Monte-Carlo Tree Search (MCTS) for Computer Go

Bruno Bouzy
bruno.bouzy@parisdescartes.fr
Université Paris Descartes

AOA class
Outline

- The game of Go: a 9x9 game
- The « old » approach (*-2002)
- The Monte-Carlo approach (2002-2005)
- The MCTS approach (2006-today)
- Conclusion
The game of Go
The game of Go

• 4000 years
• Originated from China
• Developed by Japan (20th century)
• Best players in Korea, Japan, China
• 19x19: official board size
• 9x9: beginners' board size
A 9x9 game

- The board has 81 « intersections ». Initially, it is empty.
A 9x9 game

- Black moves first. A « stone » is played on an intersection.
A 9x9 game

- White moves second.
A 9x9 game

- Moves alternate between Black and White.
A 9x9 game

- Two adjacent stones of the same color builds a « string » with « liberties ».
- 4-adjacency
A 9x9 game

- Strings are created.
A 9x9 game

- A white stone is in « atari » (one liberty).
A 9x9 game

- The white string has five liberties.
A 9x9 game

- The black stone is « atari ».
A 9x9 game

- White « captures » the black stone.
A 9x9 game

- For advised players, the game is over.
- Hu?
- Why?
A 9x9 game

- What happens if White contests black « territory »?
A 9x9 game

- White has invaded. Two strings are atari!
A 9x9 game

- Black captures!
A 9x9 game

- White insists but its string is atari...
A 9x9 game

- Black has proved is « territory ».
A 9x9 game

- Black may contest white territory too.
A 9x9 terminal position

- The game is over for computers.
 - Hu?
 - Who won?
A 9x9 game

- The game ends when both players pass.
- One black (resp. white) point for each black (resp. white) stone and each black (resp. white) « eye » on the board.
- One black (resp. white) eye = an empty intersection surrounded by black (resp. white) stones.
A 9x9 game

- Scoring:
 - Black = 44
 - White = 37
 - Komi = 7.5
 - Score = -0.5

- White wins!
Go ranking: « kyu » and « dan »

Top professional players
Very strong players

Pro ranking

9 dan
1 dan

Amateur ranking

9 dan
6 dan
1 dan
1 kyu
10 kyu
20 kyu
30 kyu

Beginners
Average players
Strong players

Very beginners
Computer Go (old history)

- First go program (Lefkovitz 1960)
- Zobrist hashing (Zobrist 1969)
- Interim2 (Wilcox 1979)
- Life and death model (Benson 1988)
- Patterns: Goliath (Boon 1990)
- Mathematical Go (Berlekamp 1991)
- Handtalk (Chen 1995)
The old approach

- Evaluation of non terminal positions
 - Knowledge-based
 - Breaking-down of a position into sub-positions

- Fixed-depth global tree search
 - Depth = 0: action with the best value
 - Depth = 1: action leading to the position with the best evaluation
 - Depth > 1: alfa-beta or minmax
The old approach

- **Current position**
- **Evaluation of non terminal positions**
- **Terminal positions**
- **MCTS for Computer Go**

- **Bounded depth Tree search**
- **Huhu?**

- **361**
- **2 or 3**
Position evaluation

- **Break-down**
 - Whole game (win/loss or score)
 - Goal-oriented sub-game
 - String capture
 - Connections, dividers, eyes, life and death
- **Local searches**
 - Alpha-beta and enhancements
 - Proof-number search
A 19x19 middle-game position
A possible black break-down
A possible white break-down
Possible local evaluations (1)

- Alive and territory
- Not important
- Alive
- Dead
- Unstable
- Alive
- Dead

MCTS for Computer Go
Possible local evaluations (2)

- **alive**
 - [Diagram of an alive position]

- **unstable**
 - [Diagram of an unstable position]

- **unstable**
 - [Diagram of another unstable position]

- **alive + big territory**
 - [Diagram of a position with alive pieces and a large territory]

- **unstable**
 - [Diagram of yet another unstable position]
Position evaluation

- Local results
 - Obtained with local tree search
 - Result if white plays first (resp. black)
 - Combinatorial game theory (Conway)
 - Switches \{a|b\}, >, <, *, 0

- Global recomposition
 - move generation and evaluation
 - position evaluation
Position evaluation

MCTS for Computer Go
Drawbacks (1/2)

- The break-down is not unique
- Performing a (wrong) local tree search on a (possibly irrelevant) local position
- Misevaluating the size of the local position
- Different kinds of local information
 - Symbolic (group: dead alive unstable)
 - Numerical (territory size, reduction, increase)
Drawbacks (2/2)

- Local positions interact
- Complicated
- Domain-dependent knowledge
- Need of human expertise
- Difficult to program and maintain
- Holes of knowledge
- Erratic behaviour
Upsides

- Feasible on 1990's computers
- Execution is fast
- Some specific local tree searches are accurate and fast
The old approach

Pro ranking

Top professional players

Very strong players

Strong players

Average players

Beginners

Very beginners

Amateur ranking

9 dan

1 dan

6 dan

1 dan

1 kyu

10 kyu

20 kyu

30 kyu
End of part one!

● Next: the Monte-Carlo approach...
The Monte-Carlo (MC) approach

- **Games containing chance**
 - Backgammon (Tesauro 1989)

- **Games with hidden information**
 - Bridge (Ginsberg 2001)
 - Poker (Billings & al. 2002)
 - Scrabble (Sheppard 2002)
The Monte-Carlo approach

- Games with complete information
 - A general model (Abramson 1990)

- Simulated annealing Go
 - (Brügmann 1993)
 - 2 sequences of moves
 - « all moves as first » heuristic
 - Gobble on 9x9
The Monte-Carlo approach

- **Position evaluation:**

 Launch N random games

 Evaluation = mean value of outcomes

- **Depth-one MC algorithm:**

 For each move m {

 Play m on the ref position

 Launch N random games

 Move value (m) = mean value

 }
Depth-one Monte-Carlo
Progressive pruning

Upper bound

- Optimism in face of uncertainty
 - Intestim (Kaelbling 1993),
 - UCB multi-armed bandit (Auer & al 2002)

Second best promising

Current best proven move

Current best promising move

MCTS for Computer Go
All-moves-as-first heuristic (1/3)
All-moves-as-first heuristic (2/3)

Actual simulation

MCTS for Computer Go
All-moves-as-first heuristic (3/3)

Actual simulation

Virtual simulation = actual simulation assuming c is played « as first »
The Monte-Carlo approach

- **Upsides**
 - Robust evaluation
 - Global search
 - Move quality increases with computing power

- **Way of playing**
 - Good strategical sense but weak tactically

- **Easy to program**
 - Follow the rules of the game
 - No break-down problem
Monte-Carlo and knowledge

- Pseudo-random simulations using Go knowledge (Bouzy 2003)
 - Moves played with a probability depending on specific domain-dependent knowledge

- 2 basic concepts
 - string capture
 - 3x3 shapes
Monte-Carlo and knowledge

• Results are impressive
 - MC(random) << MC(pseudo random)
 - Size 9x9 13x13 19x19
 - % wins 68 93 98

• Other works on simulations
 - Patterns in MoGo, proximity rule (Wang & al 2006)
 - Simulation balancing (Silver & Tesauro 2009)
Monte-Carlo and knowledge

- Pseudo-random player
 - 3x3 pattern urgency table with 3^8 patterns
 - Few dizains of relevant patterns only
 - Patterns gathered by
 - Human expertise
 - Reinforcement Learning (Bouzy & Chaslot 2006)

- Warning
 - p1 better than p2 does not mean $\text{MC}(p1)$ better than $\text{MC}(p2)$
Monte-Carlo Tree Search (MCTS)

- How to integrate MC and TS?
- UCT = UCB for Trees
 - (Kocsis & Szepesvari 2006)
 - Superposition of UCB (Auer & al 2002)
- MCTS
 - Selection, expansion, updating (Chaslot & al) (Coulom 2006)
 - Simulation (Bouzy 2003) (Wang & Gelly 2006)
MCTS (1/2)

while (hasTime) {
 playOutTreeBasedGame()
 expandTree()
 outcome = playOutRandomGame()
 updateNodes(outcome)
}

then choose the node with...

... the best mean value

... the highest visit number
MCTS (2/2)

PlayOutTreeBasedGame() {
 node = getNode(position)
 while (node) {
 move = selectMove(node)
 play(move)
 node = getNode(position)
 }
}
UCT move selection

- Move selection rule to browse the tree:
 \[
 \text{move} = \text{argmax } (s \cdot \text{mean} + C \cdot \sqrt{\log(t)/n})
 \]

- Mean value for exploitation
 - \(s (=+/-1) \): color to move

- UCT bias for exploration
 - \(C \): constant term set up by experiments
 - \(t \): number of visits of the parent node
 - \(n \): number of visits of the current node
Example

- 1 iteration
Example

• 2 iterations
Example

- 3 iterations

Diagram:

- Node 1
- Node 2/3
- Node 1/1
- Node 0/1
Example

- 4 iterations
Example

- 5 iterations
Example

- 6 iterations
Example

- 7 iterations
Example

- 8 iterations
Example

- 9 iterations

```
        4/9
       /  \
  2/4   0/1
 /     /   /
0/1   1/1 0/1
```

MCTS for Computer Go
Example

- 10 iterations
Example

- 11 iterations

```
6/11
/ \ / \ / \\
0/1 2/4 0/1 3/4
|   |   |   |
0/1 1/1 0/1 1/1
|   |   |   |
0/1 0/1
```

MCTS for Computer Go 69
Example

• 12 iterations
Example

- **Clarity**
 - $C = 0$

- **Notice**
 - with $C \neq 0$ a node cannot stay unvisited
 - min or max rule according to the node depth
 - not visited children have an infinite mean

- **Practice**
 - Mean initialized optimistically
MCTS enhancements

• The raw version can be enhanced
 – Tuning UCT C value
 – Outcome = score or win loss info (+1/-1)
 – Doubling the simulation number
 – RAVE
 – Using Go knowledge
 • In the tree or in the simulations
 – Speed-up
 • Optimizing, pondering, parallelizing
Assessing an enhancement

- Self-play
 - The new version vs the reference version
 - % wins with few hundred games
 - 9x9 (or 19x19 boards)
- Against differently designed programs
 - GTP (Go Text Protocol)
 - CGOS (Computer Go Operating System)
- Competitions
Move selection formula tuning

• Using UCB
 – Best value for C?
 – 60-40%

• Using « UCB-tuned » (Auer & al 2002)
 – C replaced by min(1/4, variance)
 – 55-45%
Exploration vs exploitation

- General idea: explore at the beginning and exploit in the end of thinking time
- Diminishing C linearly in the remaining time
 - (Vermorel & al 2005)
 - 55-45%
- At the end:
 - Argmax over the mean value or over the number of visits?
 - 55-45%
Kind of outcome

• 2 kinds of outcomes
 – Score (S) or win loss information (WLI) ?
 – Probability of winning or expected score ?
 – Combining both (S+WLI) (score +45 if win)

• Results
 – WLI vs S 65-35%
 – S+WLI vs S 65-35%
Doubling the number of simulations

- $N = 100,000$

- Results
 - $2N$ vs N: 60-40%
 - $4N$ vs $2N$: 58-42%
Tree management

- **Transposition tables**
 - Tree -> Directed Acyclic Graph (DAG)
 - Different sequences of moves may lead to the same position
 - Interest for MC Go: merge the results
 - Result: 60-40%

- **Keeping the tree from one move to the next**
 - Result: 65-35%
RAVE (1/3)

• Rapid Action Value Estimation
 – Mogo 2007
 – Use the AMAF heuristic (Brugmann 1993)
 – There are « many » virtual sequences that are transposed from the actually played sequence

• Result:
 – 70-30%
RAVE (2/3)

- AMAF heuristic
- Which nodes to update?
- Actual
 - Sequence ACBD
 - Nodes
- Virtual
 - BCAD, ADBC, BDAC
 - Nodes
RAVE (3/3)

- 3 variables
 - Usual mean value M_u
 - AMAF mean value M_{amaf}
 - $M = \beta M_{amaf} + (1-\beta) M_u$
 - $\beta = \sqrt{k/(k+3N)}$
 - K set up experimentally
- M varies from M_{amaf} to M_u
Knowledge in the simulations

- High urgency for...
 - capture/escape 55-45%
 - 3x3 patterns 60-40%
 - Proximity rule 60-40%

- Mercy rule
 - Interrupt the game when the difference of captured stones is greater than a threshold (Hillis 2006)
 - 51-49%
Knowledge in the tree

- Virtual wins for good looking moves
- Automatic acquisition of patterns of pro games (Coulom 2007) (Bouzy & Chaslot 2005)
- Matching has a high cost
- Progressive widening (Chaslot & al 2008)
- Interesting under strong time constraints
- Result: 60-40%
Speeding up the simulations

- Fully random simulations (2007)
 - 50,000 game/second (Lew 2006)
 - 20,000 (commonly eared)
 - 10,000 (my program)

- Pseudo-random
 - 5,000 (my program in 2007)

- Rough optimization is worthwhile
Pondering

• Think on the opponent time
 – 55-45%
 – Possible doubling of thinking time
 – The move of the opponent may not be the planned move on which you think
 – Side effect: play quickly to think on the opponent time
Summing up the enhancements

• MCTS with all enhancements vs raw MCTS
 - Exploration and exploitation: 60-40%
 - Win/loss outcome: 65-35%
 - Rough optimization of simulations 60-40%
 - Transposition table 60-40%
 - RAVE 70-30%
 - Knowledge in the simulations 70-30%
 - Knowledge in the tree 60-40%
 - Pondering 55-45%
 - Parallelization 70-30%

• Result: 99-1%
Parallelization

- Computer Chess: Deep Blue
- Multi-core computer
 - Symmetric MultiProcessor (SMP)
 - one thread per processor
 - shared memory, low latency
 - mutual exclusion (mutex) mechanism
- Cluster of computers
 - Message Passing Information (MPI)
Parallelization

```c
while (hasTime) {
    playOutTreeBasedGame();
    expandTree();
    outcome = playOutRandomGame();
    updateNodes(outcome);
}
```
Leaf parallelization
Leaf parallelization

- (Cazenave Jouandeau 2007)
- Easy to program
- Drawbacks
 - Wait for the longest simulation
 - When part of the simulation outcomes is a loss, performing the remaining may not be a relevant strategy.
Root parallelization
Root parallelization

- (Cazenave Jouandeau 2007)
- Easy to program
- No communication
- At completion, merge the trees
- 4 MCTS for 1sec > 1 MCTS for 4 sec
- Good way for low time settings and a small number of threads
Tree parallelization – global mutex
Tree parallelization – local mutex
Tree parallelization

- One shared tree, several threads
- Mutex
 - Global: the whole tree has a mutex
 - Local: each node has a mutex
- « Virtual loss »
 - Given to a node browsed by a thread
 - Removed at update stage
 - Preventing threads from similar simulations
Computer-computer results

Computer Olympiads

<table>
<thead>
<tr>
<th>Year</th>
<th>Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>19x19</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Erica, Zen, MFGo, MyGoFriend</td>
</tr>
<tr>
<td>2009</td>
<td>Zen, Fuego, Mogo, Fuego</td>
</tr>
<tr>
<td>2008</td>
<td>MFGo, Mogo, Leela, MFGo</td>
</tr>
<tr>
<td>2007</td>
<td>Mogo, CrazyStone, GNU Go, Steenvreter</td>
</tr>
<tr>
<td>2006</td>
<td>GNU Go, Go Intellect, Indigo, CrazyStone</td>
</tr>
<tr>
<td>2005</td>
<td>Handtalk, Go Intellect, Aya, Go Intellect</td>
</tr>
<tr>
<td>9x9</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Go Intellect, MFGo, Indigo, Go Intellect</td>
</tr>
</tbody>
</table>
Human-computer results

- 9x9
 - 2009: Mogo won a pro with black
 - 2009: Fuego won a pro with white

- 19x19:
 - 2008: Mogo won a pro with 9 stones
 - Crazy Stone won a pro with 8 stones
 - Crazy Stone won a pro with 7 stones
 - 2009: Mogo won a pro with 6 stones
MCTS and the old approach

Top professional players
Very strong players

MCTS
Old approach

Pro ranking
9 dan
1 dan

Amateur ranking
9 dan
6 dan
1 dan
1 kyu
10 kyu
20 kyu
30 kyu

9x9 go
19x19 go

9 dan
1 dan

Very beginners
Beginners
Average players
Strong players

MCTS for Computer Go
Computer Go (MC history)

- Monte-Carlo Go (Brugmann 1993)
- MCGo devel. (Bouzy & Helmstetter 2003)
- MC+knowledge (Bouzy 2003)
- UCT (Kocsis & Szepesvari 2006)
- Crazy Stone (Coulom 2006)
- Mogo (Wang & Gelly 2006)
Conclusion

• Monte-Carlo brought a Big improvement in Computer Go over the last decade!
 – No old approach based program anymore!
 – All go programs are MCTS based!
 – Professional level on 9x9!
 – Dan level on 19x19!

• Unbelievable 10 years ago!
Some references

- PhD, MCTS and Go (Chaslot 2010)
- PhD, Reinf. Learning and Go (Silver 2010)
- PhD, R. Learning: applic. to Go (Gelly 2007)
- UCT (Kocsis & Szepesvari 2006)
- 1st MCTS go program (Coulom 2006)
Web links

- http://www.grappa.univ-lille3.fr/icga/
- http://cgos.boardspace.net/
- http://www.gokgs.com/
- http://www.Iri.fr/~gelly/MoGo.htm
- http://remi.coulom.free.fr/CrazyStone/
- http://fuego.sourceforge.net/
- ...
Thank you for your attention!