (0.188) (0.159)  (0.163) | (0.367)
f3 250 | 0.449 0.358 0.340 0.326 | 0.419 0.356 0.343 0.327 | 0.298
(0.263)  (0.236)  (0.221)  (0.198) | (0.259)  (0.241) (0.224)  (0.201) | (0.202)
1000 | 0.174 0.132 0.124 0.121 | 0.162 0.130 0.126 0.126 | 0.125
(0.085)  (0.071)  (0.067)  (0.065) | (0.081) (0.071) (0.071) (0.076) | (0.065)
fm,z 250 | 1.257 1.129 1.106 1.103 | 1.140 1.117 1.138 1.162 | 4.089
(0.597)  (0.555) (0.537) (0.532) | (0.564) (0.562) (0.568) (0.576) | (0.355)
1000 | 0.491 0.448 0.444 0.446 | 0.449 0.441 0.454 0.466 | 3.172
(0.171)  (0.158)  (0.158)  (0.160) | (0.168) (0.174) (0.189)  (0.204) | (0.201)
fa 250 | 0.683 0.642 0.642 0.649 | 0.663 0.680 0.706 0.708 | 0.519
(0.353)  (0.318)  (0.301)  (0.294) | (0.347) (0.343) (0.339)  (0.322) | (0.260)
1000 | 0.281 0.254 0.254 0.258 | 0.273 0.268 0.278 0.284 | 0.242
(0.135)  (0.122) (0.120) (0.122) | (0.141) (0.147) (0.163) (0.172) | (0.105)

TABLE 1. 100 x MISE with 100 x std in parenthesis, computed

over 200 simulations.

We compute the variable bandwidth estimator as described in Section 4 and select
n in a collection of M = 40 equispaced values between 0 and 0.5 while the band-
width associated with observation 4 is h;(y) = i~7. We also compute the original
estimator of Lacour et al. [8] with bandwidth A which does not depend on the
observation and is selected among M = 40 values in the set {k/M ; k=1,..., M}.

For comparison, we give the performance of the Matlab density estimator obtained
from ksdensity function (denoted by ks in Table 1), which entails a different band-
width selection method and relies on a gaussian kernel.

We compute the integrated L2-risk associated with all the final estimators, evalu-
ated at P = 100 equispaced points in the range [a, b] of the observations, averaged
over K = 200 repetitions:

1K
3

Jj=1

P
=

1

oSG, ) — )

re=a-+/

b—a
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0.3 0.3 0.3
0.25 0.25 0.25
0.2 0.2 0.2
A -
0.15 A 0.15 0.15
o1t \ o1t o1t
\
i >; ‘ ! ;;
oosf \ 0.05 i 0.05 N
1 \ ¢
[/ . ! Q
o o o
-5 o 5 -5 ) 5 -5 o 5

FI1GURE 1. Left: The three estimators (dotted blue LMR-WW,
green dash-dotted LMR, black dashed ks, the true in bold red.
Middle: the 40 proposals for LMR-WW. Right: the 40 proposals
for LMR. First line n = 1000, density fi ,, second line n = 250,
density f>. In all cases, kernel K.

0.45 0.45 0.45

0.4 0.4 r 0.4

0.35 0.35 0.35

0.25 0.25 0.25

FIGURE 2. Beams of 30 estimators in dotted green of density f; for
n = 250 and kernel K7, and the true in bold red. Left: LMR-WW
estimator. Middle: LMR estimator. Right: ks estimator.

where f/l\(ﬁj(j) is the estimator computed for path j. Results are gathered in Table 1
and deserve some comments. As expected, when increasing n from 250 to 1000,
the resulting MSEs decrease and seem to be more improved in LMR methods of
both types than for ks estimator. Increasing the order of the kernel systematically
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improves the results, except for the lowest regularity density f;, which is at best
with K3, but it is interesting to note that taking higher order kernel is always a
good strategy: if a loss occurs, it is negligible while the improvement, when it hap-
pens, is in all cases significant. Estimator ks fails for all mixed densities fy, 1, fim,2
and f,,, 3 and provides rather bad results in these cases, for both sample sizes. For
the other densities (f1, f2, f3, f1), the results obtained with kernel K7 and LMR
method are better than with ks for f; (Gaussian case), and of comparable order
in all other cases. Now if we compare the LMR and WW-LMR results both with
kernel K7, we conclude that the WW-LMR, method wins in 10 cases out of 14, but
not significantly.

The first line of Figure 1 illustrates in the left picture the way Matlab estima-
tor fails for mixed densities (here the mixed Gaussian f, 1) by probably selecting
a too large bandwidth, here n = 1000. The two LMR estimators are almost con-
founded. The middle and right pictures present the M = 40 estimators among
which the LMR procedure makes the selection, for the same path: we observe
that the collection of proposals are rather different. The second line of Figure 1
presents the same type of results for density f>, and sample size n = 250. Figure
2 shows beams of 30 final estimators for sample size n = 250, for the three esti-
mators LMR-WW with K7, LMR with K7 and ks, showing very similar behaviours.

A last remark corresponding to numerical results we do not report in detail is
the following. For most densities, the value of ~ selected by the LMR strategy
decreases, and the value of h increases, when the order of the kernel increases.
Exceptions are densities with lower regularity (the beta f2, mixed beta f ,, and
Laplace f; densities) for which the last value of selected h with K7 is less than
the one selected with K. This illustrates the fact that, asymptotically, if 8 is the
regularity index of the density and ¢ the order of the kernel, the optimal choice is
for h of order n~1/CGmin(3.H0+1 and for v, 1/(2min(B, £) + 1).

5. CONCLUDING REMARKS

Our study illustrates that bandwidth selection is an important step for kernel

functional estimation, and recent methods are really powerful whatever the type of
density to recover.
Our simulations show also that, even if it implies non necessarily nonnegative ker-
nels and thus density estimators, increasing the order of the kernel improves the
estimation both in the theory and in practice. Also, we proved that variable band-
width for WW-type estimators can reach excellent rates, again both in theory and
in practice, provided that adaptive choice of this variable bandwidth is performed.
The orders of practical MISEs show that this WW-strategy provides results of the
same order as the more classical bandwidth methods.

However, one may wonder how to keep these ideas compatible with recursive pro-
cedures and online updating of the kernel estimator. We believe that the adaptive
bandwidth, whatever its type, can be selected on a preliminary sample and then,
"freezed" to this selected value and plugged in the estimator. We tested this strat-
egy on simulations: for each sample, another independent sample is generated, and
a second estimator is computed based on the new sample, with the value of h or ~y
selected for the first data set. Table 2 provides the MISEs obtained for the estima-
tor with adaptive bandwidth with kernel K7 for WW-estimator (column %) or for
NW-estimator (column ﬁ), for comparison with MISEs of the estimator computed
on an independent sample with the values based on the previous selections (columns
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"Fixed 4" and "Fixed h"). Surprisingly, the results have exactly the same orders

(we expected a slight deterioration): this proves that the proposal of preliminary
selection is really fine.

n = 250 n = 1000

7 TFixedy h Fixedh| 7 TFixedy h  Fixed h

f 0.262 0.245 0.263 0.245 0.077 0.074 0.075 0.072
(0.182) (0.157) (0.187) (0.156) (0.057) (0.049) (0.056) (0.050)
fim | 0257 0.248 0.260 0.247 |0.085 0.076 0.091 0.084
(0.144) (0.134) (0.149) (0.136) (0.049) (0.038) (0.053) (0.046)
fo 1.741 1.642 1.210 1.110 0.512 0.485 0.367 0.338
(1.120) (0.883) (0.877) (0.740) (0.270) (0.271) (0.247) (0.207)
fom | 1.749  1.603 1.246 1.085 |0.480 0.493 0.364 0.367
(0.720) (0.683) (0.623) (0.567) (0.190) (0.208) (0.166) (0.188)
f3 10359 0.360 0.362 0.364 | 0.103 0.105 0.108 0.107
(0.188) (0.191) (0.184) (0.193) (0.055) (0.056) (0.058) (0.058)
fam | 1.035 1.041 1.092 1.092 0.435 0.426 0.457 0.448
(0.447) (0.358) (0.479) (0.447) (0.153) (0.131) (0.210) (0.182)
fa 10.619 0.615 0.677 0.674 |0.241 0.237 0.277 0.276

(0.270) (0.252) (0.290) (0.283) (0.113) (0.097) (0.172) (0.161)

TABLE 2. Comparison of 100 x MISE (with 100x std in parenthe-
sis) for adaptive estimators and estimators based on a new sample

with the previous 7 or n plugged in.

6. PROOFS

6.1. Proof of Proposition 2.3. First, by the bias-variance decomposition,

(8) E(| fon, (z) = £(@)*) = ba(f,)* + var(fon, (z))
where

bu(f.2) = E(fun, (@) — f(2).
Let us find controls for b, (f,x) and var(fn,hn (2)).

On the one hand,

~ 1 -1 Xp—
1 1 /°° (y -
il _ K
n2 ; hi — 0 hk
- Tl2 prt hk: —o0 *

C1 ~ 1

725 :7’

n h
=1k

N

)2 f(y)dy

N
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where ¢1 = || f|| /7o K(2)?dz. On the other hand,

e =3 e (6 (5507)

k=1
S OEE M| " K()f (s + 2
k=177
_ %Z/ K(2)(f(hyz + x) — f(2))d2
k=177

For every k € [1,n] and z € R, by Taylor-Lagrange’s formula there exists 7 € [0, 1]
such that

-1 ) 2)!
Flez +2)— £y = 3 P 0 0y ¢ P p0 g,

=1

Then, by Assumption 2.1,

bulfia) = ~ Z/OO K(2)(f(hyz + ) — f(x))dz

k=1Y —°
1 n -1 h l ee}
= 3 (X [ ke G [ AR O+ a)ds
M= = v - U)o
1 n hgq > 1 (l)
= B [T ) O e 4 )i
n b1 _
- Tv/ AE) (O (thiz + 2) — 1O (2))dz.
k=1 " VT

Therefore, by Assumption 2.2,
L~ hl [ 0) 0
buh)l < =S [ R SO s + ) — O )z
k=1 T YT

C2 2 hg
S l!
k=1

where 3 == || fV|g_; [0 2P| K(2)|dz. In conclusion, by Equation (8), setting ¢ :=
c1 Ve, we get

c

E(|fom, (z) = F@)]?) < 5

n2

6.2. Proof of Proposition 2.5. In order to prove Proposition 2.5, the two fol-
lowing generalizations of Minkowski’s inequality are required.

Lemma 6.1. For any Borel function ¢ : R? = R, if y — ¢(y, 2) is integrable and

y— / o(y, z)dz

is a Borel function, then
2

(1) /0; </O; w(y,Z)dy>2dz < (/Z </O; w(y7Z)2dZ>l/2 dy) -
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(2) /oo <2n: ga(k,z)>2dz < <Zn: </Oo @(k,z)zdz>1/2>2.
oo \ & o

k=1

Proof. Result (1) is proved in Tsybakov [13], see Lemma A.1 for a proof.

The proof of Lemma 6.1.(2) is nearly the same, but we provide it for the sake
of completeness. Assume that

_ g:l (/O:o gp(k,z)zdz>1/2 < oo

n

S(z) = Zg@(hz) i Vz e R

k=1

and consider

For every f € L3(R,dz),

‘/_Z f(2)8(z)dz| < /_ \Z|<p k,z)|dz = Z/ o(k, 2)|dz
< IIfIIQZ (/OO so(k,z)2d2>l/2 = M| £l

k=1 >

Then, the linear map
L:felL*R,dz)— L(f / f(z

is continuous. Therefore, by the equality case of Cauchy-Schwarz’s inequality,

2 2
oo n L(f)

S|3 = kioz) | dz =

Isig= | (;ﬂ ’Z>> ? <fEL2(%“£>\{o} f||2>

<M= (; (/z w(k,z)de>1/2>2

O
It has been established in the proof of Proposition 2.3 that
2
(9) Var(fn h,, < 2 Z h2 / ( ) f(y)dy
and
1 n 0o
(10) (f) =23 [ Ktz + ) - f@)d
ki — 00

On the one hand, by Inequality (9),

0o =R n oo oo _ 2
/ var(Fom. (2))de < nzz_jhg/ f(y)/ K(yhkx) dedy

— 0 b

N [
s -
= 1]
S-S
7 N\

8

~

S

U

<

N——
VS

3

=

o

s

U

I\

N——
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where ¢; := || K||?. On the other hand, by Taylor’s formula with integral remainder,

(hx2)"

[z + ) — f(x) = Z (th) (@) + m/o (1 =)' O (rhyz + z)dr.

i=1
Then, by Assumption 2.1,

%Z | KE e +2) -

where
2

up = /_Z‘/w 2K (z2) /01(1—T)l1(f(l)(7hkz+x)—f(l)(x))dez dz.

By Lemma 6.1.(1), for every k € [1,1],

up < (/_Z AK(2)] /01(1 et (/_Z 1O (rhyz + ) — fm(w)?dx) v de2>

Therefore, by Assumption 2.4,

0o n hB 2
Lo < (E )

k=1

co = N(f)? </_O:o ZBK(Z)|dZ> 2 </01(1 — T)l—lTﬂ—ldT>

In conclusion, by Equation (8), setting ¢ := ¢; V ¢o, we get

2

where
2

n

6.3. Proof of Proposition 3.3. There exists a universal constant ¢; > 0 such
that

/ (o, @)~ @)Y <

— 00

1) = F13 < 1l i) = Fau 3
1 bty = w3
H Fabnry = FI12)-
By the definition of A4,

”fmhn(%) - fnv?nﬂ””% = ”fmhn(%) - fnv'Y/a:/an
< An(Y) + V()
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and R R
||fn,hn("/’) - f"ﬁnﬁ’”% < An(an) + Vn(’yl)~
Since
n € arg min (An(y) + Va (7)),

there exists a universal constant co > 0 such that for any v € T',,,

]E(an,hn(an) fl3) < Q(E(Hﬁz,hn(y) — f113) + E(An (7)) + Vi (7))
(11) < 22E(|| frpn(v) — frnl12)
F2E(|| frry = F13) + E(An(7)) + Va (7)),

1 n
v EZth(V) *f
k=1

Now, let us find a suitable control for E(A,(v)). For that, consider

where

frqyoy = Zth * Ky (q) * -

There exists a universal constant ¢ > 0 such that
an,hn(w’) - fn,“/,'y/H% < CS(”fn,hn(v’) - fn,'y’H%
+||f’ﬂ7’Y' - fnﬁﬁ’ll%

JF”fnm'y/ - fn,%'y/ ”%)
Then,

<12>An<v><c3<sup <|fn,hn(7,> Fu = (”)
X

y'eTy 2c3

~'€l, 2¢3

n V(')
=+ sup (an,'y,'y’ - fn,'y,'y’”% - = + ”fn,'y’ - fm’yf)"”% .
+

Let us control each terms of the right-hand side of Inequality (12). On the one
hand, by Lemma 6.1.(2),

”f’ﬂfY' - f“ﬁﬁ'”% Zth f th f)

2
n 2
< = S Kneiry * (F = Ky * 2
||K||k2_ d ’
< 21 Z”f_th(’Y)*fHQ
k=1

On the other hand, let C be a countable and dense subset of the unit sphere of
L2(R,dx). Then,

. Vn(’Y/)) ( 2 Vn(’Y/))
E[ su " N = fnarl|? = < E Sup v, -/ - —
(%&('f mo) = Inrlla =502 ) )< 3 B (s oan )= 5 )

v €y

where, for every ¥ € C,

Oy (Y) = <¢7ﬁz,hn('y’) — faqr)2
= % > (wp(hie(v), Xx) = E(vy (hi(v), X1)))
k=1
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and
volhg) = [ 0@Knly — a)de : ¥ihoy) €L/m xR

In order to apply Talagrand’s inequality (see Klein and Rio [7]):
(1) For every ¢ € C, h €]1/n,1[ and y € R,

winwl < [ T @Ky — 2)de

< [ Kn(y =) [K[2v/.

2 = —=IIKll2 <
f
Then,
sup [[vg [loo < Mi(n) = | K]2v/n.
Pec

(2) For every ¢ € C,
Un,'y/(w)2 = <¢a ﬁl,hn("//) - fn,'y’>§
< NPty — Frr 2 = / Fom ) (@) = EFoin () (@) 2da.

Then, as established in the proof of Proposition 2.5,

E (zléglnn,w(W) < ‘/_oo var(fon, () (x))dz

1/2
Pt hi (v

= MQ(WH’Y/) :
(3) For every ¢ € C and k € [1,n],

1/2

K
< ” ”2 n('Y/)l/Q-

5]l
v

)

- / (K * ) ()2 F@)dy < [ £l | K2

var(vy (hi(7'), Xx)) < E ('/OO Ky (v) (X — @) (z)d

Then,

1
sup £ 3 var(oy (e (+). X)) € My 1= [ K.
vee i

By applying Talagrand’s inequality to (vy)yec and to the independent random
variables (h1(v"), X1), ..., (hn(7"), X»), there exist four constants cs, cg, c7,cg > 0,
depending only on f, K and v, such that

M
E | | sup o (¢)* — 4Ma(n,~") < s (3 exp (—Cﬁan(n,v’f)
Pec n n M3

)

< CTZ(GXP(_C8/hn(’Y’)) + exp(—cs/bn(v)?)).

Then, by Assumption 3.2, with v = 8|| K ||2c3, there exists a constant cg > 0, not
depending on n, such that

~ Va(v') C
13 E S
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The same ideas give that there exists a constant c¢;g > 0, not depending on n, such
that

=~ V(') 10
(149 wa(WPOMwM—ﬂwwﬁ— D) ) < a0,
C3 +

vyely, y'elr, n

Therefore, by Inequalities (11)-(14), there exists a constant ¢;; > 0, not depending
on n, such that
2

~ _ 1 |« 1
E(| fahn o) — fII3) < e11 Wlenrfn V() + n2 ; 1f = Knyyy * fll2| | + -
Moreover,
v
Va(y) = =vVp(y
@ nhn(7) ™

and, if Assumptions 2.1 and 2.4 hold, as established in the proof of Proposition 2.5,
there exists a constant c¢i5 > 0 which does not depend on n such that
5 1/2
dx)

n n 0o o)
Do = Kney * flla =Y (/ ’/ K(2)(f(hi(7)z + ) — f(x))dz
k=1 k=1 —oo Mmoo
6.4. Proof of Proposition 4.2. For this proof, we use the tools and follow the

lines given in the proof of Theorem 2 in Lacour et al. [8].

< ci2 Z hi(7)? = c1anB, (v) 2.
k=1

Throughout this section, for every h > 0, we consider f; = f % K}, where x is
the convolution product and we recall that K; = 1/hK(-/h). Note that for every
h >0 and k € [1,n],

B0~ ) = [ Ky~ 2)fw)dy = fu(a),
We also consider A € [1, 0], €,0 €]0,1[ and v € T,,.

In order to prove Proposition 4.2, let us first establish the three following lem-
mas providing suitable bounds for key quantities involved in the decomposition
of R

I b ) — 3
Throughout this section, the positive constants «; ; ¢ € N* are not depending on n,
A, 0, ¢ and 7.

6.4.1. Steps of the proof. The proof relies on three Lemmas, which are stated first.
Lemma 6.2 follows from an exponential inequality for U-statistics, which is applied
here in a non indentically distributed context.
Lemma 6.2. Consider the U-statistic
Un('Ya'YmaX) = Z<th,(v)(Xk - ) - fhk(w)thz,(vmax)(Xl - ) - fhl(’Ymax)>2'
k1
There exists a universal constant ¢ > 0 such that with probability larger than 1 —
5.54|T,, e,
Unrmae)| _ OIKI3 ¢ (IKIZI e o, DK TIE e 3
n? S onba(v) 0 12hn (Ymax) /)

Lemmas 6.3 and 6.4 rely on Bernstein’s inequality for non identically distributed
variables.
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Lemma 6.3. There exists a deterministic constant ¢ > 0, not depending on n, A,
0 and v, such that for every v' € T, with probability larger than 1 — 2™,

Vn(’%’yl) = <fn,hn('y) - fn,’yv fn,'y’ - f>

satisfies
, 9 €A
Va7, /) <Ol fn = fllz + 5

Lemma 6.4. Under Assumption 4.1, there exists two deterministic constants ci,co >
0, not depending on n, \, € and vy, such that with probability larger than 1 —
c1|Tnle™?,

K13
nhn(7)

The proof of Proposition 4.2 is dissected in three steps.

I fny — fII3 + <A+ fumnn — FlI3+ e

n n2hp(Ymax)

Step 1. In this step, a suitable decomposition of

I frbnGa) — FII3

is provided. On the one hand,

Hf”vhn(;?n) - f”% + pen(an) = ||fnvhn(§n) - fnvhn(')’max) ||§ + pen(ﬁn)
H b (rene) — 113
_2<fn,hn(vmax) = [ f'nqhn(’)/max) - fn’hn(%)h'

Since ¥, € argmin,cr, Crit(y),

1 fnn ) = FI3 < 1 fnnn) = Fouin (s 13 + PED()
—pen(Tn) + | fo b () = F 113
~2( s ma) = I Fr i () = Frn G2
= | fapnin = fI13
—[pen(Fn) = 2l| fovsh (vm) — £1I3
+2{ o () = Fo F () = FrnGa))2]
+pen(y) — 2<ﬁz,h,L(7n,ax) -/ f/l\n,hn(v) = f)2
(15) = [, — FII3 + Pen(y) — 20 (7) — (pen(Fn) — 2¢n (7))

with
Ui = P () = > () — 2
On the other hand,

wn(7> = <fn,hn('ymax) - fn,vmaxv fn,hn('y) - fn,v>2 + <fn,hn('ymax) - fn,'ymaxv fn,v - f>2

+<fn,'y,mx - fa ﬁz,hn(w) - fn,'y>2 + <fn,'ymax - f7 fn,'y - f>2
= ¢1,n(7) + wQ,n(’Y) + ’(/)3,71(’7)7
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where
Y1n(7) = % D En)s K ()2 + W
k=1
Ya,n(y) = ig ( Z K () Xk = )5 Fre () )2
Zn: (K (yimas) Vs Frnn)2 + Z Tri() fh,c(ymx)>2> and
k=1
'(/)3,71(7) = (’Y 'Ymax) +Va (’Ymaxv ) <fn,v - fa fn,'ymax - f>2

Step 2. Some bounds for v, 1(7), ¥n 2(7y) and ¥y, 3(y) are provided in this step.
(1) Consider

~ 1 <&
Y10 (Y) = Y1n(y ;Z Ko K (unan) ) 2-
k=1

By Lemma 6.2, with probability larger than 1 — 5.54|T,,|e™?,

e Un s /max
Fon(y)] = [Ln Ot

n2
 SIKIE o (VSR o | IRl Y
nhn(V) 0 n hn('ymaX)

(2) On the one hand, for any v/ € T',,,

< e [ 1K ) (X = )y ) @)l

Z Koo)Xk = ), fre(a))2
k=
2
< [[Kh Jmax Ky * flloo < NENT]f lloo-

On the other hand,

1 n
- ;Uhk(v)’fhkw))z < kgﬁ%ﬂ/ | fra ) (@) fr () (@) |da
< max K, ) * FllilEn ) * Flloo < K11l oo
e[1,n]
Therefore,
B K121 f o
[2,nllo0 < +

(3) By applying Lemma 6.3 to Vi, (7, Ymax) and V,, (Ymax,y), with probability
larger than 1 — 2e™?,

0 H/\
s < 5 ey = S + o = FI13) + 5
0 1
51y = F13 + g1 = f||§
0 1 Ii)\
< Ol = 11+ (5 + 5 ) Unie — S8+ 5

Step 3. Consider

~ 1 <&
PYn(y) 1= — 2 Z K1) K (yanan) )2
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By Step 2 and Lemma 6.4, with probability larger than 1 — ko|T,|e ™2,

- 01 K|3
n < O fn
[Un ()] < O fany — fII3 + wb()

o 1 ks [N A3
+ ( + 20) Hf'"w'Ymax f||2 + /] ( n + nzhn(’Ymax)

< 29||fn,hn(~/) - fll3

0 1 9 KR4 )\2 )\3
+ ( + 26) | frvemae — flI2 + 7 (n + 2o () )

Therefore, by Inequality (15), with probability larger than 1 — x5|T,|e™?,

~ ~ Rg
Gy = fl2 < (L&)l ) = FI2 + e = fI2

9 n
—|—pen 72 Z th(’y)7th('Ymax)>2

2 n
(pen Yn) — n2 Z Ky ) Kni( 7max)>2>

_|_ﬂ )\72 + )\73
e \n  1n2h,(Ymax)

~ Kg
=(1 +5)||fn,hn(~/) - f”g + ?an»"/max - f”%

_|_ﬂ )\72 + )\73
e \n  12h,(Ymax) )
This concludes the proof. O

6.4.2. Proof of Lemma 6.2. Consider
A, ={kl)eN*:2<k<nand 1 <I<k—1}.
The U-statistic satisfies

’Ya’)’max ZZ G»ky: l»ymm XkaXl) +Gl’§iaxﬁ(Xk’Xl))’
k=2 I<k

where
Gun(e, B) = (Kn, (@) (@ =) = Fuay Ky (B =) = Fruw))2
for every (k,1) € Ap, a,b € {7V, Ymax} and (a, B) € R2.

By Houdré and Reynaud-Bourret [6], Theorem 3.4, there exists a universal con-
stant ¢ > 0 such that

(16) P(|Un (7, Ymax)| = «(CVX + DX+ BXY2 + AN?)) < 5.54¢™*

where the constants A, B, C' and D will be defined and controlled in the sequel.

e The constant A. Consider

A = A
(FDEA (o 8) 2R ke, B)

with
Ao, B) = |GEL (0, 8) + GEL (o, B)] s V(K1) € Ay, V(o B) € R
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For any (k,1) € A, and («, 8) € R?,

Ap(o, B) < (K (@ =) = Fre) Ehitrma) (B =) = Fri(yman) 2]
+‘<th("/max)<a - ) - fhk("/maX)’Khl('Y)(ﬁ - ) - fhl(7)>2|
21 K b, (yama) oo+ 1 Fh () oo ) HEC[1 =+ [ fry (y [11)
< 8\|K\|1||K||oo.
hn(’)/max)

Therefore,
AX KK

A2,
2 n h (’ym&x)

n
e The constant B. Consider

-1
B? .= max{supZ]E |G%%ndx(a X; ) sup Z inl)ax,v a Xl)|2)}.

LU ol o

For any (k,1) € Ap, a,b € {7V, Ymax} and (a, B) € R,

E(Gry (0, X0)?) = B(Kny () (@ =) = Frn(ay Kniey (X1 =) = Fruw)3)
< N Ky ay(@ =) = frp@ BE( K ) (X =) = fuw13)

K
” (Hj/ E(|Kn, ) (X1t = y) = ) (W) dy

K13
<4 K,
oL

<4

| LY 1Y
0255 (@ (b) S hi(a)hn (b))

Then,

KH
B2 H 2 Z
hk

'Ymax k=1

Therefore,

B)3/2 0 1/2
<2(-= K
o <2(3) 1Kl

1/2
N UKl
0 (n2 " (Ymax)) 1/2

OIK|3 3
+ — X = \".
371[’] ( ) n hn(’Ymax)
e The constant C. Consider

C?i= Y B((GEL(Xk X))+ GEL (X, X)),
(k,l)eA,

For any (k,1) € A, and a,b € {7, Ymax},
E(GY} Xk X1)?) = E(Kny )Xk =) = Frn(ays Ky (Xt — ) = fru))3)
< K1 (E(Kny (o) (Xi — ), Kny vy (X1 = ))3)
L @ IZNENT + 1 fri @ 12K NT + 1 @20 L fre 17

o) 2
@@Q/zﬁ@@rwmmwﬁwm)+waKQ.

IEIEIAZ] oo
S hy(a)

N

Moreover,

E (’/ Ky () (X — ) Ky (1) (X1 — Jf)dﬁﬂ
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Then,

C < rav/n| KL 182 | 1K ]l2 + | K111

"1

Therefore, since A € [1, 00|,
CX2_ 0||K]I3 4||K|| llflloo
n2 " 3nb,(y) on

e The constant D. Consider
n k—1

::(su)p DSOS TE(GEL (X, X))+ GEL (X, X)) aw(Xe)bi(X0)),
a,b ESk 2 1—1

where

n n—1
S:= {(mb) > E(ar(Xp)?) < Land Y E(bi(X))?) < 1} :

k=2 =1

For any (a,b) € S,

n k—1

SN EGE (X, Xi)ar(Xe)bi(X))) < Da(a,b)sup Dy (a, b, z)

k=2 1=1 TER

with

Di(a,b,2) == Y B(lax(Xe) (K, () (Xk = 2) = fri (2))])

k=2
. 2, 1727
S E D an(Xe)?| D (Kn)(Xx =) = fa () (@))°
=2 =1 |
n /2, 4, 1/2
< E (Z ak(Xk)2> > E(Kn, (7)(Xk = 2) = frp() (2)])
=2 =1
. 1/2 . 1/2
K51l
g E(K X, —x 2 < || 2 oo
2 (K () (X —2)7) 1; T ()
and
n—1 o)
= 8 (0] [ B0 (X5 = 2) = e @)
=1 >
n—1 n—1 1/2
< 2[[K|h ZE(Ibl(Xz)l) < Ebi(X:)%)| < 2vn| K]
=1 —
Then,
"o 1/2
D <2Vl £ IK LK 2 Z P
=1
Therefore,

DX _ OIIK[F 12 K[l o
< =2 IR e
n2 " 3nba(y )Jr g~ n

Plugging the bounds obtained for A, B, C, D in Inequality (16) gives the announced
result and ends the proof. [J
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6.4.3. Proof of Lemma 6.3. For any 7' € T,,,

lz (g (hi(7), Xi) — gy (hr(7), X))

3

where, for any k € [1, 7],
Gy (hie(7)s Xie) 1= (K () (Xbs = )5 fryr — f)2-
Indeed,
E(gy (hi(v), Xk)) = E(EKn,. () ( Xk = )5 fryr = £2 = {fni)s fryr = D2

In order to apply Bernstein’s inequality to g, (h1(7), X1), .-, gy (hn(7), Xn), let
us find suitable controls of

Cyr = ”gg”m and v, (7,7') : Z]E (g (hi(7), Xi)?).
On the one hand,
1
ey =5 sw [(Kne =), fuy = Nl
h>0,z€R
1
< g sup (K@ = )lhllfaq = flleo
h>0,z€R
1
< 5lIElL (o IIKhm #f = flloo

< §||K||1(1 FIE D flloo < gIIKII?Hflloo,

as |K|j; > 1. On the other hand,

=32 ([ et o) - i) Sy

< lflloe. max || K, (3) * (fary = HIF < Flloo N1 frrr — FII3.
ke[1,n]

Then, by Bernstein’s inequality, with probability larger than 1 — 2e~*,

C’Y' A

22
V(7,7 < gvn(%v’) +

) MK (14 K )l oo
<\/n|f||oo||Kll?|fn,wf||%+ s

c)\
<O foy — fII3 + o,

with ¢ = 7/6||f||oo || K||3. This is the announced inequality. [J

6.4.4. Proof of Lemma 6.4. First of all,

[ fary = FI3 = 1 fnnneny = FI3 = [ fabni) = Fanll3 = 2Va(v,7)-
Then, by Lemma 6.3, with probability larger than 1 — 2e™?,

K3
nhn(7y)

~ KA
< an,hn('y) - f”% + An('Y) + ﬁ

(17) L= Ol fnry — fI53+
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where
1513 n 2
A, v) = - fn n - fm
( ) nbn(’)/) || Jho () vy ‘2
Un(7,7) Z
- n2 + n ng ||fhk ||
and

Z V(7))

:\'—‘

with, for any k € [1,n],

V() = 1Ky (X =) = frun I3

and
E(Ye(1) = E(1 K Kk = )B) + o I3 = 2B (K, ) (X = D), )
K113
- hk(i) — [ freen 13-
Since
V(D] < Al Ko 13 < M () := 4Kl
' ’Y) i hn(’)/max)
and
E(Y5(7)%) < My (7)E(Yi (7)) < 1()’&’
P (Ymax) e ()

by Bernstein’s inequality, with probability larger than 1 — 2e=*,

6|K|2)  0||K|2 4] K]|32X
Wo(v)| < 2 X 5
| (’Y)‘ \/enhn('}’max) 2 hn(’y) 3nhn(7max)
0 K3 F2A
T 20,(7) 0l (Ymax)

Moreover, by Jensen’s inequality,

melt= (/" f(l’+hk(7)y)K(y)dy>2dx

SURE [ [ s m i duds < Il KR

Then, by Lemma, 6.2, with probability larger than 1 — k3e™?,

|K]3 A2 A?
A, <40 — .
() nbhn(y) T on + 0n2h,, (Ymax)
A

Therefore, by Inequality (17), with probability larger than 1 — k5e™?,

NLT AT 2 _me (XN
_ 1 e (XN XY
Vny = £15+ o005 < g Mnmeen = A5+ g4y (0 * o)

This is the announced result if we set 1+ = 1/(1 — 6), which gives 1/[0(1 — )] =
(1+¢)?/e. O
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