Multi-Agent Model-Based Reinforcement Learning Experiments in the Pursuit Evasion Game

Bruno Bouzy
Marc Métivier
Outline

- Multi-Agent Learning (MAL)
- Pursuit-Evasion Game (PEG)
 - Previous works
 - Our PEG definition
 - Our purpose
- Centralized approach vs distributed approach
 - SetP and SumP
 - Rmax
 - Experiments
 - Results
- Conclusion and perspectives
The 5 MAL agendas (Shoham & al 2007)

- **Computational agenda**
 - Determine the properties of a multi-player game
 - Nash equilibria, correlated, Pareto-optimality

- **Normative agenda**
 - Describe and study equilibria arising between learning algorithms via game theory

- **Descriptive agenda**
 - Model and describe MAL for human people

- **Prescriptive agenda**
 - How an agent should play to maximise his cumulative reward?
 - Cooperative or not?
 - Cooperation (Nash 1950) = communication (MAS)
MAL experiments

- **Purpose**
 - Experimental comparison of a centralized approach and a distributed approach
 - In a stochastic game, not in a matrix game
 - With tools as optimal as possible

- **Domain selection**
 - The pursuit evasion game is a stochastic game
 - Classical testbed in multi-agent systems
 - Small grids
Pursuit Evasion Game (PEG)

Main features
- Played on a grid by preys and predators
- Simultaneous actions toward adjacent cells
- Cell neighbourhood: 4, 6 or 8 connected
- A predator kills a prey when going on its cell
- Prey: evasion goal or not?

Variations
- Size up to 100x100
- Environment rules: conflict management
- Team reward or individual rewards?
- Toroidal grid or not?
- Obstacles or not?
PEG, Previous works (1/2)

- (Brenda & al, 1985)
 - Pionneering work

- (Levy & Rosenschein 1992)
 - Game-theoretical work on an abstraction of PEG.

- (Korf 1992)
 - Distance heuristics

- (Tan 1993)
 - Specialised predators (hunters and scouts)
 - Communicating predators

- (Haynes & Sen 1996)
 - Limitation: the “straight forward” strategy
PEG, Previous works (2/2)

- **Critics**
 - No Centralized vs Distributed Assessment
 - Prey: No explicit goal, Random, No learning.
 - Model-free RL tools (Q learning)
 - Partial observation (large grids)
 - Communicating predators (Tan 1993)

- **Our approach**
 - Goal: Centralized vs Distributed Assessment
 - Prey: Has the evasion goal, learning.
 - Model-based RL tools (Rmax)
 - Complete observation (3x3 grids)
 - No communication between agents
PEG, 2 episodes

- The prey is escaping

1

\[\rightarrow \]

2

\[\rightarrow \]

3

\[r = -1 \]

- The prey is killed

1

\[\rightarrow \]

2

\[r = 1 \]
« SetP » and « SumP »

- **SetP**
 - agent = set of predators
 - indifferenciated predators
 - action = joint action

- **SumP**
 - SumP = macro agent = set of predators
 - elementary agent = predator
 - elementary agent state = set state + agent position
 - action = elementary action
Counting the number of states

- **Raw representation**
 - 9 cells, 9 agents max, each agent has one position
 - \(\#\text{state} = 9^9 \)
 - Too high

- **Bitmap représentation**
 - Set of predators -> bitmap \(\#\text{state} < 512 \)
 - \(1 + 4 + 64 + 256 = 325 \)
 - SetP: \(\#\text{state} = 9 \times 512 \)
 - SumP: \(\#\text{state} = 9 \times 512 \times 9 \)
 - \#state reduction
 - Not fair for SumP
Counting the number of actions

- SetP: legal or illegal joint actions
 - b, c, d, e, f: legal,
 - g: illégal

- SetP: bitmap representation
 - At most 8 prédateurs with 9 actions
 - 9^8 actions: legality impossible to check on-line
 - Off-line generation of legal joint actions
 - -> At most 512 joint actions
Rmax: a model-based RL algorithm

- (Brafman & Tennenholtz 2002)
- Stochastic games
 - Action quality Q
 - Rmax states
- Policy: optimal action according Q
- Rmax state
 - #transitions to each following state
 - Reward for each transition
- Online Algorithm
 - For each transition,
 - #transitions++; Retour = retour observé
- “global” update
 - Value Iteration
Rmax in practice

- **Theoretically,**
 - After each modification,
 - optimal policy computation
 - Q values updates
 - Polynomial time convergence in \#state
 - Solution to the exploitation-exploration dilemma

- **In practice,**
 - Optimal policy computation: Value Iteration (VI)
 - Call VI every X timesteps
 - Memory space
 - Convergence time
 - beginning: wrong policies, wrong means
 - middle: correct policies, wrong means
 - end: correct policies, correct means
Problems to solve:

(B0)
(B1)
(B3)
(B5)

(C1)
(C2)
(C3)
PEG, Experiments (2/2)

- #Episodes = 1,000,000
- maximal episode length = 10
- Episode end:
 - +1 kill
 - -1 evade
 - 0 otherwise
- Predators' set configuration
 - SetP or SumP
 - learning (Rmax)
- Prey configuration
 - random or learning (Rmax)
Against a...

... random prey:
- < 300,000 episodes
 - SumP > SetP
- > 300,000 episodes
 - SetP > SumP

... learning prey:
- SumP et SetP --> -1
Against a...

... random prey:
- < 200,000 episodes
 - SumP >> SetP
- > 200,000 episodes
 - SetP == SumP

... learning prey:
- SumP and SetP → 0.1
- SetP >= SumP
- SetP variance
Against a...

... random prey:
- < 200,000 episodes
 - SumP > SetP
- > 200,000 episodes
 - SetP == SumP

... learning prey:
- SumP and SetP --> 0.2
- SetP >= SumP
C1

- Against a...
- ... random prey:
 - SumP and SetP $\rightarrow 0.8$
 - SumP == SetP
- ... learning prey:
 - SumP and SetP $\rightarrow 0$
 - SumP == SetP
C2

- Against a...
- ... random prey:
 - SumP and SetP $\rightarrow 0.9$
 - SumP \geq SetP
- ... learning prey:
 - SetP $\rightarrow 0.1$
 - SumP $\rightarrow 0$
C3

- Against a...
 - ... random prey:
 - SumP --> 0.95
 - SetP --> 0.8
 - SumP > SetP
 - ... learning prey:
 - SetP --> 0.2
 - SumP --> 0.1
 - SetP > SumP
PEG, Discussion

- In most cases: SetP >= SumP
- C3: SumP > SetP
- Optimal tactical sequences
- SumP: communicating predators?
PEG, Future works

- Continue the comparison: centralized vs distributed
- Rmax -> Q learning
- Increase the gridsize
 - Partial Observation
 - Q learning
Thank you for your attention...