We consider here a Boolean n-players version of the well-known prisoners’ dilemma. n prisoners (denoted by 1, . . . , n) are kept in separate cells. The same proposal is made to each of them: “Either you confess your accomplices (Cj, i = 1, . . . , n) or you deny them (-Cj, i = 1, . . . , n).”

Denouncing makes you freed while your partners will be sent to prison (except those who denounced you as well: these ones will be freed too).

* if none of you chooses to denounce, everyone will be freed”

Compact representation: \(G = (A, V, \pi, \Phi) \) with
- \(A = \{1, 2, \ldots, n\} \) set of players,
- \(V = \{C_1, \ldots, C_n\} \) set of propositional variables,
- \(\forall i \in \{1, \ldots, n\}, \pi_i = \{C_i\} \) control assignment function,
- \(\forall i \in \{1, \ldots, n\}, \Phi_i = \{C_i, \ldots, C_{i-1}, C_{i+1}, \ldots, C_n\} \) utility functions.

Pure-strategy Nash equilibria (PNE)

A PNE is a strategy profile such that each player’s strategy is an optimum response to the other players’ strategies. \(S = \{s_1, \ldots, s_n\} \) is a pure-strategy Nash equilibrium if and only if:

\[\forall i \in \{1, \ldots, n\}, \forall s_i' \in \{\top, \bot\}, u_i(s_i', S) \geq u_i(s_i, S) \]

The 3-players version of prisoners’ dilemma has 2 PNE: \(\{C_1, C_2, C_3\} \) and \(\{\top, \top, \top\} \).

Characterization of PNE:

\(S \) is a PNE for \(G \) if and only if: \(S = \bigwedge_i \{\phi_i \vee (\neg \exists i \in \{1, 2, \ldots, n\} \psi_i)\} \)

Complexity: Deciding whether there is a PNE in a Boolean game is \(\Sigma^P_2 \) complete.

Introduction of preferences.

Let \(Pref \alpha = \{\alpha_1, \ldots, \alpha_n\} \) a collection of preference relations.

- \(\alpha \) is a weak PNE (WPNE) for \(G \) if \(\forall i \in \{1, \ldots, n\}, \forall \alpha_i' \in \{\top, \bot\}, u_i(\alpha_i', S) \leq u_i(\alpha_i, S) \) and \(\exists \alpha_i \in \{\top, \bot\} \) such that \(u_i(\alpha_i', S) < u_i(\alpha, S) \).

- \(\alpha \) is a strong PNE (SPNE) for \(G \) if \(\forall i \in \{1, \ldots, n\}, \forall \alpha_i' \in \{\top, \bot\}, u_i(\alpha_i', S) < u_i(\alpha_i, S) \).

Characterization of dominated strategies:

- \(s_i \) is strictly dominates strategy \(s'_i \) if and only if: for all \(s' \in 2^X \), \(u_i(s_i, s') > u_i(s'_i, s') \).

- \(s_i \) weakly dominates strategy \(s'_i \) if and only if: \(u_i(s_i, s') \geq u_i(s'_i, s') \).

Complexity: Deciding whether a given strategy \(s'_i \) is weakly dominated is \(\Sigma^P_2 \) complete.

2 cases.

- **A prioritized goal base \(\Sigma \) is a collection \(\{\Sigma_1, \ldots, \Sigma_n\} \) of sets of propositional formulas.**
 - \(\Sigma^p \): set of goals of priority \(j \).
 - the smallest \(j \), the more priority the formula in \(\Sigma \).

 Discrimin preference relation \(S \in 2^{\Sigma^p} \) iff \(\exists k \in \{1, \ldots, p\} \) such that: \(S \cap \Sigma_k \neq \emptyset \), \(S \cap \Sigma_j = \emptyset \) and \(\forall j < k \), \(S \cap \Sigma_j = \emptyset \).

 Leximin preference relation \(S \in 2^{\Sigma^p} \) iff \(\exists k \in \{1, \ldots, p\} \) such that: \(S \cap \Sigma_k \neq \emptyset \), \(S \cap \Sigma_j = \emptyset \) and \(\forall j < k \), \(S \cap \Sigma_j = \emptyset \).

 Best-out preference relation. Let \(\alpha(s) = \min \{j \in \{1, \ldots, n\} \mid \exists \psi_i \in \Sigma, S \models \psi_i \wedge \neg \phi_i\} \) with the convention \(\alpha(s) = -1 \). Then \(S \models \exists \psi_i \models \alpha(S) \models \neg \phi_i\).

- A PG-Boolean game is a 4-sple game \((A, V, \pi, \Phi) \), where \(\Phi = (\Sigma_1, \ldots, \Sigma_n) \).

 NE\textsubscript{WPNE}(G) \subseteq NE\textsubscript{SPNE}(G) \subseteq NE\textsubscript{PNE}(G).

 \(NE\textsubscript{PNE}(G) \subseteq NE\textsubscript{SPNE}(G) \subseteq NE\textsubscript{PNE}(G) \).

 \(G^{\Phi \Phi} = (A, V, \pi, \Phi^{\Phi \Phi}) \) denotes the k-reduced game of \(G \) in which all players’ goals in \(G \) are reduced in their k first stricts. \(\Phi^{\Phi \Phi} = \{\Sigma_1, \ldots, \Sigma_k\} \).

 Let \(\epsilon \in \{\text{disc, lex, bo}\} \). If \(S \) is a SPNE (resp. WPNE) for \(Pref_{\Phi^{\Phi \Phi}} = \alpha \), then \(S \) is a SPNE (resp. WPNE) for \(Pref_{\Phi^{\Phi \Phi}} = \gamma \).

 Let \(G = (A, V, \pi, \Phi) \) with \(A = \{1, 2\}, V = \{a, b, c\}, \pi_1 = \{a, c\}, \pi_2 = \{\emptyset\}, \Sigma_1 = \{\neg \Phi(\emptyset, \emptyset)\}, \Sigma_2 = \{\neg \Phi(\emptyset, \emptyset)\} \).

 Examples of CPNets.

 \(\pi_1 = \langle q_1, \tau_1 \rangle \) is a CP-net on \(V \), where \(q_1 \) is a directed graph over \(V \) and \(\tau_1 \) is a set of conditional preference tables \(CPF(X_i) \) for each \(X_i \in V \).

 Each \(CPF(X_i) \) associates a total order \(\succ_i \) with each instantiation \(p \in 2^n \).

 Each \(\phi \) is a CP-net on \(V \).

 Let \(G = (A, V, \pi, \Phi) \) be a CPN in which the graphs \(\phi_i \) are all identical (\(V, \pi \), \(\Phi \)) and acyclic. Then \(\gamma \) has one and only one strong PNE.

 For each player \(i, \phi_i \) is denoted by \((V, \pi_i, \Phi_i) \) with \(\oplus_i \) being the set of edges of \(\phi_i \).

 The union graph of \(G \) is defined by \(G \uplus \Phi \equiv \{G, V, \pi, \Phi\} \), is the game obtained from \(G \) by rewriting, where:

 the graph of each player’s CP-net has been replaced by the graph of the union of CPNets of \(G \) and the CPT of each player’s CP-net are modified in order to fit with the new graph, keeping the same preferences.

 Let \(G = (A, V, \pi, \Phi) \) be a CPN. If the union graph of \(G \) is acyclic then \(G \) has one and only one SPNE.

 Using these partial pre-orders, Nash equilibria are: \(NE\textsubscript{WPNE} \subseteq NE\textsubscript{SPNE} \subseteq \{abc\} \).

 It is possible to verify then the union graph is acyclic.