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Abstract Data series similarity search is a core operation
for several data series analysis applications across many dif-
ferent domains. However, the state-of-the-art techniques fail
to deliver the time performance required for interactive ex-
ploration, or analysis of large data series collections. In this
work, we propose MESSI, the first data series index de-
signed for in-memory operation on modern hardware. Our
index takes advantage of the modern hardware paralleliza-
tion opportunities (i.e., SIMD instructions, multi-socket and
multi-core architectures), in order to accelerate both index
construction and similarity search processing times. More-
over, it benefits from a careful design in the setup and co-
ordination of the parallel workers and data structures, so
that it maximizes its performance for in-memory operations.
MESSI supports similarity search using both the Euclidean
and Dynamic Time Warping (DTW) distances. Our experi-
ments with synthetic and real datasets demonstrate that over-
all MESSI is up to 4x faster at index construction, and up to
11x faster at query answering than the state-of-the-art par-
allel approach. MESSI is the first to answer exact similarity
search queries on 100GB datasets in ∼50msec (30-75msec
across diverse datasets), which enables real-time, interactive
data exploration on very large data series collections.
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LIPADE, Université de Paris & French University Institute (IUF)
E-mail: themis@mi.parisdescartes.fr

1 Introduction

Several applications across many diverse domains (e.g., fi-
nance, astrophysics, etc.), such as in finance, astrophysics,
neuroscience, engineering, multimedia, and others [9, 59,
62, 91], continuously produce big collections of data series1

which need to be processed and analyzed. Often times, this
is part of an exploratory process, where users ask a query,
review the results, and then decide what their subsequent
queries, or analysis tasks should be. The most common type
of query that different analysis applications need to answer
on these collections of data series is similarity search [27,
28, 59], which is at the core of several data series analysis
tasks, such as classification and anomaly detection [13–17,
27, 45, 54, 77].

The continued increase in the rate and volume of data
series production with collections that grow to several ter-
abytes in size [2,3,59,63], renders existing data series index-
ing technologies inadequate. For example, ADS+ [89], the
state-of-the-art sequential (i.e., non-parallel) indexing tech-
nique, requires more than 2min to answer exactly a sin-
gle 1-NN (Nearest Neighbor) query on a (moderately sized)
100GB sequence dataset.

Given the evolution of CPU performance, where the pro-
cessor clock speed is not increasing due to the power wall
constraint, algorithmic speedups can now mainly come by
exploiting parallelism [7, 12, 31, 34, 55, 60, 69, 71, 78, 83,
87, 88]. This involves (i) parallelism across compute nodes
(e.g., using Spark) [48, 85], where the main goal is to scale
to datasets that cannot be easily handled by a single node,
and (ii) parallelism inside a single compute node (e.g., ex-

1 A data series, or data sequence, is an ordered sequence of data
points. If the ordering dimension is time then we talk about time se-
ries, though, series can be ordered over other measures (e.g., angle in
astronomical radial profiles, frequency in infrared spectroscopy, mass
in mass spectroscopy, position in genome sequences, etc.).
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ploiting the Multi-Socket and Multi-Core (MSMC) archi-
tectures) [64, 65, 67], where the main goal is to minimize
latency.

In this study, we focus on parallelization inside a single
node. The state-of-the-art approach, ParIS+ [67], is a disk-
based data series parallel indexing scheme that exploits the
parallelism capabilities provided by MSMC architectures.
Experiments showed that ParIS+ answers queries 10x faster
than ADS+, and more than 1000x faster than the optimized
serial scan method. Still, ParIS+ is designed for disk-resident
data and its performance is dominated by the I/O cost. For
instance, ParIS+ answers a 1-NN (Nearest Neighbor) exact
query on a 100GB dataset in 15sec, which is above the limit
for keeping the user’s attention (i.e., 10sec), and for support-
ing interactive analysis (i.e., 100msec) [29].
[Application Scenario] In this work, we focus on designing
an efficient parallel indexing and query answering scheme
for in-memory data series processing. Our work is motivated
and inspired by the following real scenario. Airbus2, cur-
rently stores petabytes of data series, describing the behav-
ior over time of various aircraft components (e.g., the vi-
brations of the bearings in the engines), as well as that of
pilots (e.g., the way they maneuver the plane through the
fly-by-wire system) [36]. The experts need to access these
data in order to run different analytics algorithms. However,
these algorithms usually operate on a subset of the data (e.g.,
only the data relevant to landings from Air France pilots),
which fit in memory. In order to perform complex analytics
operations (such as searching for similar patterns, or classi-
fication) fast, in-memory data series indices must be built.
Thus, the time cost of both index creation and query an-
swering become important factors. Apart from engineering,
similar needs appear in other domains and applications, as
well [9, 62], such as astrophysics and neuroscience, where
different, adhoc subsets of data need to be analyzed, and for
which we need to build indexes and then perform similarity
search operations.
[MESSI Approach] We present MESSI, an in-MEmory data
SerieS Index that incorporates the state-of-the-art techniques
in sequence indexing3, and inherently takes advantage of
modern hardware parallelization in order to accelerate pro-
cessing times. MESSI supports similarity search queries on
both z-normalized and non z-normalized data, using both the
Euclidean and the Dynamic Time Warping (DTW) distance
measures.

MESSI uses MSMC architectures in order to concur-
rently perform both index construction and query answering,
and it exploits the Single Instruction Multiple Data (SIMD)
capabilities of modern CPUs, in order to further parallelize
the execution of individual instructions (mainly distance com-
putations) inside each core. More importantly though, MESSI

2 http://www.airbus.com/
3 A preliminary version of this work has appeared elsewhere [66].

features a novel solution for answering exact 1-NN queries
which is 6-11x faster than an in-memory version of ParIS+
across the datasets (of size 100GB) we tested, achieving
for the first time interactive exact query answering times, at
∼50msec. It also provides redesigned algorithms that lead to
a further ∼4x speedup in index construction time, in com-
parison to (in-memory) ParIS+.

The design decisions in ParIS+ were heavily influenced
by the fact that the cost was mainly I/O bounded. Since
MESSI copes with in-memory data series, no CPU cost can
be hidden under I/O. Therefore, MESSI required more care-
ful design choices and coordination of the parallel workers.
This led to the development of a more subtle design for the
index construction and new algorithms for answering simi-
larity search queries on this index.

For query answering in particular, we showed that adap-
tations of alternative solutions, which have proven to per-
form the best in other settings (i.e., disk-resident data [67]),
are not optimal in our case, so we designed a novel solu-
tion that achieves a good balance between the amount of
communication among the parallel worker threads, and the
effectiveness of each individual worker.

For instance, the new scheme uses concurrent priority
queues for storing the data series that cannot be pruned,
and for processing these series in order, starting from those
whose iSAX representations have the smallest distance to
the iSAX representation of the query data series. In this way,
the parallel query answering threads achieve better pruning
on the data series they process. Moreover, the new scheme
uses the index tree to decide which data series to insert into
the priority queues for further processing. In this way, the
number of distance calculations performed between the iSAX
summaries of the query and data series is significantly re-
duced (ParIS+ performs this calculation for all data series in
the collection).

To achieve load balancing, we had to come up with a
scheme where all priority queues had about the same num-
ber of elements. ParIS+ had to perform this calculation for
the entire collection of data series. We also experimented
with several designs for reducing the synchronization cost
among different workers that access the priority queues and
for achieving load balancing. We ended up with a scheme
where workers use randomization to choose the priority queues
they will work on. Consequently, MESSI answers exact 1-
NN queries on 100GB datasets within 30-70msec across di-
verse synthetic and real datasets.

The index construction phase of MESSI differentiates
from ParIS+ in several ways. For instance, ParIS+ was us-
ing a number of buffers to temporarily store pointers to the
iSAX summaries of the raw data series before constructing
the tree index [67]. MESSI allocates smaller such buffers
per thread and stores in them the iSAX summaries them-
selves. In this way, it completely eliminates the synchro-
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nization cost in accessing the iSAX buffers. To achieve load
balancing, MESSI splits the array storing the raw data series
into small blocks, and assigns blocks to threads in a dynamic
fashion. We applied the same technique when assigning to
threads the buffers containing the iSAX summary of the data
series. Overall, the new design and algorithms of MESSI led
to ∼4x improvement in index construction time when com-
pared to (in-memory) ParIS+. Still, the main contribution
of the paper is our novel query answering scheme, which
results in up to 11x better performance than ParIS+. This
scheme supports similarity search on both Z-normalized and
non Z-normalized data, and can be used with either the Eu-
clidean, or the Dynamic Time Warping (DTW) distance.

[Contributions] Our contributions are summarized below.

– We propose MESSI, the first in-memory data series in-
dex designed for modern hardware, which can answer
similarity search queries in a highly efficient manner.

– We implement a novel, tree-based exact query answer-
ing algorithm for both the Euclidean and Dynamic Time
Warping (DTW) distances, which minimizes the num-
ber of distance calculations (both lower bound distance
calculations for pruning true negatives, and real distance
calculations for pruning false positives).

– We also design an index construction algorithm that ef-
fectively balances the workload among the index cre-
ation workers by using a parallel-friendly index frame-
work with low synchronization cost.

– We provide proofs of correctness for our parallel algo-
rithms. These proofs guarantee that both the index cre-
ation and query answering algorithms will always pro-
duce correct results.

– We conduct an experimental evaluation with several syn-
thetic and real datasets, which demonstrates the efficiency
of the proposed solution. The results show that MESSI
is up to 4.2x faster at index construction and up to 11.2x
faster at query answering than the state-of-the-art par-
allel index-based competitor, up to 109x faster at query
answering than the state-of-the-art parallel serial scan al-
gorithm, and thus can significantly reduce the execution
time of complex analytics algorithms (e.g., k-NN classi-
fication by more than 1 order of magnitude).

[Paper Structure] The rest of this paper4 is organized as
follows. In Section 2, we provide the necessary background
material. The MESSI approach is described in Section 3.
Section 4 is the proof of correctness of our index creation
and query answering algorithms. Section 5 contains our ex-
perimental analysis. We review the related work in Section 6,
and conclude in Section 7.

4 A preliminary version of this paper has appeared elsewhere [66].

2 Background

We now provide some necessary definitions, and introduce
background knowledge on state-of-the-art data series index-
ing.

2.1 Data Series and Similarity Search

[Data Series] A data series, S = {p1, ..., pn}, is defined as
a sequence of points, where each point pi = (vi, ti), 1 ≤
i ≤ n, is associated to a real value vi and a position ti.
The position corresponds to the order of this value in the
sequence (in the case of time series, positions are expressed
in terms of time, i.e., they are timestamps). We call n the
size, or length of the data series. All discussions in this work
are applicable to general high-dimensional vectors, too.
[Similarity Search] Analysts perform a wide range of data
mining tasks on data series including clustering [41, 50, 73,
74], classification and deviation detection [19, 76], and fre-
quent pattern mining [35, 57]. Existing algorithms for exe-
cuting these tasks rely on performing fast similarity search
across the different series. Thus, efficiently processing Near-
est Neighbor (NN) queries is crucial for speeding up the
above tasks. NN queries are defined as follows: given a query
series Sq of length n, and a collection S of sequences of the
same length, n, we want to identify the series Sc ∈ S that
has the smallest distance to Sq among all the series in the
collection S. (In the case of streaming series, we first create
subsequences of length n using a sliding window, and then
index those.)

Common distance measures for comparing data series
are Euclidean Distance (ED) [6] and Dynamic Time Warp-
ing (DTW) [72], which performs better for data mining tasks
(e.g., classification [10]). Euclidean distance is computed
as the sum of distances between the pairs of corresponding
points in the two sequences. Note that minimizing ED on
z-normalized data (i.e., a series whose values have mean 0
and standard deviation 1) is equivalent to maximizing their
Pearson’s correlation coefficient [58].
[Distance calculation in SIMD] Single-Instruction Multiple-
Data (SIMD) refers to a parallel architecture that allows the
execution of the same operation on multiple data simultane-
ously [56]. Using SIMD, we can reduce the latency of an op-
eration, because the corresponding instructions are fetched
once, and then applied in parallel to multiple data. All mod-
ern CPUs support 256-bit wide SIMD vectors, which means
that certain floating point (or other 32-bit data) computations
can be up to 8 times faster.

In the data series context, SIMD has been employed for
the computation of the Euclidean distance functions [78],
as well as in the ParIS+ index, for the conditional branch
calculations during the computation of the lower bound dis-
tances [67].
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Fig. 1 The iSAX representation, and the ParIS+ index

2.2 iSAX Representation and the ParIS+ Index

[iSAX Representation] The iSAX representation (or sum-
mary) is based on the Piecewise Aggregate Approximation
(PAA) representation [39], which divides the data series in
w segments of equal length, and uses the mean value of the
points in each segment in order to summarize a data series.
Figure 1(b) illustrates an example of PAA representation
with three segments (shown with the black horizontal lines),
for the data series depicted in Figure 1(a).

Based on PAA, the indexable Symbolic Aggregate ap-
proXimation (iSAX) representation was proposed [75] (and
later used in several different data series indices [42, 52, 65,
76, 89]). This method first divides the (y-axis) space in dif-
ferent regions, and assigns a bit-wise symbol to each re-
gion. In practice, the number of symbols is small: previous
work has shown that iSAX achieves very good approxima-
tions with just 256 symbols, the maximum alphabet cardi-
nality, |alphabet| represented by 8 bits [18]. It then repre-
sents each of the w segments of the series not by the real
value of the PAA, but with the symbol of the region the PAA
falls into, forming the word 102002112 shown in Figure 1(c)
(subscripts denote the number of bits used to represent the
symbol of each segment).

Therefore, iSAX further reduces the size of the data se-
ries summarization, and more importantly it leads to a bit-
wise representation. Note that, even though the iSAX rep-
resentation was invented several years ago, it remains one
of the most popular data series summarization methods. Re-
cent studies have shown that data series indices based on
iSAX achieve state-of-the-art performance in various simi-

larity search tasks [27, 28]. For an overview of iSAX-based
indices, see [61].
[ParIS+ Index] Based on the iSAX representation, the ParIS+
index was developed [67], which proposed techniques and
algorithms specifically designed for modern hardware and
disk-based data.

ParIS+ makes use of variable cardinalities for the iSAX
summaries (i.e., variable degrees of precision for the symbol
of each segment) in order to build a hierarchical tree index
(see Figure 1(d)), consisting of three types of nodes: (i) the
root node points to several children nodes, 2w in the worst
case (when the series in the collection cover all possible
iSAX summaries); (ii) each inner node contains the iSAX
summary of all the series below it, and has two children; and
(iii) each leaf node contains the iSAX summaries of all the
series inside it, and pointers to the raw data (in order to be
able to prune false positives and produce exact, correct an-
swers), which reside on disk. When the number of series in a
leaf node becomes greater than the maximum leaf capacity,
the leaf splits: it becomes an inner node and creates two new
leaves, by increasing the cardinality of the iSAX summary
of one of the segments (the one that will result in the most
balanced split of the contents of the node to its two new chil-
dren [18,89]). The two refined iSAX summaries (new bit set
to 0 and 1) are assigned to the two new leaves. In our exam-
ple, the series of Figure 1(c) will be placed in the outlined
node of the index (Figure 1(d)). The distance of a query to a
node is the distance between the query (raw values, or iSAX
summary) and the node’s iSAX summary.

In the index construction phase (see Figure 1(d)), ParIS+
uses a coordinator worker that reads raw data series from
disk and transfers them into a raw data buffer in memory.
A number of index bulk loading workers compute the iSAX
summaries of these series, and insert <iSAX summary, file
position> pairs in an array. They also insert a pointer to
the appropriate element of this array in the receiving buffer
of the corresponding subtree of the index root. When main
memory is exhausted, the coordinator worker creates a num-
ber of index construction worker threads, each one assigned
to one subtree of the root and responsible for further build-
ing that subtree (by processing the iSAX summaries stored
in the corresponding receiving buffer). This process results
in each iSAX summary being moved to the output buffer
of the leaf it belongs to. When all iSAX summaries in the
receiving buffer of an index construction worker have been
processed, the output buffers of all leaves in that subtree are
flushed to disk.

For query answering, ParIS+ offers a parallel implemen-
tation of the SIMS exact search algorithm [89]. It first com-
putes an approximate answer by calculating the real distance
between the query and the best candidate series, which is
in the leaf with the smallest lower bound distance to the
query. ParIS+ uses the index tree only for computing this
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approximate answer. Then, a number of lower bound calcu-
lation workers compute the lower bound distances between
the query and the iSAX summary of each data series in the
dataset, which are stored in the SAX array, and prune the
series whose lower bound distance is larger than the approx-
imate real distance computed earlier. The data series that
are not pruned, are stored in a candidate list for further pro-
cessing. Subsequently, a number of real distance calculation
workers operate on different parts of this array to compute
the real distances between the query and the series stored in
it (for which the raw values need to be read from disk). For
details see [67].

In the in-memory version of ParIS+, the raw data series
are stored in an in-memory array. Thus, there is no need for
a coordinator worker. The bulk loading workers operate di-
rectly on this array (split to as many chunks as the workers).
In the rest of the paper, we use ParIS+ to refer to this in-
memory version.

3 The MESSI Solution

The parallelism approach we employ in MESSI is governed
by two main principles : 1) eliminate synchronization over-
heads as much as possible, and 2) balance the load of the
index workers. These two principles often require contra-
dicting design choices, so the design of MESSI is based
on extensive experimentation to find the best compromise
whenever needed.

We first outline the main ideas of MESSI. Figure 2 de-
picts the MESSI index construction and query answering
pipeline. MESSI uses an index tree, comprised of several
root subtrees. A number of index workers are responsible to
construct the index tree. To avoid synchronization overheads
and exploit locality, each subtree is built by a distinct worker.
To achieve load balancing, workers are assigned subtrees on
the fly, with different threads possibly processing different
numbers of subtrees (depending on the work necessary on
each subtree), so that they are all busy most of the time.
To avoid synchronization overheads, workers are assigned
to work on disjoint data subsets. This way workers never
interfere with one another.

For query answering, workers traverse the tree pruning
nodes whenever possible. MESSI uses a number of shared
priority queues to store leaf nodes that are not pruned. For
reducing the synchronization cost and exploit locality, dif-
ferent workers traverse different subtrees of the index tree.
For ensuring load balancing, each worker adds elements in
the queues in a round-robin fashion; this way, all queues
end up having approximately the same number of elements.
After the queues have been populated, the workers process
the nodes in the priority queues. The priority of a queue
node is its lower bound distance from the query series, so
if a DeleteMin operation returns a node whose distance is

larger than the current best distance, all nodes in the queue
can be pruned (i.e., the worker gives up the entire queue).
This scheme allows MESSI to perform additional pruning
when processing queue nodes, and results in a reduced num-
ber of real-distance computations. In our implementation,
more than one threads work on each queue, so that the real
distance calculations on a node’s series (which is a time-
consuming task) overlaps with the deletion of additional nodes
from the queue. However, we have chosen the number of
threads to work on each queue with care to avoid high syn-
chronization overheads.

3.1 Preliminaries

We proceed with the details of MESSI. The raw data are
stored into the RawData array, which is split into a prede-
termined number of chunks. A number,Nw, of index worker
threads process the chunks to calculate the iSAX summaries
of the raw data series they store. The number of chunks is
not necessarily the same as Nw. Chunks are assigned to in-
dex workers the one after the other using Fetch and Incre-
ment (Fetch&Inc). Based on the iSAX representation, we
compute in which subtree of the index an iSAX summary
will be stored.

Each index worker stores the iSAX summaries it com-
putes in the appropriate iSAX buffers. Each iSAX buffer is
split into Nw parts and each worker works on its own part5.
The number of iSAX buffers is usually a few tens of thou-
sands and at most 2w, where w is the number of segments in
the iSAX summaries of each data series (w is fixed to 16 in
this paper, as in previous studies [65, 89]).

When the iSAX summaries for all data series have been
computed, the index workers proceed in the construction of
the tree index. Each worker is assigned an iSAX buffer to
work on (this is done again using Fetch&Inc). Each worker
reads the data stored in (all parts of) its assigned buffer and
builds the corresponding index subtree. Therefore, all index
workers process distinct subtrees of the index, and work in
parallel and independently from one another6. When an in-
dex worker finishes with the current iSAX buffer it works
on, it continues with the next iSAX buffer that has not yet
been processed.

When the series in all iSAX buffers have been processed,
the tree index has been built and can be used to answer sim-
ilarity search queries, as depicted in the query answering

5 We also tried an alternative design, where buffers were not split,
so many threads could try to update each element of a buffer concur-
rently. Therefore, each buffer had to be protected by a lock. This design
resulted in worse performance due to the contention in accessing the
iSAX buffers.

6 Parallelizing the processing inside each one of the index root sub-
trees would require a lot of synchronization due to node splitting. When
a node is split, two new leaf nodes are created and the data of the orig-
inal leaf are moved to the new leaves.
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phase of Figure 2. To answer a query, we first perform a
search for the query iSAX summary in the tree index. This
returns a leaf whose iSAX summary has the closest distance
to the iSAX summary of the query. We calculate the real dis-
tance of the (raw) data series pointed to by the elements of
this leaf to the query series, and store the minimum of these
distances into a shared variable, called BSF (Best-So-Far).
Then, the index workers start traversing the index subtrees
(the one after the other) using BSF to decide which subtrees
will be pruned. The leaves of the subtrees that cannot be
pruned are placed into (a fixed number of) minimum prior-
ity queues, using the lower bound distance between the raw
values of the query series and the iSAX summary of the leaf
node, in order to be further examined. Each thread inserts
elements in the priority queues in a round-robin fashion so
that load balancing is achieved (i.e., all queues contain about
the same number of elements).

As soon as the necessary elements have been placed in
the priority queues, each index worker chooses a priority
queue to work on, and repeatedly calls DeleteMin() on it
to get a leaf node, on which it performs the following op-
erations. It first checks whether the lower bound distance
stored in the priority queue is larger than the current BSF: if
it is then we are certain that the leaf node does not contain
any series that can be part of the answer, and we can prune
it; otherwise, the worker needs to examine the series con-
tained in the leaf node, by first computing lower bound dis-
tances using the iSAX summaries, and if necessary also the
real distances using the raw values. During this process, we
may discover a series with a smaller distance to the query, in
which case we also update the BSF. When a worker reaches
a node whose distance is bigger than the BSF, it gives up this
priority queue and starts working on another, since all other
elements in the abandoned queue have a higher distance to

Algorithm 1: CreateIndex
Input: Index index, Integer Nw , Integer chunk size

1 for i← 0 to Nw − 1 do
2 create a thread to execute an instance of

IndexWorker(index, chunk size,i, Nw);
3 end
4 wait for all these threads to finish their execution;

the query. This process is repeated until all priority queues
have been processed, and the BSF is updated along the way.
At the end of the calculation, the value of BSF is returned as
the query answer.

Note that, similarly to ParIS+, MESSI uses SIMD (Single-
Instruction Multiple-Data) for calculating the distances of
both the index iSAX summaries from the query iSAX sum-
mary (lower bound distance calculations), and the raw data
series from the query data series (real distance calculations) [67].

3.2 Index Construction

Algorithm 1 presents the pseudocode for the initiator thread.
The initiator createsNw index worker threads to execute the
index construction phase (line 2). As soon as these workers
finish their execution, the initiator returns (line 4). We fix
Nw to be 24 threads (Figure 11 in § 5 justifies this choice).
We assume that the index variable is a structure (struct) con-
taining the RawData array, all iSAX buffers, and a pointer
to the root of the tree index. Recall that MESSI splitsRawData
into chunks of size chunk size. We assume that the size
of RawData is a multiple of chunk size (if not, standard
padding techniques can be applied).
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Algorithm 2: IndexWorker

Input: Index index, Integer chunk size, Integer pid,
Integer Nw

1 CalculateiSAXSummaries(index, chunk size,pid);
2 barrier to synchronize the IndexWorkers with one another;
3 TreeConstruction(index, Nw);
4 exit();

The pseudocode for the index workers is in Algorithm 2.
The workers first call theCalculateiSAXSummaries func-
tion (line 1) to calculate the iSAX summaries of the raw data
series and store them in the appropriate iSAX buffers. As
soon as the iSAX summaries of all the raw data series have
been computed (line 2), the workers call TreeConstruction
to construct the index tree.

The pseudocode ofCalculateiSAXSummaries is shown
in Algorithm 3 and is schematically illustrated in Figure 3(a).
Each index worker repeatedly does the following. It first per-
forms a Fetch&Inc to get assigned a chunk of raw data se-
ries to work on (line 3). Then, it calculates the offset in the
RawData array that this chunk resides (line 4) and starts
processing the relevant data series (line 6). For each of them,
it computes its iSAX summary by calling the ConvertToiSAX
function (line 7), and stores the result in the appropriate
iSAX buffer of index (lines 8-9). Recall that each iSAX
buffer is split into Nw parts, one for each thread; therefore,
index.iSAXbuffer is a two dimensional array.

Each part of an iSAX buffer is allocated dynamically
when the first element to be stored in it is produced. The
size of each part has an initial small value (5 series in this
work, as we discuss in the experimental evaluation) and it is
adjusted dynamically based on how many elements are in-
serted in it (by doubling its size each time). We note that we

Algorithm 3: CalculateiSAXSummaries
Input: Index index, Integer chunk size, Integer pid

1 Shared integer Fc = 0;

2 while (TRUE) do
3 b←Atomically fetch and increment Fc;
4 b = b ∗ chunk size;
5 if (b ≥ size of the index.RawData array) then break ;
6 for j ← b to b+ chunk size do
7 isax = ConvertToiSAX(index.RawData[j]);
8 ` = find appropriate root subtree where isax must be

stored;
9 index.iSAXbuf [`][pid] = 〈isax, j〉;

10 end
11 end

also tried a design of MESSI with no iSAX buffers, but this
led to slower performance (due to the worse cache locality).
Thus, we do not discuss this alternative further.

As soon as the computation of the iSAX summaries is
over, each index worker starts executing the TreeConstruction
function. Algorithm 4 shows the pseudocode for this func-
tion and Figure 3(b) schematically describes how it works.
In TreeConstruction, a worker repeatedly executes the fol-
lowing actions. It accesses Fb (using Fetch&Inc) to get as-
signed an iSAX buffer to work on (line 3). Then, it traverses
all parts of the assigned buffer (lines 5-6) and inserts every
pair 〈iSAX summary, pointer to relevant data series〉 stored
there in the index tree (line 7-12). Recall that the iSAX sum-
maries contained in the same iSAX buffer will be stored in
the same subtree of the index tree. So, no synchronization
is needed among the index workers during this process. If
a tree worker finishes its work on a subtree, a new iSAX
buffer is (repeatedly) assigned to it, until all iSAX buffers
have been processed.
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Algorithm 4: TreeConstruction
Input: Index index, Integer Nw

1 Shared integer Fb = 0;

2 while (TRUE) do
3 b←Atomically fetch and increment Fb;
4 if (b ≥ 2w) then break ; // root has <= 2w

children
5 for j ← 0 to Nw do
6 for every 〈isax, pos〉 pair ∈ index.iSAXbuf [b][j]

do
7 targetLeaf ← Leaf of index tree to insert

〈isax, pos〉;
8 while targetLeaf is full do
9 SplitNode(targetLeaf );

10 targetLeaf ← New leaf to insert
〈isax, pos〉;

11 end
12 Insert 〈isax, pos〉 in targetLeaf ;
13 end
14 end
15 end

Algorithm 5: ExactSearch
1 Shared float BSF ;

Input: QuerySeries QDS, Index index, Integer Nq

2 QDS iSAX = calculate iSAX summary for QDS;
3 BSF = approxSearch(QDS iSAX, index);
4 for i← 0 to Nq − 1 do
5 queue[i] = Initialize the ith priority queue;
6 end
7 for i← 0 to Ns − 1 do
8 create a thread to execute an instance of

SearchWorker(QDS, index, queue[], i, Nq);
9 end

10 Wait for all threads to finish;
11 return (BSF );

3.3 Query Answering with Euclidean Distance

The pseudocode for executing an exact search query with
Euclidean distance is shown in Algorithm 5. We first calcu-
late the iSAX summary of the query (line 2), and execute an
approximate search (line 3) to find the initial value of BSF,
i.e., a first upper bound on the actual distance between the
query and the series indexed by the tree. This process is il-
lustrated in Figure 4(a).

During a search query, the index tree is traversed and the
distance of the iSAX summary of each of the visited nodes
to the iSAX summary of the query is calculated. If the dis-
tance of the iSAX summary of a node, nd, to the query iSAX
summary is higher than BSF, then we are certain that the dis-
tances of all data series indexed by the subtree rooted at nd
are higher than BSF. So, the entire subtree can be pruned.
Otherwise, we go down the subtree, and the leaves with a
distance to the query smaller than the BSF, are inserted in
the priority queue.

The technique of using priority queues maximizes the
pruning degree, thus resulting in a relatively small number
of raw data series whose real distance to the query series
must be calculated. As a side effect, BSF converges fast to
the correct value. Thus, the number of iSAX summaries that
are tested against the iSAX summary of the query series is
also reduced.

Algorithm 5 creates Ns = 48 threads, called the search
workers (lines 7-9), which perform the computation described
above by calling SearchWorker. It also creates Nq ≥ 1

priority queues (lines 4-6), where the search workers place
those data series that are potential candidates for real dis-
tance calculation. After all search workers have finished (line 10),
ExactSearch returns the current value of BSF (line 11).

We have experimented with two different settings re-
garding the number of priority queues, Nq , that the search
workers use. The first, called Single Queue (SQ), refers to
Nq = 1, whereas the second focuses in the Multiple-Queue
(MQ) case where Nq > 1. Using a single shared queue
imposes a high synchronization overhead, whereas using a
local queue per thread results in load imbalance, since, de-
pending on the workload, the size of the different queues
may vary significantly. Thus, we choose to use Nq shared
queues, where Nq is a fixed number (in our analysis Nq =

24, as experiments showed that this is the best choice).
The pseudocode of search workers is shown in Algo-

rithm 6, and the work they perform in Figures 4(b) and 4(c).
At each point in time, each thread works on a single queue.
Initially, each queue is shared by two threads. Each search
worker first identifies the queue where it will perform its
first insertion (line 2). Then, it repeatedly chooses (using
Fetch&Inc) a root subtree of the index tree to work on by
calling TraverseRootSubtree (line 6). After all root sub-
trees have been processed (line 8), it repeatedly chooses a
priority queue (lines 10, 16) and works on it by calling
ProcessQueue (line 11). Each element of the queue array
has a finished field indicating if the processing of the cor-
responding priority queue has finished. As soon as a search
worker determines that all priority queues have been pro-
cessed (line 13), it terminates.

We continue to describe the pseudocode for
TraverseRootSubtree, which is presented in Algorithm 7
and illustrated in Figure 4(b). TraverseRootSubtree is re-
cursive. On each internal node, nd, it checks whether the
(lower bound) distance of the iSAX summary of nd to the
raw values of the query (line 1) is smaller than the current
BSF , and if it is, it examines the two subtrees of the node
using recursion (lines 11-12). If the traversed node is a leaf
node and its distance to the iSAX summary of the query se-
ries is smaller than the current BSF (lines 4-9), it places it
in the appropriate priority queue (line 6). Recall that the pri-
ority queues are accessed in a round-robin fashion (line 9).
This strategy maintains the size of the queues balanced, and
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Fig. 4 Workflow and algorithms for MESSI query answering

Algorithm 6: SearchWorker

Input: QuerySeries QDS, Index index, Queue queue[],
Integer pid, Integer Nq

1 Shared integer Nb = 0;

2 q = pid mod Nq ;

3 while (TRUE) do
4 i←Atomically fetch and increment Nb;
5 if (i ≥ 2w) then break;
6 TraverseRootSubtree(QDS, index.rootnode[i],

queue[], &q, Nq);
7 end

8 Barrier to synchronize the search workers with one another;
9 q = pid mod Nq ;

10 while (true) do
11 ProcessQueue(QDS, index, queue[q]);
12 if all queue[].finished=true then
13 break;
14 end
15 q ← index such that queue[q] has not been processed yet;
16 end

reduces the synchronization cost of node insertions to the
queues. We implement this strategy by (1) passing a pointer
to the local variable q of SearchWorker as an argument to
TraverseRootSubtree, (2) using the current value of q for
choosing the next queue to perform an insertion (line 6), and
(3) updating the value of q (line 9). Each queue may be ac-
cessed by more than one threads, so a lock per queue is used
to protect its concurrent access by multiple threads.

We next describe how ProcessQueue works (see Algo-
rithm 8 and Figure 4(c)). The search worker repeatedly re-
moves the (leaf) node, nd, with the highest priority from the
priority queue, and checks whether the corresponding dis-
tance stored in the queue is still less than the BSF. We do so,
because the BSF may have changed since the time that the
leaf node was inserted in the priority queue. If the distance
is less than the BSF, then CalculateRealDistance (line 9)

Algorithm 7: TraverseRootSubtree
Input: QuerySeries QDS, Node node, queue queue[],

Integer ∗pq, Integer Nq

1 nodedist = FindDist(QDS, node);
2 if nodedist > BSF then
3 break;
4 else if node is a leaf then
5 acquire queue[∗pq] lock;
6 Put node in queue[∗pq] with priority nodedist;
7 release queue[∗pq] lock;
8 // next time, insert in the subsequent queue
9 ∗pq ← (∗pq + 1) mod Nq ;

10 else
11 TraverseRootSubtree(node.leftChild, queue[], pq,Nq);
12 TraverseRootSubtree(node.rightChild, queue[], pq,Nq)
13 end

is called to identify if any series in the leaf node (pointed
to by nd) has a real distance to the query that is smaller
than the current BSF. If we discover such a series (line 10),
BSF is updated to the new value (line 13). We use a lock
to protect BSF from concurrent update efforts (lines 11, 15).
Previous experiments showed that the initial value of BSF is
very close to its final value [32, 33]. Indeed, in our experi-
ments, the BSF is updated only 10-12 times (on average) per
query. So, the synchronization cost for updating the BSF is
negligible.

CalculateRealDistance is shown in Algorithm 9. Note
that both the lower bounding (line 2) and the real (line 3)
distance calculations use SIMD [65]. However, this does
not lead to the same significant impact in performance as
in ParIS+. This is because pruning is much more effective
in MESSI for two reasons: (i) MESSI performs much less
lower bounding distance calculations since many of them
are pruned during the traversal of the tree (see Algorithm 7);
(ii) MESSI also performs a smaller number of real distance
calculations since examining the raw data series in the order
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Algorithm 8: ProcessQueue
Input: QuerySeries QDS, Index index, Queue Q

1 while TRUE) do
2 acquire Q’s lock;
3 node = DeleteMin(Q);
4 release Q’s lock;
5 if node == NULL then
6 return;
7 end
8 if node.dist < BSF then
9 realDist = CalculateRealDistance(QDS, index,

node);
10 if realDist < BSF then
11 acquire BSFLock;
12 if realDist < BSF then
13 BSF = realDist;
14 end
15 release BSFLock;
16 end
17 else
18 Q.finished = true;
19 return;
20 end
21 end

Algorithm 9: CalculateRealDistance
Input: QuerySeries QDS, Index index, node node, float

BSF

1 for every (isax, pos) pair ∈ node do
2 if LowerBound SIMD(QDS, isax) < BSF then
3 dist =

RealDist SIMD(index.RawData[pos], QDS);
4 if dist < BSF then
5 BSF = dist;
6 end
7 end
8 end
9 return (BSF )

defined by the priority queue (see Algorithm 8), rather than
in the order of the raw file that ParIS+ uses, means that the
BSF gets updated earlier and converges earlier to the value
of the nearest neighbor, leading to better pruning.

3.4 Query Answering with Dynamic Time Warping

Not only can MESSI accelerate similarity search based on
Euclidean distance, but it also can be used to perform simi-
larity search using the Dynamic Time Warping (DTW) dis-
tance. No changes are required in the index structure for this:
the index we build can answer both Euclidean and DTW
similarity search queries. Supporting DTW queries requires
modifying the query answering algorithm only, and using
LB Keogh [40], which is a tight lower bound of the DTW
distance7. Recall that a lower bound for the DTW distance

7 We note that other lower bounds for DTW can be used as well,
such as LB Improved [47]. Even though LB Improved can produce

between the query and a candidate series can be computed
by considering the distances between the corresponding points
of the candidate series and the points of the LB Keogh en-
velope of the query (see Figure 5; if some points of the can-
didate fall inside the query envelope, then their distance is
zero).

Assuming the reach, or allowed range of (the constrained)
warping, is r, we define two new sequences, U and L, cor-
responding to the upper and lower parts of the LB Keogh
envelope:

Ui = max (qi−r : qi+r)

Li = min (qi−r : qi+r)

Having defined U and L, we now use them to define a lower
bounding measure for DTW between a query sequence Q
and a candidate answer C [40]:

LB Keogh(Q,C) =

√√√√ n∑
i=1

{
(ci − Ui)2 if ci > Ui

(ci − Li)2 if ci < Li

0 otherwise

Intuitively, when the query series arrives, we compute
the LB Keogh envelope of this series, as shown in Figure 5.
We then probe the index using the envelope as the query (in-
stead of the series itself). The distances we compute using
the LB Keogh envelope are guaranteed to be lower bounds
of the true DTW distances [40]. Therefore, this operation
correctly prunes the search space, and (as in the case of Eu-
clidean distance) we then simply need to remove the false
positives by computing the DTW distance on the raw data
values of the (small set of) candidate answers. Overall, the
process of query answering using DTW follows the same
steps as those described in Algorithms 5-8, except that in
line 2 of Algorithm 5 we compute the PAA of the LB Keogh
envelope of the query, in line 1 of Algorithm 7 we compute
the (lower bounding) distance between the query envelope
PAA and the node iSAX summarization, and in line 9 of Al-
gorithm 8 we call the function that computes the DTW real
distance (Algorithm 10).

More specifically, we first perform an approximate search
in order to get an initial solution that is close to the actual
answer, which will serve as our BSF. In order to prune the
index tree, we then calculate the lower bound distance be-
tween the query envelope PAA representation and the iSAX
summarization of the leaf nodes (see Figure 6 top). We insert
the leaves that we cannot prune (i.e., the DTW lower bound
is less than the BSF) in the priority queue. When MESSI
pops a leaf from the priority queue, it calculates the DTW
lower bound distance between the query envelope PAA rep-
resentation and the iSAX summarization of each series in
the leaf (Algorithm 10, line 2). For the series that survive
this second filter, we have to access the raw data. We start
by computing the DTW lower bound distance between the

tighter bounds, in our experiments it also resulted in higher query an-
swering times due to the additional computations it involves.
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Fig. 6 SIMD conditional branch DTW lower bound distance calculation.

Algorithm 10: CalculateRealDistanceDTW
Input: QuerySeries QDS, Envelope of QuerySeries

EQDS, Index index, node node, float BSF
1 for every (isax, pos) pair ∈ node do
2 if LowerBound DTW SIMD(EQDS, isax) < BSF

then
3 if LB Keogh(EQDS, index.RawData[pos]) <

BSF then
4 dist =

RealDist SIMD(index.RawData[pos], QDS);

5 if dist < BSF then
6 BSF = dist;
7 end
8 end
9 end

10 end
11 return (BSF )

query envelope raw values and the raw values of the se-
ries (Algorithm 10, line 3). If this step cannot prune the se-
ries, either, then we finally compute the true DTW distance
between the raw values of the query and the series (Algo-
rithm 10, line 4).

In order to speed up the execution of the DTW lower
bound distance calculations, we develop a SIMD solution.
Note that, in contrast to the simple case of a Euclidean dis-
tance calculation on the real data, developing a SIMD solu-
tion for the LB Keogh lower bound is not straight-forward.
The Euclidean distance calculated on the real values of two
series involves exactly the same operations (i.e., first a sub-
traction and then a power of two operation) for all the points
of the series. This leads to a simple SIMD solution, where
the entire SIMD register performs the same operations, all
useful and necessary for the final result. On the other hand,
the algorithm for computing the DTW lower bound involves
branching. As we discuss below, we need to perform differ-
ent operations for the candidate series segments, depending
on whether their values are larger, smaller, or lie within the
the LB Keogh envelope values. We therefore need to trans-
late these branches of the operation into an efficient SIMD
implementation.

Our DTW lower bound SIMD solution is illustrated in
Figure 6. In the top part of this figure, boxes represent the
iSAX summary of each segment of the candidate series, and
red and blue horizontal lines represent the PAA representa-
tions of each segment of the upper and the lower LB Keogh
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envelope of the query, respectively. The bottom part of Fig-
ure 6 illustrates how the lower bound DTW distance be-
tween the iSAX summary of the candidate series and the
PAA representations of the query LB Keogh envelopes, is
calculated using SIMD. Our architecture supports the com-
putation of the lower bound DTW distances for eight of
these segments concurrently.

This per-segment computation needs to capture three dif-
ferent cases, namely, the PAA representation of the candi-
date being ABOVE, BELOW, or IN the query envelope PAA
representation. The code to run is different in each of these
cases. The ABOVE distance is calculated between the lower
edge of the candidate series segment’s iSAX box and the
corresponding segment of the PAA representation of the Up-
per LB Keogh envelope (shown as a red line in Figure 6).
The BELOW distance is calculated between the upper edge
of the iSAX box of the candidate series and the the PAA
representation of the Lower LB Keogh envelope (shown as
a blue line in Figure 6). Finally, the IN distance is simply
zero.

Since we cannot know beforehand which of the above
three cases is true in each case, we use SIMD to calculate all
three distances for each segment. These are depicted in Fig-
ure 6 as dist above, dist below, and dist in. We then choose
the correct distance among these three distances. To do so,
we use SIMD to compute three masks, setting the appro-
priate positions to true depending on the observed situa-
tion, that is, depending on the position (ABOVE, BELOW,
or IN) of a candidate series’ segment with respect to the cor-
responding segments of the LB Keogh envelope. In Figure 6
for example, the first candidate iSAX representation is above
the corresponding query envelope PAA, which means that
only the ABOVE mask will be true for this position; conse-
quently we will choose the ABOVE distance value for this
position of the SIMD vector.

The final result is then computed using SIMD by sum-
ming up the right distances for each segment, i.e., those
for which the corresponding mask position was set to true
(shown as final dist in Figure 6 bottom). This operation is
efficiently executed by using the appropriate SIMD instruc-
tions (AVX, AVX2 and SSE3) [24].

3.5 Complexity Analysis

We now provide a best- and worst-case time analysis, which
contrasts the time needed in a concurrent setting with that
required in a single-thread environment. That is, we com-
pare the performance of MESSI when multiple workers are
active with its performance when just a single thread is ac-
tive. Note that the best- and worst-case scenaria are mainly
(but not exclusively) driven by the data characteristics: as
we detail below, different datasets may lead to index trees
with significantly different properties.

[Index Construction] Index construction in MESSI is com-
prised of two phases. During the first phase (Algorithm 3,
Figure 3(a)), the index workers calculate the iSAX sum-
maries of the raw data series and store them into the iSAX
buffers. During the second phase (Algorithm 4, Figure 3(b)),
the index workers process the iSAX buffers and build the
index tree. We analyze each of these phases separately. As-
sume that the time needed by a single thread to execute
phase 1 is T1, the time needed to execute phase 2 is T2, and
the total sequential time for index creation is T = T1+T2. In
MESSI, every index worker processes about the same num-
ber of data series. Note that processing data series of the
same length takes the same amount of time. Given that each
index worker works on its own part of the iSAX buffers, the
amount of time spent to allocate the buffers in the concurrent
setting is at most a factor of 2 larger than that needed in the
sequential case. Therefore, if we exclude the contention that
a worker experiences when accessing the Fetch&Increment
object, all workers require about the same amount of time to
finish the first phase.

Best Case: The best case scenario occurs when threads ex-
perience no contention in accessing the Fetch&Inc objects
(i.e., no two threads access a Fetch&Inc object at exactly
the same time). Since the threads do not experience any
contention when storing elements in the iSAX buffers ei-
ther, MESSI then requiresO(T1/Nw) time for executing the
first phase, which is optimal. We now focus on the second
phase. In the best case scenario, it additionally holds that
the iSAX buffers are assigned to threads in a way that all
threads finish the second stage at about the same time. Note
that this does not necessarily require that all subtrees contain
the same number of nodes (e.g., if bigger subtrees are pro-
cessed earlier than smaller ones, then the processing of big
subtrees overlaps with that of smaller ones). Then, MESSI
requires O(T2/Nw) time to execute phase 2, which is also
optimal. Therefore, in the best case, MESSI exhibits optimal
speedup for index creation.

Worst Case: In the worst case, all Nw workers access the
Fetch&Inc objects at the same time. We assume that the
system serializes these accesses and the ith worker in this
serialization order will get a response from the object after i
time units. Therefore, each block ofNw concurrent accesses
to the Fetch&Inc object (by all threads) adds a total of Nw

time units due to contention. We will have (Nc + Nb)/Nw

such blocks of accesses, where Nc is the number of chunks
and Nb ≤ 2w is the number of root subtrees in the index
tree. In the worst case, MESSI will also experience the fol-
lowing: while a thread will be processing the last chunk of
the raw data array, all other threads will be sitting idle. The
same will occur with the last subtree. So, if Tc is the sequen-
tial time for processing a chunk and Ts is the sequential time
for processing the biggest subtree of the root, the worst case
execution time of MESSI will be O((T − Tc − Ts)/Nw +
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Tc+Ts+Nc+Nb). In the extreme scenario, where all data
series are stored in only one of the subtrees, this time may
be no less than T (the sequential time). Note that this is a
pathological case that would happen when all series in the
dataset are very similar to one another8.
[Query Answering] Query answering in MESSI is com-
prised of three phases. During the first phase, approximate
search is executed. During the second phase (tree traver-
sal), the search workers traverse the index tree and populate
the priority queues. During the third phase (queue process-
ing), the search workers process the elements of the prior-
ity queues to produce the final result. We analyze each of
these phases separately. Assume that the time needed by a
single thread to execute phase 1 is T1, the time needed to
execute phase 2 is T2, the time needed to execute phase 3
is T3, and the total sequential time for the last two phases
is T = T2 + T3. The approximate search is executed by a
single thread in MESSI and therefore this time is also T1
in a multi-threaded environment. We therefore focus on the
other two phases.
Best case. For the tree traversal phase, the best case occurs
when threads never access the Fetch&Inc object concurrently
and never find the lock of a queue taken. Moreover, each
thread must add the same number of nodes in the priority
queues, so that all threads perform about the same amount of
work. Then, the time needed to execute phase 2 isO(T2/Ns).
For phase 3, the best case occurs when no thread has to ever
wait on a lock and each thread performs about the same
amount of computation. Note that after acquiring a node
from some queue, a thread has to perform computation (i.e.,
real distance calculations). These computations could be over-
lapping with the deletion of additional elements from the
queue. Thus, the time needed for phase 3 in the best case is
O(T3/Ns). Therefore, the total time is O(T1 + T/Ns).

We observe that in the concurrent case, it may happen
that the final value of BSF is reached faster than in the se-
quential case, since all threads update the value of BSF in
parallel. This may result in better pruning than in the single-
thread case, where the thread may process the subtree (or
the queue) that contains the node which results in the final
value of BSF towards the end of the tree traversal (or the
processing of the queues).
Worst case. Let Ta be the sequential time needed for per-
forming the insertions to the priority queues. Since both the
cost for an insertion and the cost for a deletion are logarith-
mic on the size of the priority queue, the sequential time
needed for performing the deletions from the priority queue
is also in Θ(Ta). Let Tb be the sequential time needed for
updating the BSF. Due to the use of locks, these times are
still sequential in the concurrent setting. Assuming queue
locks [37], the steps needed to acquire or release a lock is

8 In such a case, indexing and similarity search would not be useful
anyways.

O(1). Note that the time a thread waits for the lock to be
released is overlapping with the critical sections of other
threads, and therefore we do not count waiting times on the
locks.

Regarding the second phase, in the worst case, all Ns

workers access the Fetch&Inc object at the same time. Thus,
each block of Ns concurrent accesses to the Fetch&Inc ob-
ject adds a total of Ns time units (due to contention). We
have Nb/Ns such blocks of accesses, thus resulting in a
total cost of O(Nb) time units. Therefore, the worst-case
time for the second phase is O((T2 − Ta)/Ns + Ta +Nb).
Since Tb ∈ O(Ta), the time to execute the third phase is
O((T3−Ta−Td)/Ns+Ta+Td). Therefore, the total worst-
case time is O(T1 + (T − Ta − Td)/Ns + Ta + Td +Nb).

4 Proof of Correctness

We note that in concurrent algorithms, the non-deterministic
nature of parallel execution may lead to errors that are not
detected during testing. In this section, we provide proofs
that the proposed algorithms for index creation and query
answering always produce correct results, irrespective of the
peculiarities of parallel execution.
[Index construction phase] MESSI builds the tree index
with minor synchronization, i.e., by using two Fetch&Inc
objects and a barrier. This makes the correctness proof for
index creation relatively simple. However, for completeness,
we include it below.

We say that a data series S of the RawData array is pro-
cessed whenever a thread calculates its iSAX summary (i.e.,
executes line 7 of Algorithm 3). We say that a chunk of the
RawData array is processed if a thread processes data series
stored in it.

The use of the Fetch&Inc object, Fc, in Algorithm 3, en-
sures that for each 0 ≤ i ≤ size/chunk size, (where size
is the size of the RawData array and chunk size is the size
of each of its chunks), there exists exactly one thread p that
gets number i when accessing Fc (line 2 of Algorithm 3),
and no thread other than p processes chunk i. By inspection
of the code of Algorithm 3 (lines 2 and 4 and condition of
the if statement of line 5), it follows that Fc is accessed un-
til its value becomes as large as the number of chunks of
the RawData array. Therefore, for every chunk of the Raw-
Data array, there is exactly one thread to which this chunk
is assigned. Line 6 ensures that once a chunk is assigned to
a thread, all the data series it contains are processed by this
thread. These (and the pseudocode) imply the following:

Lemma 1 For every data series, S, contained in the Raw-
Data array, the following hold: (1) S is processed exactly
once, i.e. there is a single thread p that calculates the iSAX
summary for S; (2) there exists exactly one iSAX buffer that
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contains an entry e corresponding to S, and this entry ap-
pears in the part of the buffer that is assigned to p.

We use Lemma 1 to argue that the constructed tree index
is correct.

Theorem 1 The data structure T constructed by executing
the IndexConstruction phase (Algorithms 3 and 4) is a tree
that contains a distinct element for every data series of the
RawData array and no more elements.

Proof Initially, T is a tree with a root node and c ≤ 2w leaf
children. By inspection of the code, additional elements can
be added into T by executing Algorithm 4. The barrier on
line 2 of Algorithm 2 ensures that no thread starts inserting
additional elements in T , as long as there exist threads that
still process data series stored in the RawData array (i.e.,
they still execute Algorithm 3). Thus, Lemma 1 implies that
a thread calls Algorithm 4 only after the iSAX summaries of
all data series stored in the RawData array have been placed
in the iSAX buffers.

Recall that the number of iSAX buffers is also c (the
same as the number of the root children of T ). The use of
the Fetch&Increment object, Fb, and lines 2 and 4 ensure
that for each i, 0 ≤ i ≤ c, exactly one thread p gets number
i by accessing Fb (i.e., by executing line 3 of Algorithm 4).
Recall that every calculated iSAX summary is placed in the
appropriate iSAX buffer, i.e., in the iSAX buffer that corre-
sponds to the root subtree of T in which the iSAX summary
should be stored. Thus, iSAX buffer i contains only those
data series that are to be stored in T ’s root subtree num-
bered i. It follows that the task to build the entire subtree
has been assigned solely to process i. So, different threads
work on different subtrees of T (and no synchronization is
needed between them). It follows that T ends up to be an
index tree.

Lines 2-4 ensure that all c iSAX buffers will be exam-
ined. The for loop of line 5 ensures that p will examine all
parts of iSAX buffer i, and the for loop of line 6 guarantees
that all iSAX summaries stored in each of these parts will
be inserted in T (lines 7-12). Therefore, Lemma 1 (claim 2)
implies that the constructed tree contains a distinct element
for every data series stored in the RawData array and no
more elements.

Query Answering Phase. To argue that the response of a 1-
NN query, QR, is correct, we need the following properties
from [75].

Property 1 The distance between the PAA of QR and the
iSAX summary of a node nd of the index lower bounds the
real distance between QR and any of the series in the leaves
of nd’s subtree.

Property 2 Consider two leaf nodes nd and nd′ of the index
tree. Let d be the minimum real distance between QR and

any series in nd. If d is smaller than the distance between
the PAA of QR and the iSAX summary of nd′, then all real
distances between QR and every series in nd′ are greater
than d.

Lemma 2 TraverseRootSubtree is invoked exactly once
for each of the root subtrees of the index tree.

Proof The use of the Fetch&Increment object,Nb, and lines 3
and 5 of Algorithm 6 ensure that for every i, 0 ≤ i ≤ c,
exactly one thread p gets number i when accessing Nb (by
executing line 4 of Algorithm 6). It follows that the function
TraverseRootSubtree is invoked (line 6, Algorithm 6) ex-
actly once for each of the root children of the index tree (i.e.,
p is the only thread that traverses the subtree numbered i of
the index tree).

Let t be the point in time when the last search worker
meets the barrier at line 8 of Algorithm 6.

Lemma 3 Consider any i, 0 ≤ i < Nq . The following hold
at t: (1) queue[i] is a heap (i.e., it implements a priority
queue); (2) every element of queue[i] is a distinct leaf of the
index tree; thus, for every j, 0 ≤ j < Nq , j 6= i, the set of
elements stored in queue[i] and the set of elements stored in
queue[j] are disjoint.

Proof By inspection of the code, it follows that an insertion
of an element in queue[i] can be performed only when line 6
of Algorithm 7 is executed, whereas no deletions are per-
formed on queue[i] by t. Concurrent insertions on queue[i]
(executed by multiple search workers) are serialized by ac-
quiring and releasing the lock for queue[i] in lines 5 and 7
of Algorithm 7. Thus, line 6 (Algorithm 7), which performs
an insertion of a leaf node in queue[i], is executed in mutual
exclusion. Specifically, line 6 executes the sequential code
for a heap insertion with parameter a tree node that has as
its priority the distance calculated in line 1. These imply that
queue[i] is a heap, so claim 1 holds.

By Lemma 2, TraverseRootSubtree is invoked exactly
once for each subtree of the index tree. TraverseRootSubtree
is a recursive algorithm that visits each tree node at most
once. In particular, line 6 (of Algorithm 7) is executed at
most once for each node. The condition of the else if state-
ment of line 4 ensures that line 6 is executed only for leaf
nodes, so only leaf nodes are inserted in queue[i]. These
imply that claim 2 holds.

We say that an instance of TraverseRootSubtree (Al-
gorithm 7) visits a leaf node nd if it executes lines 5-9 with
node being equal to nd.

Lemma 4 Let BSFt be the value of shared variable BSF
at time t. For every leaf node, nd, of the index tree that is
not stored in the heaps of array queue at t, it holds that the
real distance between the query and each of the data series
stored in nd is larger than BSFt.
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Proof By inspection of the code (Algorithms 6 and 7), it is
easy to see that the value of BSF does not change from the
point that it is first set (on line 3 of Algorithm 5) until t.
Therefore, the value of BSF is equal to BSFt during the
execution of every instance of TraverseRootSubtree .

Consider any leaf node nd that is not stored in the heaps
of the queue array at t. This can happen only if no instance
of TraverseRootSubtree visits this node. By Lemma 2,
TraverseRootsubtree is invoked exactly once for each sub-
tree of the index tree. By inspection of the code, it follows
that nd belongs to the subtree of a node nd′ (that might be
nd or one of its proper ancestors) on which the condition of
the if statement of line 2 (Algorithm 7) is evaluated to false,
so that TraverseRootSubtree is not called recursively on
the nodes of nd′’s subtree (including nd), and therefore all
these nodes are not visited. Lines 1-2 (Algorithm 7) ensure
that the distance between the PAA of the query and the iSAX
representation of nd′ is greater thanBSFt. Thus, Property 1
implies that the real distance between the query and each of
the data series stored in nd is larger than BSFt, as needed.

The following observation is a simple consequence of
the fact that the BSF variable is protected by a distinct lock,
and that the value ofBSF is updated only if the if statement
of line 12 (Algorithm 8) is evaluated to true.

Observation 1 The sequence of values stored in shared vari-
able BSF is strictly decreasing.

Theorem 2 The response of QR is correct.

Proof Fix any i, 0 ≤ i < Nq and let Q = queue[i]. Dele-
tions from Q may occur only by executing line 3 of Algo-
rithm 8. Concurrent deletions from Q are serialized by ac-
quiring and releasing the lock forQ (lines 2-4, Algorithm 8).
Note that this lock is distinct for each queue. This and Lemma 3
imply thatQ respects the semantics of a priority queue. There-
fore, when a node nd with its dist field being equal to d is
deleted fromQ, all other nodes ofQ have higher values than
d in their dist field.

Let tf be the first point in time at which Q.finished
is set to true. Then, lines 8 and 17 imply that the distance
between the PAA of the query QR and the iSAX summary
of the last node nd deleted from Q is greater than or equal
to BSF . Property 2 then implies that for every leaf node
nd contained in the queue at tf , the minimum real distance
between the query QR and all the data series stored in nd is
larger than the value of BSF at tf (let this be BSFf ). This
and Observation 1 imply that none of the data series of nd
may result in a real distance to QR smaller than BSFf (or
future values of BSF ), and therefore none of them needs to
be further examined. Note that as soon as the finished bit
of Q changes to true, any future update of this field does not
change its value (i.e., it simply re-writes true to it); this is
why writes into this field are not protected by a lock.

Lemma 4 implies that by processing just the leaf nodes
in the heaps of the queue array (and not all leaf nodes of the
index tree), the correctness of QR’s response is not jeopar-
dized. Every such heap is processed by at least one search
worker. This is ensured by the fact that a search worker
stops processing heaps of the queue array only if it discov-
ers that the finished bits of all of them have been set to true
(lines 10-16, Algorithm 6).

5 Experimental Evaluation

We use synthetic and real datasets in order to compare the
performance of MESSI with that of competitors from the
literature and baselines we developed.

We demonstrate that, under the same settings, MESSI is
able to construct the index up to 4.2x faster, and answer sim-
ilarity search queries up to 11.2x faster than the competitors.
Overall, MESSI exhibits robust performance across datasets
and settings, and enables for the first time the exploration of
very large data series collections at interactive speeds, and
leads to complex analytics that execute more than 1 order of
magnitude faster than before.

5.1 Setup

[Environment] We used a server with two Intel Xeon E5-
2650 v4 2.2Ghz CPUs and 256GB RAM; each one of the
two CPUs comprises 12 cores/24 hyper-threads. All algo-
rithms were implemented in C, and compiled using GCC
v6.2.0 on Ubuntu Linux v16.04.
[Algorithms] We compared MESSI to the following algo-
rithms:
(i) ParIS+ [67], the state-of-the-art modern hardware data
series index.
(ii) ParIS+TS, our extension of ParIS+, where we imple-
mented in a parallel fashion the traditional tree-based exact
search algorithm [75]. In brief, this algorithm traverses the
tree, and concurrently (1) inserts in the priority queue the
nodes (inner nodes or leaves) that cannot be pruned based
on the lower bound distance, and (2) pops from the queues
nodes for which it calculates the real distances to the candi-
date series [75]. In contrast, MESSI (a) first makes a com-
plete pass over the index using lower bound distance com-
putations and then proceeds with the real distance compu-
tations; (b) it only considers the leaves of the index for in-
sertion in the priority queue(s); and (c) performs a second
filtering step using the lower bound distances when popping
elements from the priority queue (and before computing the
real distances). The performance results we present later jus-
tify the choices we have made in MESSI, and demonstrate
that a straight-forward implementation of tree-based exact
search leads to sub-optimal performance.
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(iii) UCR Suite-P, our parallel implementation of the state-
of-the-art optimized serial scan technique, UCR Suite [72],
which implements all the known optimizations for exact data
series similarity search. In UCR Suite-P, every thread is as-
signed a part of the in-memory data series array, and all
threads concurrently and independently process their own
parts, performing the real distance calculations in SIMD,
and only synchronize at the end to produce the final result.
(We do not consider the non-parallel UCR Suite version in
our experiments, since it is almost 300x slower.)

In all cases, the algorithms operated exclusively in main
memory (the datasets were already loaded in memory, as
well). The code for all algorithms used in this paper is avail-
able online [5].
[Datasets] In order to evaluate the performance of the pro-
posed approach, we use several synthetic datasets for a fine
grained analysis, and two real datasets from diverse domains.
Unless otherwise noted, the series have a size of 256 points,
which is a standard length used in the literature, and allows
us to compare our results to previous work. We used syn-
thetic datasets of sizes 50GB-200GB (with a default size
of 100GB). For the synthetic datasets, we used a random
walk data series generator that works as follows: a random
number is first drawn from a Gaussian distribution N(0,1),
and then at each time point a new number is drawn from
this distribution and added to the value of the last number.
This kind of data generation has been extensively used in
the past (and has been shown to model real-world financial
data) [18,75,81,86,89]. We used the same process to gener-
ate 100 query series.

For our first real dataset, Seismic, we used the IRIS Seis-
mic Data Access repository [1] to gather 100M series repre-
senting seismic waves from various locations, for a total size
of 100GB. The second real dataset, SALD, includes neuro-
science MRI data series [4], for a total of 200M series of size
128, of size 100 GB. In both cases, we used as queries 100
series out of the datasets (chosen using our synthetic series
generator).

We repeated all experiments 10 times and we report the
average values. We omit the error bars, since all runs gave
results that were very similar (less than 3% difference). The
queries were always run in a sequential fashion, one after
the other, in order to simulate an exploratory analysis sce-
nario, where users formulate new queries after having seen
the results of the previous one.

5.2 Parameter Tuning Evaluation

In all our experiments, we use 24 index workers and 48
search workers. We have chosen the chunk size to be 20MB
(corresponding to 20K series of length 256 points). Each
part of any iSAX buffer, initially holds a small constant num-

ber of data series, but its size changes dynamically depend-
ing on how many data series it needs to store. The capacity
of each leaf of the index tree is 2000 data series (2MB).
For query answering, MESSI-mq utilizes 24 priority queues
(whereas MESSI-sq utilizes just one priority queue). In ei-
ther case, each priority queue is implemented using an ar-
ray whose size changes dynamically based on how many
elements must be stored in it. Below we present the experi-
ments that justify the choices for these parameters.

Figure 7 illustrates the time it takes MESSI to build the
tree index for different chunk sizes on a random dataset of
100GB. The required time to build the index decreases when
the chunk size is small and does not have any big influence in
performance after the value of 1K (data series). Chunk sizes
smaller than 1K result in high contention when accessing
the fetch&increment object used to assign chunks to index
workers. In our experiments, we have chosen a size of 20K,
as this gives slightly better performance.

Figures 8 and 10 show the impact of varying the index
tree leaf size on the time cost of index creation and query
answering, respectively. As we see in Figure 8, the larger
the leaf size is, the faster index creation becomes. However,
once the leaf size becomes 5K or more, this time improve-
ment is insignificant. On the other hand, Figure 10 shows
that the query answering time takes its minimum value when
the leaf size is set to 2K (data series). So, we have chosen
this value for our experiments.

Figure 10 indicates that the influence of varying the leaf
size is significant for query answering. Note that when the
leaf size is small, there are more leaf nodes in the index tree
and therefore, it is highly probable that more nodes will be
inserted in the queues, and vice versa. As the leaf size in-
creases, the number of real distance calculations performed
to process each one of the leaves in the queue is larger. This
causes load imbalance among the different search workers
that process the priority queues. For these reasons, we see
that at the beginning the time goes down as the leaf size in-
creases, it reaches its minimum value for leaf size 2K series,
and then it goes up again as the leaf size further increases.

Figure 9 shows the influence of the initial iSAX buffer
size during index creation. This initialization cost is not neg-
ligible given that we allocate 2w iSAX buffers, each consist-
ing of 24 parts (recall that 24 is the number of index work-
ers in the system). As expected, smaller initial sizes for the
buffers result in better performance. We have chosen the ini-
tial size of each part of the iSAX buffers to be a small con-
stant number of data series. (We also considered a design
that collects statistics and allocates the iSAX buffers right
from the beginning, but was slower.)

We finally justify the choice of using more than one
priority queues for query answering. As Figure 13 shows,
MESSI-mq and MESSI-sq have similar performance when
the number of threads is smaller than 24. However, as we go
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from 24 to 48 cores, the synchronization cost for accessing
the single priority queue in MESSI-sq has negative impact in
performance. Figure 16 presents the breakdown of the query
answering time for these two algorithms. The figure shows
that in MESSI-mq, the time needed to insert and remove
nodes from the list is significantly reduced. As expected, the
time needed for the real distance calculations and for the
tree traversal are about the same in both algorithms. This has
the effect that the time needed for the distance calculations
becomes the dominant factor. The figure also illustrates the
percentage of time that goes on each of these tasks.

Finally, Figure 15 shows the impact of the number of pri-
ority queues on query answering performance. As the num-
ber of priority queues increases, the time goes down, and is
minimized for 24 queues. So, we have chosen this value for
our experiments. We also note that each one of these queues
handles almost the same number of elements. Our experi-

ments showed that the standard deviation of the number of
elements in the queues was always less than 0.8% of the
mean number of elements over all the queues used.

5.3 Comparison to Competitors

[Index Creation] Figure 11 compares the index creation
time of MESSI with that of ParIS+ as the number of cores
increases for a dataset of 100GB. The time MESSI needs for
index creation is significantly smaller than that of ParIS+.
Specifically, MESSI is 3.5x faster than ParIS+. The main
reasons for this are on the one hand that MESSI exhibits
lower contention cost when accessing the iSAX buffers in
comparison to the corresponding cost paid by ParIS+ to fill
in the Receiving Buffers, and on the other hand, that MESSI
achieves better load balancing when performing the compu-
tation of the iSAX summaries from the raw data series. Note
that due to synchronization cost, the performance improve-
ment that both algorithms exhibit decreases as the number
of cores increases; this trend is more prominent in ParIS+,
while MESSI manages to exploit to a larger degree the avail-
able hardware.

In Figure 12, we depict the index creation time as the
dataset size grows from 50GB to 200GB. We observe that
MESSI performs up to 4.2x faster than ParIS+ (for the 200GB
dataset), with the improvement becoming larger with the
dataset size.
[Query Answering] Figure 13 compares the performance
of the MESSI query answering algorithm to its competi-
tors, as the number of cores increases, for a random dataset
of 100GB (y-axis in log scale). The results show that both
MESSI-sq and MESSI-mq perform much better than all the
other algorithms. Note that the performance of MESSI-mq
is better than that of MESSI-sq, so when we mention MESSI
in our comparison below we refer to MESSI-mq. MESSI is
55x faster than UCR Suite-P and 6.35x faster than ParIS+
when we use 48 threads (with hyperthreading). In contrast to
ParIS+, MESSI applies pruning when performing the lower
bound distance calculations and therefore it executes this
phase much faster. Moreover, the use of the priority queues
result in even higher pruning power. As a side effect, MESSI
also performs less real distance calculations than ParIS+.
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Note that UCR Suite-P does not perform any pruning, thus
resulting in a much lower performance than the other algo-
rithms.

Figure 14 shows that this superior performance of MESSI
is observed across various data set sizes: MESSI is up to 61x
faster than UCR Suite-p (for 200GB), up to 6.35x faster than
ParIS+ (for 100GB), and up to 7.4x faster than ParIS+TS
(for 50GB).
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In the following experiment, we studied the query an-
swering performance as we varied the length of the data
series. We measured the query answering time for data se-
ries, whose length ranged from 128 to 2048 points. The five
datasets with different data series length that we used in this
experiment are random, and in order to factor out the effect
of dataset size (following previous work [27, 28]), they are
all 100GB in size. This means that the datasets with longer
series contain a smaller number of series overall. In all cases,
the iSAX summaries were built using 16 segments.

Figure 20 shows that the query answering performance
of all algorithms increases with the length of the series. This
is to be expected, since the total number of series, and there-
fore distances that should be computed, is decreasing. We
observe that as we increase the series length, the lower bounds
become looser. Consequently, the proportion of lower bound
and real distance calculations increase, as reported in Fig-
ures 21 and 22, respectively. These results also show that
ParIS+ spends time to perform lower bound calculations for
all series in the dataset in order to save on the real distance
calculations, while ParIS+TS ends up performing a large
number of both lower bound and real distance calculations.
On the other hand, the query answering strategy of MESSI
proves very efficient in terms pruning, leading to a small
number of lower bound and real distance calculations. We
also observe that when compared to ParIS+TS, MESSI is
much more efficient in handling the priority queues. Fig-
ure 23 shows the time spent on priority queue insertion and
deletion operations for the two algorithms. The time to han-
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dling queue become stable for both 2 algorithms. The slow
performance of ParIS+TS is due to the fact that it inserts in
the queue not only the leaf nodes (like MESSI), but also the
inner nodes. All the above performance characteristics make
MESSI the overall winner in terms of query answering time,
across all data series lengths we tried (Figure 20).
[Performance Benefit Breakdown] We now evaluate each
of the design choices of MESSI in isolation. This evaluation
serves as a methodological analysis that can help understand
the benefit of individual design decisions, and if/how they
apply to other indices.

Note that some of our design decisions stem from the
fact that in our index the root node has a large number of
children. Thus, the same design ideas are applicable to the
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Fig. 23 Time spent in priority queue insertions and deletions, vs. data
series length.

iSAX family of indices (e.g., iSAX2+ [18], ADS+ [89],
ULISSE [51]). Other indices however [27], use a binary tree
(e.g., DSTree), or a tree with a very small fanout (e.g., SFA
trie, M-tree), so new design techniques are required for effi-
cient parallelization. However, some of our techniques (e.g.,
the use of SIMD, priority queues, and some of the data struc-
tures designed to reduce the syncrhonization cost) can be
applied to all other indices.

We first examine index creation (refer to Figure 24). The
main performance benefit comes from removing the syn-
chronization cost of ParIS+ when filling up the receiving
buffers. In accessing the buffers, we completely eliminated
the synchronization cost by splitting each such buffer into
as many chunks as the number of worker threads. Then each
thread inserts and removes elements without encountering
any contention, leading to a 2.5x speedup (shown as ParIS+no-
synch in the graph) when compared to ParIS+. To achieve
better load balancing, MESSI splits the array into smaller
chunks and uses a Fetch&Add object to assign chunks to
threads, resulting to a further performance improvement of
11%.

Then, we examine the query answering performance (re-
fer to Figure 25). The leftmost bar (ParIS+SISD) shows the
performance of ParIS+ when SIMD is not used. By employ-
ing SIMD, ParIS+ becomes 60% faster than ParIS+SISD.
We then measure the performance for ParIS+TS, which is
about 10% faster than ParIS+. This improvement comes form
the fact that using the index tree (instead of the SAX array
that ParIS+ uses) to prune the search space and determine
the data series for which a real distance calculation must be
performed, significantly reduces the number of lower bound
distance calculations. ParIS+ calculates lower bound dis-
tances for all the data series in the collection, and pruning
is performed only when calculating real distances, whereas
in ParIS+TS pruning also occurs when calculating lower
bounds.

Next, we apply the following technique to reduce the
number of real distance calculations we perform: for each
node extracted from the priority queue (where ParIS+TS
stores the nodes it needs to process), we first calculate the
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lower bound distance and only if it is smaller than the BSF,
the algorithm calculates the real distance. We call this algo-
rithm ParIS+TS-LB, which results in a further performance
improvement of 13%. MESSI-sq improves upon ParIS+TS-
LB in that it inserts in the priority queue only leaf nodes.
This reduces the number of nodes that are inserted in the pri-
ority queue and therefore also the size of the queue, as well
as the contention incurred when accessing it. Given that in
a priority queue, all threads need to synchronize at the root
node, this contention is usually rather high. Figure 25 shows
that MESSI-sq is 65% faster than ParIS+TS-LB. MESSI-
mq further reduces the synchronization cost by maintaining
more than one queues and having different threads choose
on which queues to work on. This makes MESSI-mq 42%
faster than MESSI-sq.

In Table 1, we report a breakdown of the number of
operation executions that the different algorithms perform.
These numbers help explain the observations (and design
choices) mentioned above. Observe that ParIS+TS performs
many real distance calculations, because it does not use the
second-level filter opportunity offered by the full-length iSAX
representation of each data series. ParIS+TS-LB improves
on this aspect. When compared to ParIS+, ParIS+TS-LB
only performs 9% of the lower bound distance calculations,
because it uses the index tree and the priority queue in or-
der to prune. This also means that ParIS+TS-LB performs
less than 50% of the real distance calculations. However,
ParIS+TS-LB still executes many insert/delete node opera-
tions on the priority queue. MESSI sq/hq are much more
efficient in handling the priority queue, since it only inserts
leaf nodes in the queue.

[Real Datasets] Figures 17 and 18 reaffirm that MESSI ex-
hibits the best performance for both index creation and query
answering, even when executing on the real datasets, SALD
and Seismic (for a 100GB dataset), for the reasons listed in
the previous paragraphs. Regarding index creation, MESSI
is 3.6x faster than ParIS+ on SALD and 3.7x faster than
ParIS on Seismic, for a 100GB dataset. Moreover, for SALD,
MESSI query answering is 60x faster than UCR Suite-P and
8.4x faster than ParIS+, whereas for Seismic, it is 80x faster
than UCR Suite-P, and almost 11x faster than ParIS+.

Figures 19(a) and 19(b) illustrate the number of lower
bound and real distance calculations, respectively, performed
by the different query algorithms on the three datasets. ParIS+
calculates the distance between the iSAX summaries of ev-
ery single data series and the query series (because, as we
discussed in Section 2, it implements the SIMS strategy for
query answering). In contrast, MESSI performs pruning even
during the lower bound distance calculations, resulting in
much less time for executing this computation. Moreover,
this results in a significantly reduced number of series whose
real distance to the query must be calculated.

The use of the priority queues lead to even less real
distance calculations, because they help the BSF to con-
verge faster to its final value. MESSI performs no more than
15% of the lower bound distance calculations performed by
ParIS+.

In the next experiment, we report results with query work-
loads of increasing difficulty (similarly to earlier work [90]).
For these workloads, we select series at random from the
collection, add to each point Gaussian noise (µ = 0, σ =

0.01-0.1), and use these as our queries. Finally, we also se-
lect series at random and remove them from the collection,
and use these as our Real workload.

Figure 26 shows that the pruning proportion of all al-
gorithms increases as we increase the level of noise in the
query workloads, while Real is even more difficult: for the
Seismic dataset, we can only prune 40-55% of the real dis-
tance calculations. Nevertheless, MESSI achieves in all cases
the best pruning, thanks to its use of the priority queue,
where the BSF is always updated as early as possible. The
query answering time performance for these workloads is
depicted in Figure 27. The results show that as the queries
get harder, ParIS+ becomes worse that UCR Suite-p. ParIS+
pays the penalty of having to generate and process the can-
didate list, which grows very large when pruning is small.
ParIS+TS has an advantage in this respect, because it only
needs to handle the priority queue (of the non-pruned nodes),
which is smaller in size, resulting in an overhead that is
much less than ParIS+. MESSI is always better than all com-
petitors: it performs 3.5x-100x faster than UCR Suite-p on
the Seismic dataset, and 16x-135x faster on SALD. (ParIS+
was much slower, and we terminated its execution after 10K
milliseconds per query.)

In Table 2, we report the MESSI index expansion rate
(i.e., the index size as a percentage of the original data size)
for the synthetic and real datasets in our study. We observe
that for our 100GB datasets, the MESSI index occupies∼5GB
of space for Synthetic and Seismic, and ∼10GB for SALD.
Note that the series in SALD have a length of 128 points
(compared to the 256 of Synthetic and Seismic); hence, this
dataset contains double the number of series than the other
two datasets. This means that the index contains double the
number of iSAX summaries. Overall, we conclude that the
MESSI index expansion rate is small, rendering MESSI a
space efficient index.
[MESSI DTW] Figures 28 and 29 compare the performance
of MESSI and UCR Suite for the case of DTW distance.
Overall, MESSI is up to 2.5 orders of magnitude faster than
UCR Suite-p, a parallel version of UCR Suite that uses SIMD
and supports DTW. (For comparison, we also report the per-
formance of the single-core implementation of UCR Suite,
which is 1-2 orders of magnitude slower than UCR Suite-p.)

The experimental results on a 100GB dataset show that
as we increase the warping window size from 1% to 20% of
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Table 1 Query answering algorithms comparison: number of times an operation is executed (average over 100 queries).

ParIS+ ParIS+TS ParIS+TS-LB MESSI-sq MESSI-mq
PQ ins. node n/a 69,117 69,134 14,620 14,611
PQ del. node n/a 20,051 20,111 11,152 10,747
LBD calcul. 100 M 69,117 9,173,401 9,175,400 9,170,162
RD calcul. 112,321 9,183,312 52,139 54,207 53,919

Table 2 Index expansion rate (index size as a percentage of the original
data size).

Synthetic Seismic SALD
100GB 100GB 100GB

100M series 100M series 200M series
index expansion rate 5.7% 5.1% 10.5%

0

10

20

30

40

50

60

Ti
m

e 
(S

ec
o

n
d

s)

Algorithms

ParIS+ ParIS+no-synch MESSI

Fig. 24 Index creation time

0

200

400

600

800

Ti
m

e 
(M

ill
is

ec
o

n
d

s)

Algorithms

Fig. 25 Query answering time

the data series length, the query answering time of MESSI
increases as well: the LB Keogh envelope of the query be-
comes wider, and consequently, pruning in the index is smaller
(refer to Figure 28). However, MESSI is in all cases at least
9x faster than UCR Suite-p, while for the most common
warping window sizes of 5-10% [40], the speedup is be-
tween 35-170x. Figure 29 shows query answering time when
varying the dataset size (warping window size: 10%). As we
increase the size of the data series collection from 50GB to
200GB, MESSI remains 25-35x faster than UCR Suite-p.

Table 3 Update Frequency of the BSF array (Euclidean distance).

1-NN 5-NN 10-NN 50-NN
number of BSF
updates/query 11.9 20.9 45.6 258.1

BSF update time
µsec/query 0.5 5.1 19.1 186.5

BSF update time
query time % 0.001% 0.01% 0.04% 0.3%

5.4 Complex Analytics Task: Classification

In the following experiment, we tested MESSI on a complex
analytics task. In particular, we evaluated its performance in
a classification task, and measured the benefit it would bring
to a k-NN Classifier. This classifier assigns a new object to
the majority class of the k NN of that object (a data series,
in our case).

The results, depicted in Figure 30, report the performance
of MESSI and ParIS+ for different values of k on a 100GB
dataset (100M series of size 256 values, generated with our
synthetic data generator). The results show that a k-NN Clas-
sifier using MESSI can finish a classification task up to 13x
faster than when using ParIS+, which can reduce the total
processing time for classifying 100K objects from 1 day
down to 93min.

We note that the purpose of this experiment was to mea-
sure the time performance of executing a k-NN classifica-
tion task. Even though we did not study a real classifica-
tion problem, the results are useful in that they report the
expected time performance of using MESSI in such a task
with a large data series collection.

We evaluated the overhead of executing k-NN queries.
MESSI implements k-NN by simply maintaining a sorted
array of the best k distances seen so far (i.e., BSF is now
an array of k elements). The elements of the array are ini-
tialized by performing a single approximate search (like in
1-NN): we choose the k series with the smallest distances to
the query and initialize the BSF array with their distances.
Whenever a smaller distance than the biggest element of this
array is calculated, the array is updated. This process does
not result in more operations on the priority queues, or more
tree traversals. Table 3 shows that the additional time for ex-
ecuting k-NN instead of 1-NN is negligible (times reported
in microseconds).

Finally, we repeated the previous k-NN classification ex-
periment using the DTW distance, which is slower, but can
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lead to more accurate classifications [10]. Figures 31 and 32
show the results (the y-axis is expressed in seconds). Ob-
serve that when compared to the previous experiment, the
execution time (as expected) is now approximately 10x and
30x larger for the 5% and 10% warping window sizes, re-
spectively. Nevertheless, MESSI is up to 9.5x faster than
ParIS+ for the 5% warping window size, and up to 4.5x
faster for the 10% warping. Therefore, MESSI can consider-
ably reduce the k-NN classification time for large sequence
collections. Tables 4 and 5 report the number of BSF up-
dates and the time needed to update the BSF during k-NN
similarity search queries using the DTW distance with 5%
and 10% warping window sizes, respectively. Similarly to
the case of Euclidean distance, we observe that the overhead
as the number k of nearest neighbors increases is negligible,
even for k = 50. Moreover, since the DTW is computation-

ally more expensive than Euclidean, the percentage of the
total query answering time dedicated to updating the BSF
shrinks significantly (now expressed as per thousand).

In Tables 6 and 7, we report the execution time of lower
bound and real distance calculations for both the Euclidean
and DTW distance measures. The results show that the aver-
age time cost per lower-bounding calculation is 6.6x slower
for DTW than for Euclidean (Table 6). This is due to the fact
that DTW needs to pay the cost of computing the LB Keogh
envelope (for every query). As expected, the time cost dif-
ference between Euclidean and DTW is much larger for the
real distance calculation, with DTW being 16x slower than
Euclidean (Table 7).
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Table 4 Update Frequency of the BSF array (DTW distance, 5% warp-
ing).

1-NN 5-NN 10-NN 50-NN
number of BSF
updates/query 22.7 83.9 160.2 672.4

BSF update time
µsec/query 4.9 19.9 50.2 473.3

BSF update time
query time ‰ 0.007‰ 0.03‰ 0.06‰ 0.5‰

Table 5 Update Frequency of the BSF array (DTW distance, 10%
warping).

1-NN 5-NN 10-NN 50-NN
number of BSF
updates/query 45.8 124.7 221.4 854.1

BSF update time
µsec/query 11.9 31.5 72.5 574.2

BSF update time
query time ‰ 0.003‰ 0.008‰ 0.002‰ 0.1‰

Table 6 Time cost of lower bound distance calculations.

Distance measure SISD SIMD

Euclidean 107.5ns 31.4ns
DTW 122.7ns 30.5ns

Table 7 Time cost of real distance calculations.

Distance measure Query Time (milliseconds)

Euclidean 1-NN 40.3
50-NN 56.3

DTW 1-NN 679.3
50-NN 879.7

6 Related Work

Various dimensionality reduction techniques exist for data
series, which can then be scanned and filtered [38,49] or in-
dexed and pruned [20–22,42–44,52,61,65,75,76,81,89] dur-
ing query answering, including deep-learned methods [80];
for a complete discussion of such techniques, we refer the
reader to two recent tutorials on the subject [25, 26].

We follow the same approach of indexing the series based
on their summaries, though our work is the first to exploit the
parallelization opportunities offered by modern hardware, in
order to accelerate in-memory index construction and sim-
ilarity search for data series. The work closest to ours is
Paris/ParIS+ [65, 67], which exploits modern hardware, but
was designed for disk-resident datasets (see also Section 2).

FastQuery is an approach used to accelerate search op-
erations in scientific data [23], based on the construction of
bitmap indices. In essence, the iSAX summarization used in
our approach is an equivalent solution, though, specifically
designed for sequences (which have high dimensionalities).

The interest in using SIMD instructions for improving
the performance of data management solutions is not new [88].
However, it is only more recently that relatively complex al-
gorithms were extended in order to take advantage of this
hardware characteristic. Polychroniou et al. [70] introduced
design principles for efficient vectorization of in-memory
database operators (such as selection scans, hash tables, and
partitioning). For data series in particular, previous work has
used SIMD for Euclidean distance computations [78]. Fol-
lowing [65], in our work we use SIMD both for the compu-
tation of Euclidean distances, as well as for the computation
of lower bounds, which involve branching operations.

Multi-core CPUs offer thread parallelism through multi-
ple cores and simultaneous multi-threading (SMT). Thread-
Level Parallelism (TLP) methods, like multiple independent
cores and hyper-threads are used to increase efficiency [31].

A recent study proposed a high performance temporal
index similar to time-split B-tree (TSB-tree), called TSBw-
tree, which focuses on transaction time databases [55]. Binna
et al. [11], present the Height Optimized Trie (HOT), a general-
purpose index structure for main-memory database systems,
while Leis et al. [46] describe an in-memory adaptive Radix
indexing technique that is designed for modern hardware.
Xie et al. [84], study and analyze five recently proposed
indices, i.e., FAST, Masstree, BwTree, ART and PSL and
identify the effectiveness of common optimization techniques,
including hardware dependent features such as SIMD, NUMA
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and HTM. They argue that there is no single optimization
strategy that fits all situations, due to the differences in the
dataset and workload characteristics. Moreover, they point
out the significant performance gains that the use of modern
hardware features bring to in-memory indices.

We note that the indices described above are not suit-
able for data series (or very high-dimensional data), which
is the focus of our work, and which pose very specific data
management challenges with their hundreds, or thousands
of dimensions (i.e., the length of the sequence). Techniques
specifically designed for modern hardware and in-memory
operation have also been studied in the context of adaptive
indexing [8], and data mining [79].

Piatov et al. propose DeltaTop, a fast time series subse-
quence matching method [68], where the query sequence is
itself part of the dataset (i.e., self-join). Their method uses
a prefix-sum Euclidean distance matrix to accelerate subse-
quence matching, and supports search in multi-variate time
series. The authors provide a parallel (multi-core) imple-
mentation of their method. Compared to our work, we ob-
serve that they solve the problem of (self-join) subsequence
similarity matching, only for non Z-normalized sequences
using the Euclidean distance. In contrast, we solve the whole-
matching problem [27], supporting non Z-normalized and
Z-normalized sequences, using both the Euclidean and the
DTW distances. Even when the two approaches are com-
pared in the specific setting of subsequence similarity search9

on non Z-normalized data using the Euclidean distance, we
observed that DeltaTop’s high index creation time and mem-
ory cost did not allow it to scale to sequence collections with
more than 100K points (i.e., considerably smaller than the
datasets we used for evaluating MESSI).

Finally, KV-Match [82] and its improvement, L-Match [30],
are index structures that can support similarity search in a
distributed setting. Nevertheless, we note that they were de-
veloped for subsequence matching on disk-resident data, while
the focus of MESSI is on whole-matching for in-memory
data.

7 Conclusions

Data series are a very common data type, with increasingly
larger collections being generated by applications in many
and diverse domains. In many exploration and analysis pipelines,
similarity search is a key operation, which is nevertheless
challenging to efficiently support over large data series col-
lections.

9 MESSI can be adapted to support subsequence matching as fol-
lows: given a long series (in which we need to identify the most similar
subsequence to the query), we extract subsequences from the long se-
ries by sliding a window window (of the same length as the query) over
the entire length of the series, and then index all these subsequences.

In this work, we proposed MESSI, a data series index
designed for in-memory operation by exploiting the paral-
lelism opportunities of modern hardware. MESSI is up to
4x faster in index construction and up to 11x faster in query
answering than the state-of-the-art solution, and is the first
technique to answer answering exact similarity search queries
on 100GB datasets in ∼50msec. This level of performance
enables for the first time interactive analytics on very large
data series collections.

Finally, we note that the ideas presented in this work are
applicable to other indices that have a root node with a large
fanout degree. This is true for other iSAX-based indices. For
example, we could parallelize in a way similar to MESSI
the ULISSE index [53], which supports queries of variable
length, as well as the DPiSAX index [85], which is a dis-
tributed index operating on top of Spark (but currently not
supporting parallel execution within each node of the Spark
cluster). It is an interesting open problem to study whether
there exist efficient parallelization techniques for indexing
schemes whose tree index does not satisfy this large fanout
property that would result in better perfomance than MESSI.
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