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Support-vector networks

Reference

• These slides present the following paper:

– C.Cortes, V.Vapnik, « support 
vector networks », Machine 
Learning (1995)

• They are commented with my personal view to 
teach the key ideas of SVN.

• The outline mostly follows the outline of the 
paper.
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Abstract

• New learning method for 2-group classification

• Input vectors non-linearly mapped to a high 
dimension space (the feature space)

• In feature space: linear decision surface

• High generalisation ability

• Experiments: good performances in OCR
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Preamble

• How to separate 2 separable classes ?

Figure 0a
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Preamble

• Separating 2 separable classes: easy!
Simply choose a point somewhere in between two opposite 

examples

No error!

Figure 0b
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Preamble

• What may happen when a new example 
comes ?

One error... (bouh... generalisation is poor)

      Figure 0c
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Preamble

• How to optimally separate 2 separable classes ?

Figure 0d
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Preamble

• Optimally separating 2 separable classes: not 
difficult!

Choose the point at the middle!

      Figure 0e

optimal
margin
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Preamble

    What may happen when a new example comes ?
        better chance that no error this time 

        (whew... generalisation is better)

      Figure 0f

optimal
margin
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Preamble

• support vectors
the optimal point depends only on some examples: the support 

vectors, and not on the other.

Figure 0g

optimal
margin

support 
vector X

support 
vector O
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Preamble

• How to separate 2 non-separable classes ?

huhu...

Figure 0h
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Preamble

• minimizing the number of training errors...

Figure 0i

3 2 3 4 3 2
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Preamble

• and minimizing the number of test errors...

Figure 0j

soft
margin
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Preamble
• Transforming the problem (dim=1) into a higher 

dimensional one?        hoho?

Figure 0k
x

y

y=x2
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Preamble
   then separate...      huhu? Smart!

      Figure 0l

x

y y=x2
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Preamble summary

• Separable case: 
– optimal margin for good generalisation

– support vectors

• Non separable case: 
– soft margin, minimizing the errors

• Key ideas:
– Transform the problem into a higher 

dimensional separable problem

– Linear separation
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« Introduction »

• To obtain a decision surface to a polynomial 
of degree 2, create a feature space with 
N=n(n+3)/2 coordinates:
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« Introduction »

• Conceptual problem:
– How to find an hyperplane that generalizes well ?

• Technical problem:
– How to computationally treate high dimensional 

space ?

– (to construct a polynomial of degree 4 or 5 in a 
dimension 200 space, the high dimension can be 
106)
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« Introduction »
• The support vectors     ,     determine the 

optimal margin (greatest separation):

Figure 2

Optimal 
hyperplane

Optimal 
margin
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« Introduction »

• The bound on the error depends on the number 
of support vector (5):

– E(pr(err))<= E(#suppVectors)/E(#trainVectors)
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« Introduction »

• Optimal separating plane equation:

          w
0
.z+b

0
 = 0

• Weights of the vector hyperplane (6):

           w
0
 = Σ

i
 α

i
z

i

• Linear decision function (7):

          I(z) = sign(Σ
i
 α

i
z

i
.z+b

0
)
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« Introduction »
Figure 3

–  classification by a SVN of an unknown pattern

unknown input vector x

non-linear transformation

input vector in feature space

support vectors 
in feature space

classification

comparison
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« Introduction »
Figure 4: 

– 2nd kind of classification by a SVN:

unknown input vector x

non-linear transformation

support vectors 

classification

comparison
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Optimal hyperplanes

• Set of labeled patterns (8):

– (y
1
, x

1
), ..., (y

l
, x

l
), with y

i
= ±1

• Linearly separable (9):
– if there exist vector w and scalar b such that:

– w.x
i
+b >= 1 if y

i
=1              w.x

i
+b <= -1 if y

i
=-1

• Linearly separable (10):
– if there exist vector w and scalar b such that:

– y
i
.(w.x

i
+b) >= 1 for i=1,...,l
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Optimal hyperplanes

• Optimal hyperplane (11):

              w
0
.x+b

0
 = 0

• Separates the training data with maximal 
margin:

– Determines the direction w/|w| where the distance 
ρ(w,b) (12) between the projections of the training 
vectors of the two classes is maximal (13):

– ρ(w,b) = min
x:y=1

 x.w/|w| - max
x:y=-1

 x.w/|w|

– ρ(w
0
,b

0
) = 2/|w

0
|
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Optimal hyperplanes

• The optimal hyperplane minimizes w.w under 
the constraints (10).

• Constructing an optimal hyperplane is a 
quadratic problem.

• Vectors such that (10) is an egality are termed 
support vectors.
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Optimal hyperplanes

• The optimal hyperplane can be written as a 
linear combination of training vectors (14):

– W
0
 = Σ

i=1,l
 y

i
 α

i
0 x

i

– with α
i
0>=0 for all training vectors

– and α
i
0>0 for support vectors only

– Λ
0

T = (α
1

0, α
2

0, ..., α
l
0)
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Optimal hyperplanes

• The quadratic programming problem :

– W(Λ) = ΛT1 - ½ ΛTD Λ                            (15)

– with:     Λ >= 0                                        (16)

             ΛTY = 0                                      (17)

             D
ij
 = y

i
y

j
 x

i
.x

j
     for i,j = 1, ..., l     (18)
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Optimal hyperplanes

• When the data of (8) can be separated  by an 
hyperplane:

– W(Λ
0
) = 2/ρ

0
2

• When the data of (8) cannot be separated by 
an hyperplane:

– For any large constant C, find Λ such that W(Λ)>C
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Optimal hyperplanes

• Solving scheme:
– Divide the training data into portions

– Start out by solving the first portion

– If first portion cannot be separated then end & 
failure

– If first portion is separated,

– Make a new training set with support vectors of the 
first portion and the training vectors of the second 
portion that do not satisfy (10)

– Continue by solving this new portion

– etc.
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Soft margin hyperplane

• Case where the training data cannot be 
separated without error:

– One may want to separate with the minimal 
numbers of errors

– Non negative variables (23):     ξ
i 
>= 0       i=1,...,l

– Minimize (21):              Φ(ξ) = Σ
i
 ξ

i

– Subject to (22):          y
i
.(w.x

i
+b) >= 1-ξ

i
      i=1,...,l
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Soft margin hyperplane

• Minimizing (21), one finds a minimal subset 
of training errors:

– (y
i1
, x

i1
), ..., (y

ik
, x

ik
)

• Minimize (25):

– ½ w2 + CF(Σ
i
 ξ

i
)

– subject to (22) and (23)

– where F is monotonic convex, F(0)=0    F(u)=u2

–            C constant
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Soft margin hyperplane

• The programming problem :
– W(Λ) = ΛT1 - ½ [ΛTD Λ + δ2/C]             (26)

– with:     ΛTY = 0                                    (27)

                         δ >= 0                                       (28)

                           0<= Λ <= δ1                             (29)

– note that: δ = max(α
1
, α

2
, ..., α

l
)
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Soft margin hyperplane

• The solution exists and is unique for any 
data set

• Not a quadratic problem but a convex 
programming problem
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Dot-product in feature space

• Transform: 
– the n-dimensional input vector x into 

– an N-dimensional feature vector 

– through a function Φ :
• Φ : Rn -> RN

• Φ(x
i
) = Φ

1
(x

i
), Φ

2
(x

i
), ..., Φ

N
(x

i
)

• Construct the N dimensional linear separator w 
and bias b
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Dot-product in feature space

• To classify an unknown vector x: 

– Transform it into Φ(x) vector 

– Take the sign of (31):           f(x) = w . Φ(x) + b

• w is linear combination of support vectors:

           w = Σ
i=1,l

 y
i
 α

i
 Φ(x

i
)                                     (32)

– f(x) = Σ
i=1,l

 y
i
 α

i
 Φ(x).Φ(x

i
) + b                    (33)
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Dot-product in feature space

• Dot-product in Hilbert space
– Φ(u) . Φ(v) = K(u, v)                             (34)

• Any function K, symmetric can be expanded:

– K(u, v) = Σ
i=1,∞

 λ
i
 Φ

i
(u).Φ

i
(v)                    (35)

– λ
i
 eigenvalues and Φ

i
 eigenfunctions

– ∫ K(u,v)Φ
i
(u)du = λ

i
 Φ

i
(v)

• To ensure (34) defines a dot-product:

–  λ
i
 >= 0
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Dot-product in feature space

• Merser theorem:

       ∫ ∫ K(u,v)g(u)g(v)dudv > 0

          for g such that:         ∫ g(u)2du < ∞

          iff  

          λ
i
 >= 0
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Dot-product in feature space

• Functions satisfying the Merser theorem:
– K(u, v) = exp(-|u-v|/σ)                           (36)

– K(u, v) = (u.v + 1) d                               (37)

•    Decision surface:

– f(x) = Σ
i=1,l

 y
i
 α

i
 K(x, x

i
) + b

•    To find the α
i 
and x

i 
same solution scheme with:

             D
ij
 = y

i 
y

j
 K(x

i
, x

j
)           i,j = 1, ..., l     
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General features of SVN

• Constructing the decision rules by SVN is 
efficient

– Follow the scheme of soft margin

– One unique solution

•    SVN is a universal machine
– By changing K, one obtains various machines

•    SVN controls the generalization ability
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Experimental results

• blablabla
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Conclusion

• blablabla
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Example of XOR

• blablabla
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