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Abstract- This paper describes the generation and util-
isation of a pattern database for 19x19 go with the K-
nearest-neighbor representation. Patterns are gener-
ated by browsing recorded games of professional play-
ers. Meanwhile, their matching and playing probabil-
ities are estimated. The database created is then inte-
grated into an existing go program, INDIGO, either as an
opening book or as an enrichment of other pre-existing
hand-crafted databases used by INDIGO move genera-
tor. The improvement brought about by the use of this
pattern database is estimated at 15 points on average,
which is significant on go standards.

1 Introduction

Because the branching factor and the game length forbid
global tree search in go, and because evaluating non termi-
nal go positions is hard [14], computer go remains a difficult
task for computer science [15, 13]. In addition, computer
go is an appropriate testbed for AI methods [8]. INDIGO
[7] is made up of the Monte Carlo (MC) module and the
knowledge module. The MC module has been described
recently [9, 4], and the knowledge module was described
before 2003 [8, 5, 6]. To briefly present the current INDIGO
move decision process, the knowledge module provides the
MC module with ns moves, and, in order to select the best
move, the MC module plays out a lot of complete random
games starting with these moves and computes mean values.

The knowledge module includes various pattern
databases built manually. Hand-crafted databases have
many downsides: they contain errors, they have holes, and
they cannot be easily updated. Furthermore, the various
pattern bases in INDIGO do not share the same format: the
first one (FORME M) includes domain-dependent features
used by the conceptual evaluation function, the second
one (FORME 3X3) contains 3x3 patterns optimized for
fast simulations, and the last one is dedicated to large
patterns useful at the beginning of the game (FORME B and
FORME C). Due to the success of the MC module within
INDIGO, we aimed at using statistics in the knowledge
module too. Thus, it was the right time to test the automatic
creation of a new pattern database and observe its positive
effects within the INDIGO architecture. The automatic
creation of patterns avoids errors and holes in the database.
The automatic creation is performed by browsing recorded
professional games to create patterns and to estimate both
their matching probabilities and their playing probabilities

when matching. In other words, the approach we adopted
is a bayesian approach.

In order to avoid any limitation due to the size of pat-
terns, particularly at the beginning of the game, we used
the K-nearest-neighbor representation in which the relevant
neighbors are the occupied intersections and the edges. For
this reason, this database is named FORME K.

Section 2 is a summary of works related to the current
paper. Section 3 defines the K-nearest-neighbor representa-
tion used. Then, section 4 describes the creation of patterns
and their probabilistic features. Section 5 underlines the ex-
periments performed to integrate this work within INDIGO,
and assesses the improvements. Before conclusion, some
interesting perspectives are highlighted by section 6.

2 Related work

Despite of its importance within go programs, the litter-
ature about pattern acquisition, local move generation or
recorded professional games is not very abundant. [2] by
Mark Boon was the first paper to describe a pattern-matcher
in great details: the 5x5 window pattern-matching algo-
rithm of Goliath, best program in 1990. But this paper did
not deal with the pattern acquisition. Recently, Erik van
der Werf described a neural network approach using profes-
sional recorded games to generate local moves [17], predict
life and death [19], or score final positions [18]. Since it also
browses recorded games to produce local moves, the current
work is similar to Erik van der Werf’s approach, but it is less
sophisticated because it uses the K-nearest-neighbor repre-
sentation instead of a neural network. Moreover, it is not
intended to predict life and death or to score positions. Tris-
tan Cazenave worked on automatic acquisition of tactical
patterns for eyes or connections [10], even including liber-
ties [11]. The current work is similar to Cazenave’s work
because it consists in automatic acquisition of patterns but
it is quite different because Cazenave’s patterns were gen-
erated in a specific tactical context: connecting or making
eyes, by using explanation-based learning. Finally, [3] was
an attempt to generate 4x4 patterns by retrograde analysis.
Although it dealt with automatic acquisition of patterns, this
work was completely different from the present work be-
cause it was limited to small boards. Furthermore, it did not
use the bayesian approach but retrograde analysis.



3 K-nearest-neighbor representation

The K-nearest-neighbor representation is common in pat-
tern recognition [1]. This section defines the K-nearest-
neighbor representation used in this work.

3.1 K-nearest-neighbor patterns

The picture below shows an example a K-nearest-neighbor
pattern.
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The pattern always advises to move in its center marked
by a ’*’. ’+’ represents an empty intersection. ’O’ repre-
sents a white stone. ’@’ represents a black stone. ’+’ is an
unimportant fact in this representation. Conversely, a black
or white stone, an edge or a corner are important facts. A
pattern contains a number of important facts, named K. In
the example above, K=3.

The center of the pattern being given, we assume the
neighboring intersections are ordered according to a dis-
tance. Moreover, we assume that this pre-defined order
avoids ties between intersections situated at the same dis-
tance from the center of the pattern. With such assumption,
the pattern matching principle remains simple and can be
programed efficiently.

The upside of this representation lies in the lack of lim-
itation on the size of the patterns. In go, many moves are
played in the neighborhood of stones and edges. To simplify
the work we constrained the patterns to advise one move in
its center only, and not elsewhere.

The K-nearest-neighbor representation does not explic-
itly contain “don’t care” points usually managed by go
patterns [2]. However, in other representations managing
“don’t care” points, the patterns are roughly centered around
the move played, and the “don’t care” points are often sit-
uated far from the center of the patterns, while the cru-
cial points are situated near from the center of the patterns.
Therefore, we may say that the K-nearest-neighbor repre-
sentation implicitly contains don’t care points. Besides,
not managing these points explicitly simplifies the pattern
matching algorithm. Moreover, because replacing a pattern
containing a “don’t care” point by four patterns containing
one of the four explicit values (black, white, empty, edge)
is still possible, this representation does not lose generality
provided that the memory space is sufficient.

Pattern-matching must deal with the symmetries, rota-
tions and black and white inversions of board pieces in a
way or another. Upon the 16 patterns that belong the same
equivalence class when considering the symmetries, rota-
tions, and black and white inversions, a first approach to
match a given pattern with a piece of board consists in
storing one pattern only in memory, and let the pattern-
matching algorithm compare the actual piece of board with

the 16 patterns equivalent to the given pattern. The other ap-
proach consists in storing explicitly the 16 patterns equiva-
lent to a pattern, and lightens the pattern-matcher algorithm
with the symmetries, rotations and black and white inver-
sions. In our first release, not yet concerned with memory
limitation but with fast development, we have chosen the
second approach.

3.2 Creating patterns

For a given set of games, the creating process is straightfor-
ward. It corresponds to the following pseudo-code:

Forme_k::createPatterns() {
For k = 1 up to Kmax

For each game
For each move i of the game

createPattern(k, i);
}

If the pattern does not exist yet, the function
createPattern(k, i) creates the pattern centered on i with
k neighbors following the predefined order between inter-
sections. The patterns are stored in a tree whose nodes have
four children: the node “if empty”, the node “if black”, the
node “if white” and the node “if edge”. Thanks to such a
tree pattern-matching is efficient.

4 Bayesian generation

This section describes the bayesian aspect of the work, clas-
sical in classification tasks [1]. First, we define and name
the relevant probabilities with the bayesian properties of a
pattern. We show how we compute the pattern probabili-
ties. Finally, we discuss the way our system eliminates bad
patterns.

4.1 Definitions

P names a probablility. i names either an intersection or a
move being played on it. p names a pattern. P (p) is the
probability that pattern p matches on an arbitrary intersec-
tion. P (i) is the probability that the move is being played
on i. P (i, p) is the probability that the move is being played
on i and that pattern p matches on i. P (i|p) is the proba-
bility that the move is being played on i given that pattern
p matches on i. Finally, P (p|i) is the probability that pat-
tern p matches on i given that the move is being played on
i. P (i) and P (p) are prior probabilities. P (i|p) and P (p|i)
are posterior probabilities.

At playing-time, the underlying idea remains to perform
pattern-matching on every i intersection of the board, and
to use P (i|p) as an estimation of the urgency of the move
played on i. At building-time, we adopt a frequentist ap-
proach, a probability that an event arises is approximated
by the number of times that the event arises divided by the
number of tests performed. We say that a pattern is fre-
quent when P (p) is high, good when P (i|p) is high, and
useful when P (p|i) is high. Therefore, we defined a class



FORME K whose bayesian properties are specified below.
The term “static” is a C++ keyword which refers to a fea-
ture of the whole class.

class Forme_k {
static int n_test;
static int n_play;
int n_match; // p.n_match
int n_play_given_match; // p.n_play
static float p_play; // P(i)
float p_match; // P(p)
float p_play_given_match; // P(i|p)
float p_match_given_play; // P(p|i)
...

};

The formula to approximate the probabilities by count-
ing the events are:

P(i) = n_play/n_test;
P(p) = p.n_match/n_test;
P(i|p) = p.n_play/p.n_match;
P(p|i) = p.n_play/n_play;

We do not use the Bayes formula but posterior probabili-
ties only. However, with such definitions, the Bayes formula
remains valid:

(p.n match/n test).(p.n play/p.n match) =
(n play/n test).(p.n play/n play)

4.2 Computing the pattern probabilities

For a given set of games and a given set of patterns, the
bayesian process corresponds to the following pseudo-code:

Forme_k::computeProbabilities() {
n_play = n_test = 0;
For each pattern p,
p.n_match = p.n_play = 0;

For each game {
For each move of the game {

n_play++;
For each intersection i,

test(i);
}

}
For each pattern p,
p.p_play = p.n_play/p.n_match;

}

Forme_k::test(i) {
n_test++;
patternMatching();
For each matched pattern p on i {
p.n_match++;
if move played on i then

p.n_play++;
}

}

A test on an i intersection on a given position of a given
game answers the two questions: is the move played on i,
and which patterns are matching on i ? On 19x19 boards,
200 or 300 tests are performed by position and a game lasts
approximately 200 moves, thus 50,000 tests are performed
during one game. With the 2,000 professional games we
currently have, we reach about 100,000,000 tests.

4.3 Eliminating bad patterns

The underlying idea of this subsection consists in elimi-
nating the patterns which are not good enough or com-
puted with too low a confidence level. First, because the
low playing probability patterns are less interesting than
the high playing probability patterns, the extracting process
only kept p patterns such as P (i|p) > 0.01. Second, we
can estimate the confidence on the computed probabilities
P (being P (i|p)) computed at building-time. Basic statis-
tics [12] yield σ =

√

P (1 − P ). For most patterns we
have P << 1, thus σ =

√
P . The relevant quantity to

assess the confidence level is s(i|p) = σ/
√

p.n match =√
p.n play/p.n match
Then, the system may eliminate p patterns such as

P (i|p) < threshold × s(i|p). However, in practice, we
decided to apply this rule only when our set of games is
larger. With such pragmatic decision, our system extracted
K-dependent databases, K being the maximal number of
neighbors considered during generation. Table 1 provides
the number of patterns generated for some values of K.

K 6 9 15
patterns 8,000 27,000 85,000

Table 1: Number of generated patterns for K = 6, 9, 15.

5 Experiments

There are two possible ways of using FORME K: direct play
as an opening book without MC verification (subsection
5.1), and integration with MC verification (subsection 5.2).

For each way, we set up experiments to assess the ef-
fect of FORME K. One experiment consists in a 100-game
match between the program to be assessed, KATIA, and the
experiment reference program, the 2004 release of INDIGO
that attended the 2004 Computer Olympiads, each program
playing 50 games with Black. The result of one experi-
ment is a set of relative scores provided by a table assum-
ing that KATIA is the max player. A positive number in
a cell corresponds to a successful integration. Given that
the standard deviation of 19x19 games played by our pro-
grams is roughly 75 points, 100 games enable our experi-
ments to lower σ down to 7.5 points (only) and to obtain
a 95% confidence interval of which the radius equals 2σ,
i.e., 15 points. We have used 2.4 GHz computers. INDIGO
and KATIA both use the handcrafted databases FORME B,
FORME C, FORME M and FORME 3X3. Besides, KATIA
uses FORME K.



5.1 Using Forme K as an opening book without MC ver-
ification

The initial idea was to replace FORME B and FORME C by
FORME K. FORME B and FORME C are parts of the MC
preprocessor, implying that their moves are verified by the
MC module. However, to assess the effect of the FORME K
more frankly and quickly, we decided that KATIA will di-
rectly play the move advised by FORME K, using it as an
opening book without MC verification. Figure 1 yields the
first 40 moves of a go opening self-played by KATIA in such
a way. This opening is played with a very good style in-
deed, and may appear as very smart by human go players.
One should believe that this opening is produced by strong
human players. In fact, this appearance can be misleading.
Against weak opponents that do not play with professional
style, KATIA would not be able to confirm the good be-
havior shown by Figure 1. As shown in the following, the
result of this book approach decreases rapidly after move
forty. However, this good opening reflects the strength of a
bayesian approach on a K-nearest-neighbor representation
in go.

After this qualitative assessment, it is now important to
assess FORME K in terms of quantitative results. Table 2
shows the results between KATIA(K, BEGIN) and INDIGO.
During the first begin moves, the move played by KATIA
is the move advised by FORME K. After the opening stage,
KATIA keeps using the same move selection as INDIGO.

6 9 15
20 -9 -2 -5
30 -9 -8 +3
40 -30 -10 -6

Table 2: Average result of KATIA(K, BEGIN) against IN-
DIGO for k = 6, 9, 15 and begin = 20, 30, 40.

As expected, the result is improved when K increases,
but until K = 15 the results remain negative. At this point,
KATIA(K=15, BEGIN=30) is the only positive result. We
wondered why the results were not satisfactory. In fact, re-
placing FORME B and FORME C by FORME K was mis-
leading. Actually, FORME B and FORME C do have impor-
tance in INDIGO, and it was better to keep them in KATIA
as well.

Thus, giving up the initial idea to replace FORME B and
FORME C by FORME K, we have added FORME K in KA-
TIA and we have kept both FORME B and FORME C. This
addition gave better results provided by Table 3. Moreover,
the correct value of begin remained to be determined. First,
this result shows that KATIA was not weaker than INDIGO.
Second, because KATIA(BEGIN=40) plays instantly during
the first forty moves of the game, she saves about 30% of
the thinking process throughout one game. Therefore, at
this point, the integration already showed a positive effect
in terms of both playing level and time.

0 10 20 30 40 50
+1.0 +5.4 +0.6 +3.5 -11.1

Table 3: Average result of KATIA(BEGIN) also using
FORME B and FORME C against INDIGO for begin = 0, 10,
20, 30, 40, and 50.

5.2 Integrating Forme K with MC verification

Within INDIGO, the knowledge-based preprocessor uses
several databases along with the conceptual evaluation func-
tion to select ns moves for the MC module. The idea de-
veloped by this subsection is then to integrate FORME K
within the MC preprocessor.

We name KATIA(NK) the release of KATIA that selects
nk moves with FORME K, and selects ns− nk moves with
the existing preprocessor, finally providing them to the MC
module for verification. In 2004, INDIGO used ns = 7.
Because life and death knowledge is necessary to a go pro-
gram, and because FORME K does not contain life and
death knowledge, we expected results for nk to vary from 0
up to 4, to keep at least 3 moves concerning life and death.
Table 4 shows these results.

0 10 20 30 40 50
0 +1.0 +5.4 +0.6 +3.5 -11.1
1 -1.3 +4.9 +1.8 +3.6 +2.1 -2.9
2 +9.6 +15.8 +10.0 +6.1 +5.8 -13.0
3 +3.9 +8.6 -0.7 -1.5 -6.7 -20.1
4 +5.1 -2.5 +6.7 -4.2 +1.0 -16.9

Table 4: Average result of KATIA(BEGIN, NK) against IN-
DIGO for begin = 0, 10, 20, 30, 40 and 50 and for nk = 0, 1,
2, 3, 4.

Some of these results are then clearly positive. KA-
TIA(BEGIN=10,NK=2) averages about fifteen points better
than INDIGO. It is interesting to comment upon the KA-
TIA(NK=2) results. First, the KATIA(BEGIN=0,NK=2) re-
sult shows the effect of integrating FORME K with MC ver-
ification independently of using FORME K as an opening
book. It is interesting to point out the 10 point improvement
resulting from the insertion of 2 FORME K moves within
the 7 moves selected by the pre-processor. This fact re-
flects the lack of patterns within the hand-crafted databases,
and the presence of these patterns within FORME K. Sec-
ond, the KATIA(BEGIN=10,NK=2) result is also amazing.
It shows that KATIA improves by 5 points on average by
playing the first 5 moves by using FORME K as an opening
book. The first 5 moves corresponds to the very early be-
ginning in go standards. This result shows that appropriate
first 5 moves can already show a positive effect. Third, the
KATIA(BEGIN=20,NK=2) result corresponds to a compro-
mise between time and average playing level. The playing
level is about the same than KATIA(BEGIN=0,NK=2), but
about 20% of thinking time is saved by playing the first 10
moves instantly. Finally, KATIA(BEGIN=30 OR 40,NK=2)
can be considered as possible compromises between time
and playing level, but due to its very negative result KA-



Figure 1: Katia first 40 moves during a self-play opening

TIA(BEGIN=50,NK=2) cannot be. Besides, the results can
be commented by column. The best results are obtained for
nk = 2. FORME K does not include any life and death
information, while the conceptual evaluation function does.
It is then normal to observe that a module including life
and death is more useful (it provides 5 moves upon 7) than
FORME K which provides 2 moves upon 7.

Finally, by copying the appropriate release of KATIA
into INDIGO, may be KATIA(BEGIN=20,NK=2), we can
conclude that FORME K can be successfully integrated into
INDIGO, and we are now waiting for the next computer
go competition to observe the result against differently de-
signed programs.

6 Perspectives

We plan to re-generate the FORME K database with a num-
ber of games greater than 2,000. For instance, the GoGod
CDROM contains about 30,000 professional games, and
has the appropriate size for the next assessment. This re-
generation would refine the probabilities estimation, and
consequently the move urgencies at playing time. An im-
provement should be observed. Although numerous 9x9
and 13x13 professional games are not massively available,
checking the non-regression results of KATIA on 9x9 or
13x13 boards is a mandatory task. Taking the symmetries,
rotations and black and white inversions into account within
the pattern matching and probability estimations is also an
important perspective that will enhance the confidence level
of probability estimations. Besides, we also plan to extend
the patterns by allowing moves being played not only in the
center of the pattern but also on the intersections situated
near the center.

Moreover, we have two other interesting perspec-
tives: first, integrating a relevant subset of FORME K
within the conceptual evaluation function module to re-

place FORME M, and, second, integrating another appro-
priate subset of FORME K within the MC engine to re-
place FORME 3X3. The first integration should be a diffi-
cult knowledge engineering task because FORME M is used
by the conceptual evaluation function in a very intricated
way. The second one should be possible provided the pat-
terns are limited to a pre-defined neighborhood of the cen-
ter of the pattern, because speed considerations are crucial
within the MC engine. Another interesting challenge of this
second integration is the off-line computation of move ur-
gencies. This can be done either by using a function of the
probabilities computed by browsing recorded games, or by
reinforcement learning technique [16].

7 Conclusion

We have suggested a method to extract patterns automat-
ically from professional recorded games. This method
uses basic probability estimations, and does not assume
any domain-dependent knowledge. To this extent, it is a
good continuation of a MC go program. The represen-
tation used is the K-nearest-neighbor representation. The
bayesian generation of K-nearest-neighbor patterns gives
an opening book that produces very good openings indeed.
This work experimentally demonstrates that the strength of
this method lies in the K-nearest-neighbor representation
adapted to the game of go. Its weakness lies in its lack of life
and death understanding, life and death being the corner-
stone of any strong go program. Thus, this approach cannot
be used as such, and must be combined with other existing
approaches.

We have integrated the database built along such a
method into the go playing program INDIGO. The results
are positive. Adding the database within the preprocessor
of the MC module enables INDIGO to improve by 15 points
on 19x19 boards on average, which is significant in go stan-



dards. Furthermore, in the opening of games, the quality of
the twenty or thirty first moves provided by the database al-
lows INDIGO to play these moves directly without MC veri-
fication. Consequently, 20% of the thinking time of INDIGO
can be saved, allowing room for other future improvements.
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