Determinantal Point Processes (DPPs)

- Model negative correlation thanks to the determinant of a kernel K: avoid bunching effect
- An exact sampling algorithm, based on the spectral decomposition of K
- Natural to apply DPPs to the space of patches, redundant and diverse

Definition [1]

Let $\mathcal{Y} = \{1, \ldots, N\}$ and K be a hermitian $N \times N$ matrix, such that $0 \leq K \leq 1$, then the random subset $Y \subset \mathcal{Y}$, defined by

$$\forall A \subset \mathcal{Y}, \quad \mathbb{P}(A \subset Y) = \det(K_A),$$

is a DPP.

- Marginal probabilities of singletons: $\mathbb{P}(i \in Y) = K_{ii}$.
- Negative correlation between elements:
 $$\mathbb{P}\{i, j \in Y\} = \mathbb{P}(i \in Y)\mathbb{P}(j \in Y) - |K_{ij}|^2.$$

The space of image patches and choosing an adapted kernel

Goal: Sampling a representative subset Y of \mathcal{Y} the set of all the patches

Define the appropriate kernel K

$$K = L(L + I)^{-1}$$

with L defined as

- Gaussian kernels [2] from
 - Distance of Intensity + Position,
 $$L_{ij} = \exp(-\|I_i - I_j\|^2 - \lambda \|\text{Pos}_i - \text{Pos}_j\|^2)$$
 - Distance in a PCA reduced space,
 $$L_{ij} = \exp(-\|\text{PCA}_i - \text{PCA}_j\|^2)$$
 - Quality/diversity kernel, where $q_i \in \mathbb{R}$, $\phi_i \in \mathbb{R}^D$,
 $$L_{ij} = q_i \phi_i^\top \phi_j$$

Applications and further questions

- Possible applications:
 - Image reconstruction or compression
 - Initialization of a k-means algorithm on patches

 ex: A. Coates and A. Y. Ng, Learning Feature Representations with K-means, Springer LNCs 7700, 2012

- Some studies suppose that patches are distributed as a Gaussian Mixture Model: Need to estimate the parameters.
 Problem: Too many redundant patches
 With DPP: Enlightened subsampling of the set of patches

- Need to study new patch similarity measures to improve the selection

Results from basic image reconstruction

Comparison between kernels and the Poisson process

Figure: Square root of the Mean Squared Error (MSE) between the original image of size N and the reconstructed one in function of the number of patches selected

$$\text{MSE} = \frac{1}{N^2} \|u - u_K\|^2_2$$

Figure: Reconstructions from a Poisson point process and the DPP L2-PCA kernel from samples of 50 (two on the left) and 250 (on the right) patches

Bibliography
