Monte-Carlo Fork Search for Cooperative Path-Finding

Bruno Bouzy
Paris Descartes University
Journée du LIPADE
16 juin 2015
Outline

- Cooperative Path-Finding (CPF)
- Monte-Carlo Tree Search (MCTS)
- (Nested) Monte-Carlo Search (MCS)
- Monte-Carlo Fork Search (MCFS)
- Nested MCFS (NMCFS)
- CPF simulations
- Experimental results
- Conclusions
CPF example

- T=0
- Tnea=0

Each number corresponds to an agent.
• T=0
• Tnea=0

CPF example

Position

Goal

OK

Obstacle

Individual Path
CPF rules

• (On a graph)
• On a grid
 • 4-connectivity (or 8-connectivity)
 • obstacles
• Rules:
 • An agent can move on the neighbouring cell or stay
 • Rule 0: no two agents can be on the same cell
 • Rule 1: no two agents can swap
 • Circularity is possible
• T=0
• nea=0

CPF example

Position
Goal
OK

Obstacle

Elementary Action
CPF example

- T=1
- Tnea=9
- nea=5

Position
Goal
OK

Elementary Action
CPF example

- $T=2$
- $T_{nea}=14$
- $nea=2$

Position

Goal

OK

Elementary Action
CPF example

- **T=3**
- **Tnea=16**
- **nea=4**

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Position**
- **Goal**
- **OK**

Obstacle

Elementary Action
CPF example

- $T=4$
- $T_{nea}=20$
- $nea=6$

Position

Goal

OK

Elementary Action

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Obstacle

The CPF example shows a grid with positions, obstacles, goals, and OK areas. The numbers indicate the position and movement within the CPF framework.
CPF example

- $T=5$
- $T_{nea}=26$
- $nea=6$
CPF example

- T=6
- Tnea=32
- nea=4
 CPF example

- T=7
- Tne=36
- nea=4

Position

Goal

OK

Elementary Action
 CPF example

- $T=8$
- $T_{nea}=40$
- $nea=6$

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Elementary Action

Position

Goal

OK
CPF example

- $T=9$
- $T_{nea}=46$
- $nea=5$

Elementary Action
 CPF example

- \(T=10\)
- \(T_{nea}=51\)
- \(nea=1\)
CPF example: end!

- $T=11$
- $T_{nea}=52$

![CPF Diagram]
CPF optimization target

- **Sequentiality**
 - sum of individual costs
 - i.e. *Total number of elementary actions* (T_{nea})
 - Most of work in the literature

- **Simultaneity**
 - *Global elapsed time* (T) = *Number of timesteps*
 - Our work + TOMPP (Yu 2012)
Complexity

- **Number of joint actions is exponential in the number of agents**
 - 10 agents and 5 actions yield $5^{10} \approx 10^7$ joint actions

- « Best first » searches (MCTS, A*) do not work
 (even on the simple example)

- **Challenging!**
CPF previous work

- WHCA* (Silver 2006)
- A* + Operator Decomposition (OD) (Standley 2010)
- A* + Independent Detection (ID) (Standley 2011)
- Incremental Cost Tree Search (ICTS) (Sharon 2011)
- Multi-Agent Path Planning (MAPP) (Botea 2011)
- Push & Swap (Luna 2011)
- TASS (Khorshid 2011)
- Time-Optimal Multi-Agent Path Planning (TOMPP) (Yu 2012)
- CPF video game benchmarks (Sturtevant 2012)
Overall approach

- MCTreeSearch
 - Nested MCTS
 - N-player games

- MCSearch
 - Nested MCS
 - 1-player game

- MCForkSearch
 - Nested MCFS
 - CPF
Why Monte-Carlo?

- Evaluating a non terminal position:
 - a lot of evaluations of terminal positions reached with simulations
 - a knowledge-based evaluation function
Why Monte-Carlo Tree Search?

- Choosing the next action to perform must be accurate.
- 2-player games, n-player games, 1-player game (planning).
Sequential decision making

- The first action is performed...
- … another MCTS is launched to choose the next action...
Sequential decision making

- Then the second one is performed...
Sequential decision making

- And so on...
Sequential decision making

- Until the sequence reaches the end of the domain.
Level one simulation

- Level 1 simulation – or « smart » simulation -
- … usable within another MCTS
Nested MCTS

- **Level N MCTS** performs a simulation by using level N-1 simulations

- Level 0 simulations:
 - Random simulations
 - Pseudo-random simulations

- MCTS is too costly.

- Is it possible to design an algorithm that could be nested several times?
(Nested) MCS

- Depth-one greedy search using one simulation per child node (Cazenave 2009)

- The CPU time is less important

- The levels can be nested several times (2 or 3 or 4 depending on the domain)

- Planning, 1-player games, expression discovery, weak schur numbers, morpion solitaire, etc.
CPF Complexity

- Number of joint actions is \textit{exponential in the number of agents}
 - 10 agents and 5 actions yield \(5^{10} \approx 10^7\) joint actions

- «Best first» searches (MCTS, MCS, A*) do not work on the simple example
 - ... because of the branching factor
How to adapt the MCS approach?

- **Question 1**: How to choose a move at random and perform only one simulation?

 ? ? ?

- **Question 2**: How to develop a search without being stuck near the initial node?

 ? ? ?
MC Fork Search rationale
MC Fork Search rationale
MC Fork Search rationale
MC Fork Search rationale

- fork the next simulation along the current best sequence

- **Use UCB** (or any other rule) on the whole tree
- No top down order
int NMCFS(start, goal, bestSeq, lev) {
 if (lev == 0) then return sample(start, goal, bestSeq)
 n = 1; lmin = +\infty; actualSeq; Node root(a)
 while (n \leq it) do {
 Node nd = root.selectNode(); pos = nd.position
 l = NMCFS(pos, b, actualSeq, lev-1)
 If (l + nd.depth < lmin) then {
 lmin = l + nd.depth
 bestSeq = seq(root(a), nd) + actualSeq
 }
 nd.backUp(l); nd.append(actualSeq, l, b); n = n + 1
 }
 return lmin
}
UCB rule adapted to MCFS

\[
\text{argmin}_{\text{builtTree}} \left(\text{lmin+depth} - C \left(\text{variance log(n)/(1+nforks)} \right)^{1/2} \right)
\]

- Selection is global
- Exploitation focused on nodes belonging to the shortest sequences
- Exploration focused on nodes with high variance and low number of forks
CPF simulations (1/2)

- Optimal individual paths are pre-computed (Botea 2011)

- Each agent knows its optimal elementary actions.
 - (1) Greedy choice
 - (2) Pseudo-random choice
- Each agent expresses a « wish » (the next cell)

- Collision management
 - Choose the agent that gives the way at random

- Iterative process to choose one joint action
CPF simulations (2/2)

- Choice of the **joint action**:

 While the joint action is not correct {
 Ask each agent for its wish
 Manage the collisions
 }

- **Progressive relaxation**:
 - (1) Optimal actions only
 - (2) Optimal actions + stay
 - (3) All actions (random walk)
Experiments

- **Set of problems**
 - (Khorshid 2011) \(\rightarrow \) Tnea
 - (Luna & Bekris 2011) \(\rightarrow \) Tnea
 - CPF N-puzzles (Yu 2012) \(\rightarrow \) Time
 - Many-agents-large-grid problems \(\rightarrow \) Tnea

- 3.2 Ghz CPU with 6 Gbytes memory

- **Comparing results?**
 - Our work: optimizing 'Time'; (however 'Tnea' available)
 - Most of other work: optimizing 'Tnea'
Reference programs

- **TASS** (Khorshid 2011)
 - \#agents = gridsize – 4
 - knowledge-based, fast, complete, sub-optimal.
- **Push & Swap** (Luna & Bekris 2011)
 - \#agents = gridsize – 2
 - knowledge-based, fast, complete, sub-optimal.
- **TOMPP** (Yu & la valle 2012)
 - Network flow analogy, uses linear programming
 - Time-optimal.
Results on Khorshid's problems

Comparison with Tree-based Agent Swap Strategy (TASS)

<table>
<thead>
<tr>
<th>T</th>
<th>Tnea</th>
<th>time</th>
<th>lev</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCFS</td>
<td>Optim</td>
<td>TASS</td>
<td>MCFS</td>
</tr>
<tr>
<td>520</td>
<td>6</td>
<td>6</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>519</td>
<td>8</td>
<td>8</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>518</td>
<td>10</td>
<td>10</td>
<td>58</td>
<td>26</td>
</tr>
<tr>
<td>517</td>
<td>13</td>
<td>13</td>
<td>170</td>
<td>31</td>
</tr>
<tr>
<td>515</td>
<td>15</td>
<td>≤15</td>
<td>459</td>
<td>71</td>
</tr>
<tr>
<td>516</td>
<td>19</td>
<td>≤18</td>
<td>234</td>
<td>86</td>
</tr>
</tbody>
</table>
Results on Luna & Bekris problems

Comparison with Push & Swap

<table>
<thead>
<tr>
<th></th>
<th>MCFS</th>
<th>Optim</th>
<th>Push&swap</th>
<th>MCFS</th>
<th>Optim</th>
<th>time</th>
<th>lev</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotation</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>0.01s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tree</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td>12</td>
<td>12</td>
<td>0.01s</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>string</td>
<td>8</td>
<td>8</td>
<td>26</td>
<td>20</td>
<td>≤20</td>
<td>0.02s</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>corner</td>
<td>8</td>
<td>8</td>
<td>50</td>
<td>32</td>
<td>≤32</td>
<td>1s</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>connection</td>
<td>16</td>
<td>≤16</td>
<td>86</td>
<td>70</td>
<td>≤70</td>
<td>1m</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>tunnel</td>
<td>15</td>
<td>≤15</td>
<td>81</td>
<td>49</td>
<td>≤49</td>
<td>1h</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>loopchain</td>
<td>19</td>
<td>≤17</td>
<td>350</td>
<td>106</td>
<td>≤98</td>
<td>12h</td>
<td>2</td>
<td>200</td>
</tr>
</tbody>
</table>
Results on N-puzzles with no hole

- N=8, 15, 24: one hole; N=9, 16, 25: no hole.

<table>
<thead>
<tr>
<th>N</th>
<th>Branch. factor</th>
<th>T</th>
<th>nea</th>
<th>time</th>
<th>level</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>123</td>
<td>4</td>
<td>26</td>
<td>0.1s</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>6</td>
<td>38</td>
<td>5s</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>3815</td>
<td>7</td>
<td>84</td>
<td>20m</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>951</td>
<td>8</td>
<td>90</td>
<td>4h</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>$\approx 10^5$</td>
<td>7</td>
<td>141</td>
<td>8h</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>$\approx 3\times10^4$</td>
<td>8</td>
<td>120</td>
<td>30h</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>
Result on a 25-puzzle (from Yu 2012)

- $T=0$
- $T_{nea}=0$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>13</td>
<td>17</td>
<td>4</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>22</td>
<td>9</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>24</td>
<td>6</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>
Result on a 25-puzzle (from Yu 2012)

- $T=0$
- $T_{nea}=0$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td>17</td>
<td>4</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>22</td>
<td>9</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>24</td>
<td>6</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>

Individual paths
A joint action = several cycles

- T=0
- Tnea=0
- nea=24
Result on a 25-puzzle

- **T=1**
- **Tnea=24**
- **nea=10**

<table>
<thead>
<tr>
<th>Position</th>
<th>Goal</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

Elementary Action

- 1
- 1
- 1
- 2
- 13
- 3
- 9
- 4
- 4
- 5
- 14
- 6
- 7
- 8
- 9
- 10
- 11
- 17
- 15
- 12
- 23
- 11
- 12
- 13
- 14
- 15
- 16
- 22
- 6
- 21
- 7
- 16
- 17
- 18
- 19
- 20
- 24
- 3
- 5
- 8
- 19
- 25
- 21
- 22
- 23
- 24
- 25

- 1
- 1
- 2
- 13
- 9
- 4
- 4
- 14
- 6
- 11
- 17
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 22
- 6
- 21
- 7
- 16
- 17
- 18
- 19
- 20
- 24
- 3
- 5
- 8
- 19
- 25
- 21
- 22
- 23
- 24
- 25
Result on a 25-puzzle

- $T=2$
- $T_{nea}=34$
- $nea=10$

<table>
<thead>
<tr>
<th>Position</th>
<th>Goal</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Elementary Action
Result on a 25-puzzle

- T = 3
- T_{nea} = 44
- n_{ea} = 14

<table>
<thead>
<tr>
<th>Position</th>
<th>Goal</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 13 9 4 14</td>
<td>2 7 8 9 10 12</td>
<td>6 17 6 15 12</td>
</tr>
<tr>
<td>11 17 6 15 12</td>
<td>11 12 13 14 15</td>
<td>11 3 2 5 23</td>
</tr>
<tr>
<td>22 3 2 5 23</td>
<td>16 17 18 19 20</td>
<td>16 10 8 21 7</td>
</tr>
<tr>
<td>21 22 23 24 25</td>
<td>24 25 18 20 19</td>
<td>24 25 18 20 19</td>
</tr>
</tbody>
</table>
Result on a 25-puzzle

- $T=4$
- $T_{nea}=58$
- $nea=22$

<table>
<thead>
<tr>
<th>Position</th>
<th>Goal</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>13</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>21</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

Elementary Action
Result on a 25-puzzle

- **T=5**
- **Tnea=80**
- **nea=12**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>13</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>7</td>
<td>23</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Position

Goal

OK

Elementary Action
Result on a 25-puzzle

- $T=6$
- $T_{nea}=92$
- $nea=20$

<table>
<thead>
<tr>
<th>Position</th>
<th>Goal</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1 2</td>
<td>3 13</td>
</tr>
<tr>
<td>6 6</td>
<td>7 8</td>
<td>9 10</td>
</tr>
<tr>
<td>11 11</td>
<td>12 13</td>
<td>14 15</td>
</tr>
<tr>
<td>16 17</td>
<td>17 22</td>
<td>18 19</td>
</tr>
<tr>
<td>21 22</td>
<td>23 24</td>
<td>25 20</td>
</tr>
</tbody>
</table>

Elementary Action
Result on a 25-puzzle

- $T = 7$
- $T_{nea} = 112$
- $nea = 8$

<table>
<thead>
<tr>
<th>Position</th>
<th>Goal</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elementary Action
Result on a 25-puzzle

- \(T=8\)
- \(T\text{nea}=120\)
- \(\text{nea}=0\)

<table>
<thead>
<tr>
<th>Position</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goal</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OK</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>21</td>
</tr>
</tbody>
</table>

Elementary Action

```plaintext
1 2 3 4 5
1 2 3 4 5
6 7 8 9 10
6 7 8 9 10
11 12 13 14 15
11 12 13 14 15
16 17 18 19 20
16 17 18 19 20
21 22 23 24 25
21 22 23 24 25
```
Many-agents-large-grid result

<table>
<thead>
<tr>
<th>gridsize</th>
<th>#agents</th>
<th>#obst.</th>
<th>pb</th>
<th>T</th>
<th>h</th>
<th>nea</th>
<th>time</th>
<th>lev</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 x 8</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>63</td>
<td>0.1s</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 x 25</td>
<td>100</td>
<td>125</td>
<td>1</td>
<td>43</td>
<td>41</td>
<td>2351</td>
<td>6h</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>43</td>
<td>43</td>
<td>2508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>44</td>
<td>41</td>
<td>2460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>44</td>
<td>40</td>
<td>2569</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 x 100</td>
<td>100</td>
<td>1000</td>
<td>1</td>
<td>164</td>
<td>164</td>
<td>6879</td>
<td>1m</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>2000</td>
<td>1</td>
<td>165</td>
<td>165</td>
<td>14203</td>
<td>5m</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2000</td>
<td>1</td>
<td>171</td>
<td>171</td>
<td>33286</td>
<td>15m</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>200 x 200</td>
<td>400</td>
<td>4000</td>
<td>1</td>
<td>344</td>
<td>344</td>
<td>55620</td>
<td>1h</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Many-agents-large-grid limits

- Main limit:
 - computation and storage of distances between cells

- For 200x200 grids:
 - Memory size in $200^4 = 1.6 \times 10^9$
 - Pre-computation of distances between cells
 - Video game benchmarks: 500x500 grids (Sturtevant 2012)

- Other limit: Time for running one simulation
Algorithm features

- **Memory use**
 - No problem with the nested version

- **Completeness**
 - Worst case: the meta-graph is browsed by a meta-random walk
 - Solvable problem = meta-graph connected = random walk reaches all states

- **Anytime**

- **Near-optimality**
 - $h = \max_{\text{agent}} \text{pathLength}(\text{agent})$
 - No other measure of distance to optimality
Conclusions and perspectives

- Nested MCFS solves CPF problems
 - Not solved by classical solvers (A*, MCTS, MCS)
 - N-puzzles without hole, Khorshid, Luna&Bekris, Many-agents
- MCFS is not sensitive to the branching factor
- Features: anytime, complete, near-optimal
- Future work
 - How to set #level and #fork automatically ?
 - Test on other very-high branching factor problems
 - CPF: 8-connectivity, larger grids
 - Diameter of the graph of the nxn-puzzle
 - 2-player games ?
Thank you for your attention!

- Questions?

- brunobouzy@parisdescartes.fr