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Abstract
We have developed two go programs, Olga and Oleg, using a Monte Carlo

approach, simpler than Bruegmann’s [Bruegmann, 1993], and based on [Abram-
son, 1990]. We have set up experiments to assess ideas such as progressive
pruning, all moves as first heuristic, temperature, simulated annealing and depth-
two tree search within the Monte Carlo framework. Progressive pruning and the
all moves as first heuristic are good speed up enhancements that do not lower
the level of the program too much. Then, using a constant temperature is a good
and simple heuristic that is about as good as simulated annealing. The depth-two
heuristic gives deceptive results at the moment. Finally, the results of our Monte
Carlo programs against knowledge-based programs on 9x9 boards and the ever-
increasing power of computers lead us to think that Monte Carlo approaches are
worth considering for computer go in the future.

1. Introduction

When its termination is possible, tree-search provides the program with the
best move and a proof consisting in the tree that has been explored. It does not
necessarily need domain-dependent knowledge but its cost is exponential in the
search depth. Besides, a domain-dependent move generator generally yields
a good move, but without any verification. It costs nothing in execution time
but the move generator remains incomplete and always contains errors. When
considering the game of go, these two remarks are crucial. Global tree search is
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not possible in go and knowledge based go programs are very difficult to improve
[Bouzy and Cazenave, 2001]. Therefore, this paper explores an intermediate
approach in which a go program performs a global search, not a global tree
search, using very little knowledge. This approach is based on statistics or
Monte Carlo methods. We believe that such an approach does not have the
drawback of go global tree search with very little domain-dependent knowledge
(no termination) and the drawback of domain-dependent move generation (no
verification). The statistical global search described in this paper terminates and
provides the move with a kind of verification. In this context, this paper claims
the adequacy of statistical methods, or Monte Carlo methods, to the game of
go.

To support our view, section 2 describes the related work about Monte Carlo
applied to go. Section 3 focuses on the main ideas underlying our work. Then,
section 4 highlights the experiments to validate these ideas. Before conclusion,
section 5 discusses the relative merits of the statistical approach and its variants
along with promising perspectives.

2. Related Work

At a practical level, the general meaning of Monte Carlo lies in the use of the
random generator function, and theoretically, Monte Carlo refers to [Fishman,
1996]. Monte Carlo methods have already been used in computer games. In
incomplete information games, such as poker [Billings et al., 2002], scrabble
[Sheppard, 2002], and backgammon [Tesauro, 2002], this approach is natural:
because the information possessed by your opponent is hidden, you want to
simulate this information. In complete information games, the idea of replacing
complete information by randomized information is less natural. Nevertheless,
this is not the first time that Monte Carlo methods have been tried in complete
information games. This section deals with two previous works [Abramson,
1990]and [Bruegmann, 1993].

2.1 Abramson’s Expected-outcome

Evaluating a position of a two-person complete information game with statis-
tics was tried by Abramson in [Abramson, 1990]. He proposed the expected-
outcome model, in which the proper evaluation of a game-tree node is the
expected value of the game’s outcome given random play from that node on.
The author showed that the expected outcome is a powerful heuristic. He
concluded that the expected-outcome model of two-player games is “precise,
accurate, easily estimable, efficiently calculable, and domain-independent”. In
1990, he tried the expected-outcome model on the game of 6x6 Othello. The
ever-increasing power of computer now enables go programs to use this model.
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2.2 Bruegmann’s Monte Carlo Go

B. Bruegmann was the first to develop a go program based on random games
[Bruegmann, 1993]. The architecture of the program, Gobble, was remarkably
simple. In order to choose a move in a given position, Gobble played a large
number of almost random games from this position to the end, and scored them.
Then, he evaluated a move by computing the average of the scores of the random
games where it had been played.

This idea is also the basis of our work. Now we describe some aspects of the
program that, in our opinion, could be more or less subject to modifications:

1 Moves that filled one’s eyes were forbidden. This was the sole domain-
dependent knowledge used in Gobble. In the game of go, the groups must
have at least two eyes in order to be alive (with the relatively rare exception
of groups living in seki). If the eyes could be filled, the groups would
never live and the random games would not actually finish. However, the
exact definition of an eye has its importance.

2 Moves were evaluated according to the average score of the games in
which they were played, not only at the beginning but at any stage of
the game, provided that it was the first time one player had played at
the intersection. This was justified by the fact that moves are often good
independently of the stage at which they are played. However, this can
turn out to be a fairly dangerous trick.

3 Moves were not chosen completely randomly, but rather on their current
evaluation, good moves having more chances to be played first. Fur-
thermore, simulated annealing was used to control the probability that a
move could be played out of order. The amount of random put in the
games was controlled with the temperature; it was set high at the begin-
ning and gradually decreased. Thus, in the beginning, the games were
almost completely random, and at the end they were almost completely
determined by the evaluations of the moves. However, we will see that
it is possible both, to fix the temperature to a constant value, and even
to make it infinite, which means that all moves are played with equal
probability.

3. Our Work

First, this section describes the basic idea underlying our work. Then, it
presents our go programs, Olga and Oleg, and it deals with the only important
domain-dependent consideration of the method: the definition of eyes. Finally,
it provides a graph explaining the various possible enhancements to the basic
idea.
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3.1 Basic idea

Though the architecture of the Gobble program was particularly simple,
some points were subject to discussion; we, therefore, give our own algorithm
for Monte Carlo go programs. This is an adaptation of [Abramson, 1990].

To evaluate a position, play a given number of completely random games to
the end - without filling the eyes - and score them. The evaluation corresponds to
the mean of the scores of those random games. To choose a move in a position,
play each of them and maximize the evaluations of the positions obtained at
depth 1.

3.2 Our programs: Olga and Oleg

We have developed two go programs based on the basic idea above: Olga
and Oleg. Olga and Oleg are far-fetched French acronyms for “ALeatoire GO”
or “aLEatoire GO” that mean random go. Olga was developed by Bruno Bouzy
in the continuation of Indigo development [Bouzy, 2002]. The main idea was
to use a very little domain-dependent knowledge approach. At the beginning,
the other guideline in the Olga development was to concentrate on the speed
of the updating of the objects relative to the rules of the game, which was not
highlighted in the previous developments of Indigo. Of course, Olga uses code
available in Indigo.

Oleg was written by Bernard Helmstetter. The main idea was to reproduce
the Monte Carlo Go experiments of [Bruegmann, 1993] to obtain a go program
with very little go knowledge. Oleg uses the basic data structure of GnuGo that
is already very well optimized by the GnuGo team [Bump, 2003].

Both in Oleg and in Olga, the quality of play depends on the precision
expected that varies with the number of tests performed. The time to carry out
these tests is proportional to the time spent to play one random game. On a
2 GHz computer, Olga plays 7,000 random 9x9 games per second and Oleg
10,000.

Because strings, liberties and intersection accessibilities are updated incre-
mentally during the random games, the number of moves per second is almost
constant and the time to play a game is proportional to the board size. Since
the precision of the expected value depends on the square of the number of
random games, there is no need to gain 20 percent in speed, which would only
bring about a 10 percent improvement in the precision. However, optimizing
the program very roughly is important. A first pass of optimizations can gain a
ratio of 10, and the precision can be three times better in such a case, which is
worthwhile.

Olga and Oleg share the basic idea and most of the enhancements that will
be described at the end of the current section. They are used to test the relative
merits of each enhancement. They use their own definition of eyes.
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3.3 How to define eyes?

The only domain-dependent knowledge required is the definition of an eye.
This is important for the random program not to play a move in an eye. Without
this rule, the random player would never make living groups and the games
would never end. There are different ways to define “eyes” as precisely as
possible with domain-dependent knowledge such as [Fotland, 2002], [Chen
and Chen, 1999]. Our definitions are designed to be integrated into a random
go playing program; they are simple and fast but not correct in some cases.

In Olga, an eye is an empty intersection surrounded by stones of one color
with two liberties or more.

In Oleg, an eye is an empty intersection surrounded by stones belonging to
the same string.

The upside of both definitions is the speed of the programs. Oleg’s definition
is simpler and faster than Olga’s. Both approaches have the downside of being
wrong in some cases. Oleg’s definition is very restrictive: Oleg’s eyes are actual
true eyes but it may fill an actual eye. Besides, Olga has a fuzzy and optimistic
definition: it never fills an actual eye but, to connect its stones surrounding an
Olga’s eye, Olga always expects one adjacent stone to be put into atari.

The diagonal intersections do not intervene in these definitions since we do
not want to insert too much domain-dependent knowledge into the program.

3.4 Various possible enhancements

So far, we have identified a few possible enhancements from the basic idea.
They are shown in figure 1. This figure also shows the enhancements used by
Oleg and Olga in their standard configurations. Two of the enhancements were
already present in Gobble, namely the all moves as first heuristic (which means
making statistics not only for the first move but for all moves of the random
games) and simulated annealing. For the latter, an intermediate possibility can
be adopted: instead of making the temperature vary during the game, we make
it constant.

With a view to speeding the basic idea process, an alternative to all moves as
first heuristic is progressive pruning: the first move only of the random games
is taken into account for the statistics, and moves whose evaluation is already
too low compared to the best move are pruned.

Making a minimax at depth 2 and evaluating the positions by making random
games from this position is a natural evolution from the basic idea. The expected
result is an improvement of the program reading ability. For instance, it would
suppress moves that work well only when the opponent does not respond.
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Abramson
Basic Idea

Progressive Prunning

Olga

Minimax at depth 2

Temperature constant
Oleg

Simulated Annealing
Gobble

enhancing the quality
of the randon gamesspeed

reading

Gobble, Oleg
All moves as first

Figure 1. possible enhancements

4. Experiments

Starting from the basic idea, this section describes and evaluates the various
enhancements: progressive pruning, all moves as first heuristic, temperature
and simulated annealing, and depth-two enhancements.

For each enhancement, we set up experiments to assess its effect on the level
of our programs. One experiment consists in a match of 100 games between the
program to be assessed and the experiment reference program, each program
playing 50 games with black. In most experiments, the program to be assessed
is a program in which one parameter varies, and the reference program is the
same program with the parameter fixed to a reference value. In the other set
of experiments, the program to be assessed uses the enhancement while the
reference program does not. The result of an experiment is generally a set of
relative scores provided by a table assuming that the program of the column
is the max player. Given that the standard deviation of 9x9 games played by
our programs is roughly 15 points, 100 games enable our experiments to get a
1.5 point precision. We have used 2 GHz computers. When the response time
of the assessed program varies with the experiment parameters, we provide
it. Furthermore, all the programs in this work do not use any conservative
or aggressive style depending on who is ahead in a game, they only try to
maximize their own score. The score of a game is more significant than the
winning percentage which is consequently not included in the experiments’
results. We terminate this section with an assessment of Olga and Oleg against
two existing knowledge-based programs Indigo and Gnugo, in showing the
results of an all against all tournament.
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4.1 Progressive pruning

As contained in the basic idea, each move has a mean value � , a standard
deviation � , a left expected outcome ��� and a right expected outcome ��� .
For a move, ��� = � - ���	� and � ��
 �� ���	� . �	� is a ratio fixed up by
practical experiments. A move ��� is said to be statistically inferior to another
move ��� if ��� . � ��� ��� . ��� . Two moves ��� and ��� are statistically equal
when ��� . � � ��� and ��� . � � ��� and no move is statistically inferior to the other.
� � is called standard deviation for equality, and its value is determined by
experiments.

In Progressive Pruning (PP), after a minimal number of random games (100
per move), a move is pruned as soon as it is statistically inferior to another
move. Therefore, the number of candidate moves decreases while the process
is running. The process stops either when there is only one move left (this
move is selected), or when the moves left are statistically equal, or when a
maximal threshold of iterations is reached. In these two cases, the move with
the highest expected outcome is chosen. The maximal threshold is fixed to
10,000 multiplied by the number of legal moves. This progressive pruning
algorithm is similar to the one described in [Billings et al., 2002].

Due to the increasing precision of mean evaluations while the process is
running, the max value of the root is decreasing. Consequently, a move can
be statistically inferior to the best one at a given time and not later. Thus, the
pruning process can be either hard (a pruned move cannot be candidate later
on) or soft (a move pruned at a given time can be candidate later on). Of course,
soft PP is more precise than hard PP. Nevertheless, in the experiments shown
here, Olga uses hard PP.

The inferiority of one move compared to another, used for pruning, depends
on the value of ��� . Theoretically, the greater ��� is, the less pruned the moves
are, and, as a consequence, the better the algorithm performs, but the slower it
plays. The equality of moves, used to stop the algorithm, is conditioned by ��� .
Theoretically, the smaller ��� is, the fewer equalities there are, and the better the
algorithm plays but with an increased slowness. We set up experiments with
different versions of Olga to obtain the best compromise between the time and
the level of the program. The first set of experiments consisted in assessing the
level and speed of Olga depending on ��� . Olga( ��� ) played a set of games either
with black or white against Olga( ��� =1). Table 1 shows the mean of the relative
score of Olga( ��� ) when ��� varies from 1 up to 8. Both the minimal number
of random games and the maximal threshold remain constant (100 and 10,000
respectively).

This experiment shows that ��� plays an important role in the move pruning
process. Large values of ��� correspond to the basic idea. To sum up, progressive
pruning loses little strength compared to the basic idea, between five or ten
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�! 1 2 4 8
mean 0 +5.6 +7.3 +9.0
time 10’ 35’ 90’ 150’

Table 1. Times and relative scores of PP with different values of �" , against PP( �! =1).

points according to the value of ��� . In the next experiments, although ��� = 2
gives the best result versus speed compromise, �#� is set to 1. The second set
of experiments deals with ��� in the same way. Table 2 shows the mean of the
relative score of Olga( � � ) when � � varies from 0.2 up to 1.

$�% 0.2 0.5 1
mean 0 -0.7 -6.7
time 10’ 9’ 7’

Table 2. Times and relative scores of PP with different values of $#% , against PP( $�% =0.2).

Olga( �&� =1) yields the worst score while using less time. This experiment
confirms the role played by ��� in the move pruning process. In the next exper-
iments, �'� is set to 0.2.

4.2 All Moves As First

When evaluating the terminal position of a given random game, this terminal
position may be the terminal position of many other random games in which
the first move and another friendly move of the random game are reversed.
Therefore, when playing and scoring a random game, we may use the result
either for the first move of the game only, or for all moves played in the game
as if they were the first to be played. The former is the basic idea, the latter is
what was performed in Gobble, and we use the term all moves as first heuristic.

4.2.1 Advantages and drawbacks. The idea is attractive, because one
random game helps evaluate almost all possible moves at the root. However,
it does have some drawbacks because the evaluation of a move from a random
game in which it was played at a late stage is less reliable than when it is played at
an early stage. This phenomenon happens when captures have already occurred
at the time when the move is played. In figure 2 the values of the moves A for
black and B for white largely depend on the order in which they are played.

There might be more efficient ways to analyze a random game and decide
whether the value of a move is the same as if it was played at the root. Thus,
we would get the best of both worlds: efficiency and reliability. To this end, at
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least one easy thing should be done (it has already been done in Gobble and in
Oleg): in a random game, if several moves are played at the same place because
of captures, modify the statistics only for the player who played first.

Figure 2. the move order is important

The method has another troublesome side effect: it does not evaluate the
value of an intersection for the player to move but rather the difference between
the values of the intersection when it is played by each player. Indeed, in most
random games, any intersection will be played either by one player or the other,
with an equal probability of about (	)�* (an intersection is almost always played
at least once during a random game). Therefore, the average score of all random
games lies approximately in the middle between the average score when white
has played a move and the average score when black has played a move. Most
often, this problem is not serious, because the value of a move for one player
is often the same for both players; but sometimes it is the opposite. In figure 3
the point C is good for white and bad for black. On the contrary D and E are
good for black only.

Figure 3. the value of moves may be very different for both players

4.2.2 Experimental comparison with progressive pruning. Com-
pared to the very slow basic idea the gain in speed offered by the all moves
as first heuristic is very important. On the contrary to the basic idea or PP, the
number of random games to be played becomes independent of the number of
legal moves. This is the main feature of this heuristic. Instead of playing a 9x9
game in more than two hours by using the basic idea, Olga plays in five minutes
with the use of this heuristic. However, we have seen two problems due to the
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use of this heuristic. Therefore, how do the uses of all moves as first heuristic
and progressive pruning compare in strength?

Table 3 shows the mean of the relative scores of Olga(Basic idea) and
Olga(PP) against Olga(all moves as first).

Basic idea PP
+13.7 +4.0

Table 3. Relative scores of Olga with the basic idea or with PP, against the all moves as first
heuristic.

While the previous section underlines that PP decreases the level of Olga
by about five or ten points according to the value of �#� , the all moves as first
heuristic decreases the level by almost fifteen points. The confrontation between
Olga(PP) and Olga(all moves as first) shows that PP remains better in strength.

4.2.3 Influence of the number of random games. The standard de-
viation � of the random games usually amounts to 45 points at the beginning
and in the middle game, and diminishes in the endgame. If we play + random
games and take the average, the standard deviation is �,).- + . This calcula-
tion helps find how many random games to play so that the evaluations of the
moves get sufficiently close to their expected outcome. From a practical point
of view, how does this relate to the level of play? Table 4 shows the result of
Oleg( + 
 (0/.1"/�/�/ ) against Oleg( + 
 (0/�/�/ ) and Oleg( + 
 (0/�/.1"/�/�/ ).

1000 100,000
-12.7 +3.2

Table 4. Relative scores of Oleg with different values of 2 , against Oleg( 2�35476	896:6;6 ).

We can conclude that 10,000 random games per move is a good compromise
when using the all moves as first heuristic. Since Oleg is able to play 10,000
random games per second, this means it can play one move per second while
using this heuristic only.

4.3 Temperature and simulated annealing

Simulated annealing [Kirkpatrick et al., 1983] was presented in [Bruegmann,
1993] as the main idea of the method. We have seen that it is perfectly possible
not to use it, so what is its real contribution?

4.3.1 Temperature. To begin with, instead of making the temperature
start high and decrease as we play more random games, it is simpler to make
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it a constant. The temperature has been implemented in Oleg in a somewhat
different way like in Gobble. In the latter, two lists of moves were maintained
for both players, and the moves in the random games were played in the order
of the lists (if the move in the list is not legal, we just take the next in the
list). Between each random game, the lists were sorted according to the current
evaluation of the moves and then moves were shifted in the list with a probability
depending on the temperature.

In Oleg, in order to choose a move in a random game, we consider all the
legal moves and play one of them with a probability proportional to

<>=@?�ACBEDGF 1
where D is the current evaluation of the move and B a constant which must be
seen as the inverse of the temperature ( B 
 / means H 
JI ). A drawback of
this method is that it slows down the speed of the random games to about 2,000
per second. Table 5 shows the results of Oleg( B 
 * ) against Oleg( B ) for a
few values of B .

K
0 5 10 20

mean -8.1 +2.6 -4.9 -11.3

Table 5. Relative scores of Oleg with different values of
K

against Oleg(
K

=2).

So, there is indeed something to be gained by using a constant temperature.
This is probably because the best moves are played early and thus, get a more
accurate evaluation. However it is bad to have B too large. The best we have
found is B 
ML .
4.3.2 Simulated Annealing. Then, we have made some experiments
with simulated annealing in Oleg. In our implementation the variable B in-
creases as more random games are played. However, we have not been able
to get significantly better results this way than with B set to a constant. For
example, we have made an experiment between Oleg with simulated annealing
and B varying from 0 to 5, and Oleg with B 
ML . The version with simulated
annealing won by 1.6 points in average.

The motivation for using simulated annealing was probably that the program
would gain some reading ability, but we have not seen any evidence of this, the
program making the same kind of tactical blunders. Besides, the way simu-
lated annealing is implemented in Gobble is not classical. Simulated annealing
normally has an evaluation that depends only on the current state (in the case
of Gobble, a state is the lists of moves for both players); instead in Gobble the
evaluation of a state is the average of all the random games that are based on
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all the states reached so far. There may be a way to design a true simulated
annealing based go program but speed would, then, be a major concern.

4.3.3 Oleg against Vegos. Vegos is a recent go program available on the
web [Kaminski, 2003]. It is based on the same ideas as Gobble; particularly it
uses simulated annealing. A confrontation of 20 games against Oleg( B 
 * ,
without simulated annealing) has resulted in an average win of 7.5 points for
Oleg. We did not perform more games because we had to play them by hand.
The playing styles of the programs are similar, with slightly different tactical
weaknesses. The result of this confrontation is another reason why we doubt
that simulated annealing is crucial for Monte Carlo go.

4.4 Depth 2 enhancement

In this variant, the given position is the root of a depth-two min-max tree. Let
us start the random games from the root by two given moves, one move for the
friendly side, and, then, one move for the opponent, and make statistics on the
terminal position evaluation for each node situated at depth 2 in the min-max
tree. At depth-one nodes, the value is computed by using the min rule. When
a depth-one value has been proved to be inferior to another one, then this move
is pruned, and no more random games are started with this move first. This
variant is more complex in time because, if N is the number of possible moves,
about N � statistical variables must be sampled, instead of N only.

We set up a match between two versions of Olga using progressive pruning
at the root node. Olga( OQP!R�S7T =1) backs up the statistics about random games at
depth one while Olga( OUP7R�S!T =2) backs up the statistics at depth two and uses the
min rule to obtain the value of depth-one nodes. The values of the parameters
of Olga( OQP!R�S!T =1) are the same as the parameters of the PP program. The
minimal number of random games without pruning is set to 100. The maximal
number of random games is also fixed to 10,000 multiplied by the number of
legal moves, ��� is set to 1, and �'� is set to 0.2. While Olga( OUP7R&S7T =1) only
uses 10’ per 9x9 game, Olga( OQP!R�S7T =2) is very slow. In order to speed up
Olga( OUP7R�S!T =2), we use the all moves as first heuristic. Thus, it uses about 2
hours per 9x9 game, which yields results in a reasonable time.

Table 6 shows the mean of the relative score of Prog( OUP7R&S7T =2) against
Prog( OUP7R�S!T =1), Prog being either Olga or Oleg.

Olga Oleg
-2.1 -2.4

Table 6. Relative scores of Prog( VXWZY�[C\ =2) against Prog( VXWZY�[C\ =1).
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Intuitively, the results should be better for the depth-two programs, but they
are actually slightly worse. How can this be explained?

The first possible explanation lies in the min-max oscillation observed at root
node when performing iterative deepening. A depth-one search overestimates
the min-max value of the root while a depth-two search underestimates the
min-max value. Thus, the depth-two min-max value of the root node is more
difficult to separate from the evaluation of the root (also obtained with random
simulations) than the depth-one min-max value is. In this view, and because
Olga does not play negative move, Olga( OUP7R�S!T =2) pass on some positions on
which Olga( OUP7R�S!T =1) does not. In order to get an answer to the validity of
this explanation, a depth three experiment becomes mandatory. If depth three
performs well, then the explanation should be reinforced, otherwise another
explanation is needed.

The second explanation is statistical. Let ] be a random variable which is
the maximum of 10 identical random variables ^U_ ( /a`cbd`fe ) with mean( ^a_ )
= 0 and standard deviation � A ^g_ F 
 ( , plus a last one h with mean( h ) = i�j�/
and standard deviation � A h F 
 ( . We have ] = max( ^Qk , ..., ^gl , h ). Table 7
provides the mean and standard deviation of ] .

m
0 1 2 3 4

mean( n ) 1.58 1.77 2.27 3.06 4.01$�o nqp 0.58 0.62 0.77 0.92 0.98

Table 7. mean and standard deviation of n with different values of
m
.

Table 7 shows that, on positions in which all 11 moves are equals ( i 
 / ),
performing a max (resp. min) leads to a positive (resp. negative) value (1.58)
significantly greater (resp. smaller) than the (resp. opposite of the) standard
deviation of each move (1). Therefore, when performing a depth-two search,
the depth-one nodes are largely underestimated and, given these depth-one
estimations, the root node is largely overestimated. Thus, when the number
of games is not sufficient, the error propagates once in the negative direction
and then in the positive one. To sum up, when the moves are almost equal, the
min-max value at root node contains a lot of randomness.

Table 7 also points out another explanation. When ir`s* , mean( ] ) and
� A ] F remain quite different from i and 1 respectively. But when iutwv , both
mean( ] ) and � A ] F are almost equal to i and 1 respectively. Thus, on positions
with one best move only and ten average moves, the mean value of the max value
becomes exact only when the difference between the best move evaluation and
the other move evaluation is about four times the value of the standard deviation
of the move evaluations.
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These two remarks show that, when using the depth-two enhancement, a lot
of uncertainty in contained in the min value of depth-one nodes and even more
in the min-max value of the root node.

4.5 An all against all tournament with Oleg, Olga, Indigo
and GnuGo

To evaluate the Monte Carlo approach against knowledge-based approach,
this subsection provides the results of an all against all 9x9 tournament between
Olga, Oleg, Indigo and GnuGo. GnuGo [Bump, 2003] is a knowledge-based go
program developed by the Free Software Foundation. We used the 3.2 version
released in April 2002. Indigo2002 [Bouzy, 2002] is another knowledge-based
program whose move decision process is described in [Bouzy, 2003]. Olga
means Olga( OUP7R�S!T =1, ��� =1, � � =0.2) using PP and not the all moves as first
heuristic. Oleg uses the all moves as first heuristic, a constant temperature
corresponding to B =2, and it does not use PP. Table 8 shows the grid of the all
against all tournament.

Olga Indigo GnuGo
Oleg +10.4 -4.9 +31.5
Olga +1.8 +33.7

Indigo +8.7

Table 8. The grid of the all against all tournament.

First, Monte Carlo excepted, our tests show that, on 9x9 board, GnuGo 3.2 is
about 8.7 points better than Indigo2002. Then, considering Monte Carlo, both
Olga and Oleg are far below GnuGo (more than thirty points average). How-
ever, given the very large difference of complexity between the move generator
of Gnugo and our move generators, this result is quite satisfactory. Against In-
digo, both Olga and Oleg performs well. The three programs beat themselves
circularly. On 9x9 boards, we may say that Oleg and Olga containing very little
knowledge have a comparable level to the level of Indigo that contains a lot of
knowledge. The result between two very different architectures, statistical and
knowledge, is quite enlightening.

Besides, we have made tests on larger boards. Although the number of
games played is not sufficient to obtain significant results, they give an idea of
the behavior of Monte Carlo programs in such situations. On the basis of twenty
13x13 games only, Olga is 17 points below Indigo. On a 19x19 go board, a
7 games’ confrontation between Oleg and GnuGo was won by Gnugo with an
average margin of 83 points. Oleg takes a long time to play (about 3 hours per
game) for several reasons. First, the random games are longer. Second, we
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must play more of them to have an accurate evaluation of the moves (we did it
with 50,000 random games per move). Lastly, the main game itself is longer.
In those games, typically Oleg makes a large connected group in the center with
just enough territory to live and Gnugo gets the points on the sides.

5. Discussion

While showing a sample game between Oleg and its author, this section
discusses the strengths and weaknesses of the statistical approach and opens up
some promising perspectives.

5.1 Strengths and weaknesses

On the programmer’s side, the main strength of the Monte Carlo approach
is that it uses very little knowledge. First, A Monte Carlo game program can
be developed very quickly. As Bruegmann did for the game of Go, this upside
must be underlined: the programmer has to efficiently implement the rules of
the game and eyes, and that is all. He can leave all other knowledge aside.
Second, the decomposition of the whole game into sub-games, a feature of
knowledge-based programs, is avoided. This decomposition introduces a bias
in knowledge-based programs, and Monte Carlo programs do not suffer from
this downside. Finally, the evaluations are performed on terminated games,
and, consequently, the evaluation function is trivial. Besides, Monte Carlo go
programs are weak tactically, and they are still slower than classical programs
and, at the moment, it is difficult to make them play on boards larger than 13x13.

In the human user’s viewpoint, any Monte Carlo go program underestimates
the positions for both sides. Thus, it likes to keep its own strength. As a result,
it likes to make strongly connected shapes. Conversely, it looks for weaknesses
in the opponent position that do not exist. This can be seen in the game of figure
4. It was played between Oleg as black and its author as white. Oleg was set
with B 
wL and 10,000 random games per move. White was playing relatively
softly in this game and did not try to crush the program.

5.2 Perspectives

First, subtract the tactical weakness of the Monte Carlo method with a pro-
cessing containing tactical search. Second, use domain dependent knowledge
to play pseudo-random games. Third, build statistics not only on the global
score but on other objects.

5.2.1 Preprocessing with tactical search. The main weakness of Monte
Carlo approach being tactics, it is worth adding some tactical modules to the
program. It is easy to add a simple tactical module which reads ladder. This
module can be either a preprocessing or a post-processing to Monte Carlo.
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7 9
5 6

22 21 11 1 3 4 30
12 10 19 13 2 29
24 23 20 8 14 15 16
26 25 27 28 17 18

63 55 59 58 62
40 39 61 35 33 34
38 37 32 60
36 31 46

57
53 56 45
54

48 51
44 41 43 42 50 49 47 52

Figure 4. Oleg(B)-Helmstetter(W). White wins by 17 points plus the komi.

In this context, each module is independent of the other one, and does not
use the strength of the other one. Another idea would consist in making the
two modules interact. When the tactical module selects moves for the random
games, it would be useful for Monte Carlo to use the already available tactical
results. This approach would require a quick access to the tactical results, and
would slow down the random games. The validity of the tactical results would
depend on the moves already played and it would be difficult to build an accurate
mechanism to this end. Nevertheless, this approach looks promising.

5.2.2 Using domain dependent pseudo-random games. Until now, a
program using random games and very little knowledge has a level comparable
to Indigo2002. Thus, what would be the level of a program using domain
dependent pseudo-random games? As suggested by [Bruegmann, 1993], a
first experiment would be to make the random program use patterns giving the
probability of a move advised by the pattern. The pattern database should be
built a priori and should not introduce too much bias into the random games.

5.2.3 Exploring the locality of go with statistics. To date, we have
estimated the value of a move by considering only the final scores of the random
games where it had been played. Thus, we obtain a global evaluation of the
move. This is both a strength and a weakness of the method. Indeed, the effect
of a move is often only local, particularly on 19x19 go boards. We would like
to know whether and why a move is good.

It might be possible to link the value of a move to more local subgoals from
which we could establish statistics. The value of those subgoals could, then,
be evaluated by linking them to the final score. Interesting subgoals could deal
with capturing strings or connecting strings together.
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6. Conclusion

In this paper, we have described a Monte Carlo approach to computer go.
Like Bruegmann’s Monte Carlo go, it uses very little domain-dependent knowl-
edge, and only, concerning eyes. When compared to knowledge based ap-
proaches, this approach is very easy to implement but its weakness lies in the
tactics. We have assessed several heuristics by performing experiments with
different versions of our programs Olga and Oleg. Progressive pruning and the
all moves as first heuristic enables the programs to play more quickly without de-
creasing their level much. Then, adding a constant temperature to the approach
guarantees a higher level but yields a slightly slower program. Furthermore,
we have shown that adding simulated annealing does not help: it makes the
program more complicated and slower, and the level is not significantly better.
Besides, we have tried to enhance our programs with a depth-two tree search,
which did not work well. Lastly, we have assessed our programs against exist-
ing knowledge-based ones, GnuGo and Indigo, on 9x9 boards. Olga and Oleg
are still clearly inferior to GnuGo (version 3.2) but they match Indigo.

We believe that, with the help of the ever-increasing power of computers,
this approach is promising for computer go in the future. At least, it provides
go programs with a statistical global search, which is less expensive than global
tree search, and which enriches move generation with a kind of verification. In
this respect, this approach fills the gap left by global tree search in computer go
(no termination) and left by move generation (no verification). We believe that
the statistical search is an alternative to tree search [Junghanns, 1998] worth
considering in practice. It has already been considered theoretically within the
framework of [Rivest, 1988]. In the near future, we plan to enhance our Monte
Carlo approach in several ways: adding tactics, inserting domain-dependent
knowledge into the random games and exploring the locality of go with more
statistics.
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