
Landmark mathing via large deformationdi�eomorphisms on the sphereJoan Glaunès ∗and Mar Vaillant †April 16, 2003AbstratThis paper presents a methodology and algorithm for generating di�eomorphisms of the sphere ontoitself, given the displaements of a �nite set of template landmarks. Deformation maps are onstrutedby integration of veloity �elds that minimize a quadrati smoothness energy under the spei�ed land-mark onstraints. We present additional formulations of this problem whih inorporate a given errorvariane in the positions of the landmarks. Finally, some experimental results are presented. This workhas appliation in brain mapping, where surfae data is typially mapped to the sphere as a ommonoordinate system.Keywords landmark mathing, large deformations, di�eomorphisms, sphere, geodesi distane,brain mapping

∗Université Paris 13, Villetaneuse
†Center for Imaging Siene, Department of Biomedial Engineering, Johns Hopkins University1



Contents1 Introdution 32 Mathematial setup and notation 42.1 Riemannian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Large deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.3 The energeti spae V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.4 Formulation of the Minimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Vetor spline interpolation 63.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2 The Reproduing Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Landmark mathing via large deformations 94.1 Reformulation of the minimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . 94.2 Variation of the funtional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104.2.1 First formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104.2.2 Seond formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.3 Gradient of the funtional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.3.1 First formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.3.2 Seond formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Implementation and experiments 135.1 Computation of the vetor spline interpolation . . . . . . . . . . . . . . . . . . . . . . . . 135.1.1 Mutual basis and parallel transport on the sphere . . . . . . . . . . . . . . . . . . 145.1.2 Computation of K(x, y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145.1.3 Numerial solution to the spline interpolation . . . . . . . . . . . . . . . . . . . . . 155.2 Implementation of the landmark mathing problems . . . . . . . . . . . . . . . . . . . . . 165.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Conlusion 177 Aknowledgements 23A Proof of Proposition 3 - Computation of the reproduing kernel 24B Derivatives of the reproduing kernel 26C Covariant derivatives of the mutual basis 27

2



1 IntrodutionDeveloping a rigorous, quantitative methodology for omparing shape is a ontemporary problem inves-tigated in image analysis. A typial appliation in medial imaging � in partiular neuroimaging � isomparison of the shape of anatomi strutures between two individuals, and development of a statisti-al theory whih allows shape to be studied aross populations. This type of investigation is known asomputational anatomy [?℄. It is motivated by evidene (for example [?, ?, ?, ?℄) of shape di�erenesbetween harateristially di�erent populations � suh as males and females � and populations hara-terized by disease, drugs, et. The hope is that a great deal an be learned about disease from studyingshape, and that ultimately this type of investigation will enable some diseases to be haraterized bythe shape of partiular anatomi strutures.Typially the anatomi struture of interest is modeled as a 1, 2 or 3 dimensional submanifold of
R

3, suh as a urve (1D), image (2D), surfae (2D), or volume (3D). Methodologies for studying shapedi�erenes are then developed for these models. A main omponent in the analysis, after obtaining theindividual model representations for the subjets being studied, is the establishment of orrespondeneof anatomially homologous substrutures between the subjets. For example, if we are interested inomparing shape di�erenes between faes of two individuals in images, we would like to ensure that theoordinates of the left eye in one image orrespond to the left eye in the other image. On a �ner sale, wewould like to ensure that the left orner of the left eye orresponds appropriately. This orrespondeneshould extend down to the �nest resolution. However, a omplete orrespondene at this sale usually annot be preisely attained beause of high variability. For example, wrinkles are a ommon harateristiof elderly people, but the spei� pattern of wrinkles on any two individuals typially an not be mathed.One way to proeed in establishing a orrespondene is to manually identify a subset of points in the twoimages whih deliniate reliable and identi�able features. We refer to these points as landmarks. Then,we use the orrespondene at this subset of points in an optimal way to extend the orrespondeneover the entire struture. This proess is alled landmark mathing. This paper fouses on landmarkmathing for a partiular geometri model � the unit sphere � whih is the usual 2D submanifold of R
3.The sphere is of interest beause it has beome a standard on�guration onto whih the erebral ortexan be mapped, thereby providing a ommon oordinate system for speifying loation on the surfae[?, ?℄.The methodology we pursue extends the work of Joshi and Miller [?℄, Camion and Younes [?℄, andMiller and Younes [?℄ on eulidean geometries suh as the plane and ube, and the work of Bakiriogluet al. [?℄ on the sphere. More preisely, we are interested in �nding an �optimal� map or transformationof the sphere to the sphere that is onstrained at a set of landmarks and whih is also onstrainedto be a di�eomorphism, i.e. the map must be invertible, and both the map and its inverse must beontinuously di�erentiable. Our hief ontribution is two fold. First, other methods for landmark-basedspherial registration [?, ?℄ do not expliitly inlude the di�eomorphism onstraint in their formulation,without whih, it is possible for distint points to be mapped to a single point. These methods arereferred to as "small deformation" tehniques sine di�eormophi transformations are typially onlypossible for problems in whih small deformations are needed to math template and target. Seond,our transformations are not simply orrespondene maps. They simultaneously de�ne a metri, in themathematial sense, whih represents a natural measure of similarity in shape between the two struturesbeing mathed. The underlying mathematis of our approah has been investigated in [?, ?, ?, ?, ?, ?, ?℄.Small deformation landmark mathing has been well studied on eulidean geometries by Bookstein[?℄ via the thin-plate spline, and generalized to arbitrary one and two dimensional submainfolds byJoshi and ollaborators [?, ?℄. Ative ontour methods of [?℄ have been applied to spherial landmarkmathing in [?℄. However, these methods require a good initial approximation to the solution. Alsorelated is the non-landmark based approah of Fishl et al. [?℄. It is an extention to the sphere ofthe image mathing approah ommonly applied to eulidean geometries, suh as 2D images and 3Dvolumetri images [?℄. Transformations are obtained by minimizing the squared di�erene of a salarvalued measure of geometry � whih the authors refer to as "onvexity" � between the subjet andaverage model. Again regularization terms are added to the formulation but do not guarantee thatone-to-one mappings are obtained.The large deformation setting, pioneered by Christensen et. al [?℄ by modeling the deformation3



proess as a visous �uid, is the setting pursued herein. Spei�ally, we seek solutions φ : S2 × [0, 1] →
S2 × [0, 1], where S2 denotes the unit sphere, to the ordinary di�erential equation (ODE)

d

dt
φ(x, t) = v(φ(x, t), t),with initial ondition φ(x, 0) = x. Indeed, if v(x, t) is ontinuously di�erentiable, then it is proven in[?℄ that the solution φ(x, t) exists, is unique, and is a di�eomorphism from S2 to S2 for eah t ∈ [0, 1].Energetis on the spae of di�eomorphisms are indued via a smoothness onstraint on the veloity �eldsof the form

E(v) =

∫

S2×[0,1]

〈Lv(x, t), v(x, t)〉dµ(x)dt,where L is a onstant oe�ient di�erential operator. In the ase of the sphere, the di�ulty arises inde�ning this smoothness operator. One possibility, proposed in [?℄, is to work in a loal hart, and de�nea salar operator for eah oordinate. The drawbak is that, sine there is no global hart for the sphere,at least one point must be hosen to be left invariant by the deformation map. Here the operator L isde�ned globally and no use is made of loal oordinates. This also yields a simpler numerial approah.Moreover we introdue a seond formulation of the problem, whih is an extension of the eulideanlandmark mathing in [?℄ and [?℄ to the sphere.This paper is organized as follows. The mathematial setting, notation, and formulation of theminimization problems investigated are presented in setion 2. We introdue the related vetor splineinterpolation problem in setion 3, whih enables a simpli�ed reformulation of the original minimizationproblems. The reformulations are presented in setion 4. Finally, e�etive omputation and implementa-tion issues are presented in setion 5 together with some experimental results with synthesized examples,and a onlusion is found in setion 6.2 Mathematial setup and notation2.1 Riemannian geometryWe onsider the unit sphere S2 as a smooth 2-dimensional submanifold of R
3, equipped with the Rie-mannian metri de�ned by restriting to eah tangent spae the ambient inner produt of R

3. Lowerase letters x, y, . . . represent points on the sphere, and we use greek letters to represent tangent vetorson the sphere, e.g. αx will denote a tangent vetor at point x, i.e. an element of the tangent plane at x:
TxS

2. On this tangent spae the Eulidean salar produt is denoted 〈·, ·〉, and the norm | · |. We willalso use the notion of ovariant derivatives for vetor �elds and tensor �elds on manifolds. Sine thesphere S2 is embedded in R
3, the ovariant derivative an be simply de�ned as the orthogonal projetionof the usual derivative on the tangent spae. Basi notions about Riemannian manifolds and ovariantderivatives an be found in [?℄.2.2 Large deformationsDeformations maps ϕ : S2 → S2 are generated by integration of time-dependant vetor �elds v(x, t), x ∈

S2, t ∈ [0, 1]. Thus onsider the transport equation:
{

dφv

dt (x, t) = v(φv(x, t), t) ∀t ∈ [0, 1]
φv(x, 0) = x ∀x ∈ S2,

(1)and set ϕ = φv(·, 1). Existene and properties of suh transformations depend of ourse on the regularityassumptions we make on the deformation �ows v(x, t). This is desribed in the following paragraph.2.3 The energeti spae VWe denote χ(S2) the spae of smooth vetor �elds on the sphere, and µ the uniform probability dis-tribution (the normalized Haar measure). We denote H , the Hilbert spae of square integrable vetor4



�elds on the sphere de�ned by the inner produt:
〈u, v〉H =

∫

S2

〈u(x), v(x)〉dµ(x) .Let L : χ(S2) → H be a linear symmetri and strongly monotone operator (the strong monotonysays that there exists c > 0 suh that 〈Lu, u〉H ≥ c〈u, u〉H for any u ∈ χ(S2)). From L, we de�ne theso-alled energeti salar produt
〈u, v〉V .

= 〈Lu, v〉Hand the assoiated energeti norm ‖ ‖V de�ned on χ(S2). Using the Friedrihs extension proedure(see e.g. [?℄), we de�ne the assoiated energeti spae V whih is an Hilbert spae V ⊂ H uniquelyde�ned as the losure of χ(S2) for the energeti salar produt. The spei�s of this onstrution andthe properties of the spae V an be found in [?℄. For the speial purpose of landmark mathing we willalso require that V be ontinuously embedded in the spae of vetor �elds of lass C1, whih means :
∃M > 0, ∀u ∈ V sup

x∈S2

|u(x)| + |∇u(x)| ≤M‖u‖V (∗)Of speial interest will be the ase L = −∆ or L = ∆2 where ∆ is the Laplaian operator on smoothvetor �elds on S2 - as de�ned by the Hodge theory - sine it is invariant under the ation of the groupof rotation. For the de�nition of the Laplaian in this partiular ase, see e.g. [?℄.The time-dependent vetor �elds v(x, t) onsidered herein will be supposed to belong to L2([0, 1], V )i.e. they satisfy E(u)
.
=
∫ 1

0 ‖v(·, t)‖2
V dt <∞. This quantity will be alled energy of v(x, t). Atually theset A of deformation maps generated through (1) by suh veloity �elds an be proven to be a group,equipped with a right invariant weak struture of in�nite dimensional manifold whose tangent spae at

Id is (V, ‖ · ‖V ). In this setting, a geodesi distane d on A is de�ned, and satis�es
d(Id, ϕ)2 = inf

v
{E(v), φv(·, 1) = ϕ}.Again, see [?, ?℄ for details of this theory.2.4 Formulation of the Minimization ProblemsWe now state formally the two problems investigated. Exat landmark mathing refers to the asein whih the spatial position of the landmarks an be identi�ed aurately, while inexat landmarkmathing aounts for the spatial variability in identifying the landmarks, whih is assumed to begaussian with diagonal ovariane σId. For the inexat mathing ase, we present two formulations.The �rst formulation is the most natural, as it simply inludes as a term of the funtional the amount oferror in identifying the landmarks (sum of distanes between the targets and the postion of the landmarksat the end of the �ow). The seond formulation is atually a generalization of the exat mathing ase,as will be explained in the following.

The landmark mathing problem5



Exat landmark mathing problemLet x1, . . . , xn (the initial landmarks) and y1, . . . , yn (the target landmarks) be distint points on S2.The exat landmark mathing problem on the sphere onsists of �nding a time-dependant vetor �eld
v(x, t) in L2([0, 1], V ) suh that(LM) ∫ 1

0

‖v(·, t)‖2
V dt is minimal subjet to φv(xi, 1) = yi for all i ∈ {1, . . . , n} .The optimal di�eomorphism then is given by ϕ = φv(·, 1).We reall that φv(x, t) denotes the solution to the transport equation (1). Hene this problem or-responds to �nding a di�eomorphism ϕ in the group A whih math the landmarks and minimizes thegeodesi distane d(Id, ϕ) Therfore this distane an also be seen as a distane between the two sets oflandmarks (this will be more expliit in setion 4.1).Inexat landmark mathing problem, �rst formulationSuppose σ > 0. Given n distint landmarks (xi) and their targets (yi) as previously, �nd a time-dependent vetor �eld v(x, t) suh that(ILM1) ∫ 1

0

‖v(·, t)‖2
V dt+

1

σ2

n
∑

i=1

ψ(φv(xi, 1), yi)
2 is minimal,where ψ is the geodesi distane on S2, i.e. the angle between two points on S2. The optimal di�eomor-phism then is given by ϕ = φv(·, 1).Inexat landmark mathing problem, seond formulationSuppose σ > 0. Given n distint landmarks (xi) and their targets (yi) as previously, �nd a time-dependent vetor �eld v(x, t) and trajetories xi(t) on the sphere, suh that(ILM2) ∫ 1

0

‖v(t)‖2
V dt+

1

σ2

n
∑

i=1

∫ 1

0

|ẋi(t) − v(xi, t)|2dt is minimalsubjet to xi(0) = xi and xi(1) = yi for all i ∈ {1, . . . , n} ,where ẋi(t) = dxi

dt (t). The optimal di�eomorphism then is given by ϕ = φv(·, 1).At the heart of eah of these landmark mathing problems, and the key to their simpli�ation,is a simple minimum norm problem whih is equivalent to a generalization of the well known splineinterpolation problem [?℄. Thus, we present the related vetor spline interpolation problem and itssolution in the next setion.3 Vetor spline interpolationBookstein ([?℄, see also [?℄) introdued a spline interpolation method for solving the landmark mathingproblem in the eulidean ase, inspired by methods in approximation theory alled Radial Basis Funtionsor variational splines [?℄. These methods model the deformation map between the landmarks and theirtargets by a vetor �eld v suh that yi = xi + v(xi), this vetor �eld being a sum of spline vetor �eldsentered at eah point xi. This spline interpolation problem led to a simple linear system. In the ase6



of the sphere this method alone annot solve the landmark mathing problem, but it an be seen asan in�nitesimal version of it, providing a method for the interpolation of vetor �elds on S2, and usedas �rst step in the building of our deformation maps. The theory of Radial Basis Funtions has beenwidely studied, even in the general ase of manifolds (see [?℄, [?℄ and [?℄ for results on the sphere)but apparently only for funtional approximation. On the other hand, �ow interpolation has numerousappliations in �uid dynamis (see e.g. [?℄ for meteorologial issues).3.1 Problem statementThe spline problem states as follows:Vetor Spline Interpolation problem Given n distint landmarks xi on the sphere, and assoiatedtangent vetors γi ∈ Txi
S2, �nd v ∈ V suh that

(V SI) ‖v‖V is minimal subjet to v(xi) = γi ∀i ∈ {1, . . . , n}.As in the previous setion, we have an inexat statement of this problem.Inexat Vetor Spline Interpolation problem Given n landmarks xi on the sphere, and assoiatedtangent vetors γi ∈ Txi
S2, �nd v ∈ V suh that

(IV SI) J(v) = ‖v‖2
V +

1

σ2

n
∑

i=1

|v(xi) − γi|2 is minimal.
3.2 The Reproduing KernelNotation In the following we will onsider the n landmarks as an element of the produt manifold
(S2)n and write x = (x1, . . . , xn) ∈ (S2)n. A tangent vetor at x will be denoted α = (α1, . . . , αn) ∈
Tx(S2)n and 〈·, ·〉 will also denote the salar produt on Tx(S2)n :

〈α,β〉 =

n
∑

i=1

〈αi, βi〉.From assumption (*) made on the energeti spae V , it diretly follows that V is a reproduingkernel Hilbert spae: for eah point x ∈ S2, and eah tangent vetor αx ∈ TxS
2 the linear form

δαx
x : v 7→ 〈v(x), αx〉 is ontinuous on V . Then by the Riesz representation property, there exists
δ̂αx
x ∈ V suh that

〈δ̂αx
x , v〉V = 〈v(x), αx〉 ∀v ∈ VDe�nition a) We all K, the reproduing kernel, whih assoiates to every x, y ∈ S2 the linearoperator ating on the tangent spaes K(x, y) : TxS

2 → TyS
2 and de�ned by the formula

K(x, y)αx
.
= δ̂αx

x (y).b) For x = (x1, . . . , xn) ∈ (S2)n we denote K(x) the linear endomorphism of Tx(S2)n de�ned by:
K(x)α

.
=

(

n
∑

i=1

K(xi, x1)αi, . . . ,

n
∑

i=1

K(xi, xn)αi

)

.7



We denote also Kσ(x) = K(x) + σ2I for every σ > 0, where I is the identity map of Tx(S2)n.The linearity of K(x, y), i.e. linearity of δ̂αx
x with respet to αx ∈ TxS

2, follows from the linearity ofthe inner produt.Now the following result gives us the solution to (VSI) and (IVSI) problems.Proposition 1 a) The solution to (VSI) is unique and given by
vopt

.
= δ̂α

x

.
=

n
∑

i=1

δ̂αi
xi

=
n
∑

i=1

K(xi, ·)αiwhere the αi ∈ Txi
S2 are solutions to the 2n-dimensional linear system K(x)α = γ, or more expliitely:

n
∑

j=1

K(xj , xi)αj = γi ∀i ∈ {1, . . . , n}.Moreover, J(vopt) = ‖vopt‖2
V =

∑n
i=1〈αi, γi〉.b) For every σ > 0, the solution to (IVSI) is unique and given by

vopt
.
= δ̂α

x

.
=

n
∑

i=1

δ̂αi
xiwhere the αi are solutions to K(x)α + σ2α = γ i.e.

n
∑

j=1

K(xj , xi)αj + σ2αi = γi ∀i ∈ {1, . . . , n}.Moreover, J(vopt) =
∑n

i=1〈αi, γi〉.So, we may write the solution to both spline interpolation problems as Kσ(x)α = γ with J(vopt) =
〈γ,Kσ(x)−1γ〉, where σ = 0 for the exat mathing ase.It is evident from this expression that the solution depends on L only through K. Therefore, if thereproduing kernel is known, then expliit knowledge of the operator L is not needed. In fat, insteadof hosing an operator L to de�ne the spae V , we ould hoose a spei� operator K(x, y) with theappropriate properties as a starting point and dedue the operator L from it.Proof of proposition 1a) For any β ∈ TxS

2, let us de�ne Vβ = {v ∈ V : v(xi) = βi, i = 1, . . . , n}. In partiular the spaeof admissible vetor �elds is Vγ . Note that Vβ is non empty sine the landmarks are distint and χ(S2)is inluded in V . Moreover, if vβ ∈ Vβ then Vβ = vβ + V0, i.e. Vβ is an a�ne subspae, namely atranslation of V0. Now onsider the subspae D = {v ∈ V : v =
∑n

i=1 δ̂
αi
xi
, αi ∈ Txi

S2}. In fat, theorthogonal omplement of D, written D⊥ is exatly V0, for if u =
∑n

i=1 δ̂
αi
xi

and v ∈ V0, we have
〈u, v〉V =

n
∑

i=1

〈δ̂αi
xi
, v〉V =

n
∑

i=1

〈v(xi), αi〉 = 0,and if v /∈ V0 then learly we may hoose a u ∈ D suh that 〈u, v〉V 6= 0. Thus, V0 is losed, and sine Vγis a translation of V0, the solution vopt exists, is unique, and is orthogonal to V0 = D⊥ by the projetiontheorem. But, sine D is �nite dimensional, it is losed and it follows that V ⊥
0

= D⊥⊥ = D. Therefore,the solution is of the asserted form, and sine the linear onstraints must be satis�ed, the solution anbe found by simply solving the linear system K(x)α = γ for α. Finally,
J(vopt) = ‖vopt‖2

V =

n
∑

i=1

〈δ̂αi
xi
, vopt〉V =

n
∑

i=1

〈v(xi), αi〉 =

n
∑

i=1

〈γi, αi〉

= 〈γ,α〉. 8



b) Note that on eah Vβ , the seond term of the funtional J(v) is onstant and equal to 1
σ2

∑n
i=1 |βi−

γi|2. Thus, the funtional is minimal when ‖v‖2
V is minimal. This proves that a solution to the inexatproblem neessarily belongs to D. On this subspae, we an rewrite J(v) as a quadrati funtion of thevariables αi, where v =

∑n
i=1 δ̂

αi
xi

:
J(v) = ‖v‖2

V +
1

σ2

n
∑

i=1

|v(xi) − γi|2

=

n
∑

i=1

〈δ̂αi
xi
, v〉V +

1

σ2

n
∑

i=1

|γi − v(xi)|2

=

n
∑

i=1

〈αi, v(xi)〉 +
1

σ2

n
∑

i=1

|γi − v(xi)|2

= 〈α,K(x)α〉 +
1

σ2
|γ −K(x)α|2

= 〈α,K(x)α〉 +
1

σ2

(

|γ|2 + |K(x)α|2 − 2〈γ,K(x)α〉
)

.Hene J(v) has a unique minimum on D, whih we obtain by omputing its gradient as a funtion of α.Using the symmetry of K(x) we have
∇J (v) = 2

(

K (x) α +
1

σ2
K(x)2α − 1

σ2
K(x)γ

)

= 2K(x)

(

α +
1

σ2
K(x)α − 1

σ2
γ

)

.Finally, we �nd that this gradient vanishes if and only if σ2α +K(x)α = γ, or more expliitely
σ2αj +

n
∑

i=1

K(xi, xj)αi = γj for all i = 1, . . . , n.So the solution is given by solving the linear system Kσ(x)α = K(x)α + σ2α. Furthermore, we have
J(vopt) = 〈α,K(x)α〉 +

1

σ2
|γ −K(x)α|2 = 〈α,K(x)α〉 + σ2|α|2 = 〈α,Kσ(x)α〉,hene J(vopt) = 〈α,γ〉.4 Landmark mathing via large deformations4.1 Reformulation of the minimization problemsWe now return to the landmark mathing problems as they were stated at the beginning of the paper.We reformulate the minimization equations, taking advantage of the spline interpolation theory of theprevious setion. The idea is to notie that in the three stated problems, the mathing onditions onlyinvolve the vetor �elds v(x, t) along spei� paths : the images φv(xi, t) for (LM) and (ILM1), and thetrajetories xi(t) for (ILM2). In order to use a uni�ed notation we will denote these spei� paths inthe three ases by xi(t).

• (LM) and (ILM1) problems: In these ases we have ẋi(t) = v(xi(t), t), thus for �xed trajetories
xi(t) the energy of v(x, t) is minimal if at eah time t, v(·, t) is the solution to (VSI) with γi = ẋi(t).

• (ILM2) problem: For �xed trajetories xi(t) the (ILM2) funtional is minimal if at eah time t,
v(·, t) is the solution to (IVSI) with γi = ẋi(t).9



These remarks lead us to reformulate the landmark mathing problems as minimisation problems ex-pressed with respet to these trajetories instead of the veloity �elds.Exat landmark mathing problemGiven n distint landmarks (xi) and their targets (yi) �nd trajetories x(t) = (xi(t)) on the sphere suhthat
J(x) =

∫ 1

0

〈ẋ(t),K(x(t))−1
ẋ(t)〉dt is minimal subjet to xi(0) = xi, and xi(1) = yi ∀i.In other words, �nd a minimizing geodesi between (xi) and (yi) on the manifold (S2)n equipped withthe metri tensor K−1.Inexat landmark mathing problem, �rst formulationSuppose σ > 0. Given n distint landmarks xi and their targets yi, �nd trajetories xi(t) suh that

J(x) =

∫ 1

0

〈ẋ(t),K(x(t))−1
ẋ(t)〉dt +

1

σ2

n
∑

i=1

ψ(xi(1), yi)
2 is minimal subjet to xi(0) = xi ∀i.

Inexat landmark mathing problem, seond formulationSuppose σ > 0. Given n distint landmarks xi and their targets yi, �nd trajetories xi(t) suh that
J(x) =

∫ 1

0

〈ẋ(t),Kσ(x(t))−1
ẋ(t)〉dt is minimal subjet to xi(0) = xi and xi(1) = yi ∀i.In other words, �nd a minimizing geodesi between (xi) and (yi) on the manifold (S2)n equipped withthe metri tensor K−1

σ .In eah ase, the optimal di�eomorphism is given by ϕ = φv(·, 1) with v(x, t) =
∑n

i=1K(xi(t), x)αi(t)and α(t) = K(x(t))−1
ẋ(t).Thus we are led to perform a minimization with respet to the variables xi(t) instead of the vetor�elds, v(x, t), over the entire spae. We also remark that the exat mathing problem beomes apartiular ase of (ILM2) with σ = 0. This justi�es a posteriori the introdution of (ILM2). These twoformulations ((LM) and (ILM2)) provide the de�nition of a true metri between sets oflandmarks on the sphere, given by the formula d((xi), (yi)) =

∫ 1

0

√

〈ẋ(t),Kσ(x(t))−1
ẋ(t)〉dt atonvergene. This is not the ase for (ILM1).4.2 Variation of the funtionalWe now ompute the variation of the funtional J in eah ase.4.2.1 First formulationWe have

J(x) =

∫ 1

0

〈ẋ(t),α(t)〉dt +
1

σ2

n
∑

i=1

ψ2(yi, xi(1)).Let η(t) be a diretion of variation of x(t), i.e. an element of Tx(t)(S
2)n, with the ondition η(0) = 0.

∇η will denote for the ovariant derivative in the diretion η(t), and the dot notation applied to tangentvetors (α̇, η̇,. . . ) refers to ovariant derivatives in the diretion ẋ = ∂x

∂t . We onsider a variation10



xr = (xr,1, . . . , xr,n) of x suh that ∂xr(t)
∂r |r=0 = η(t). Leaving out the variable t, we have, withderivatives taken at r = 0:

J(xr) =

∫ 1

0

〈ẋr ,K(xr)
−1

ẋr〉dt+
1

σ2

n
∑

i=1

ψ2(yi, xr,i(1)).

dJ(xr)

dr
=

∫ 1

0

∂〈ẋr,αr〉
∂r

dt+
1

σ2

n
∑

i=1

dψ2(yi, xr,i(1))

dr
.Now,

∂〈ẋr ,αr〉
∂r

=
∂〈ẋr,K(xr)

−1
ẋr〉

∂r

= 〈∇ηẋ,K(x)−1
ẋ〉 + 〈ẋ,∇η{K(x)−1}ẋ〉 + 〈ẋ,K(x)−1∇ηẋ〉

= 2〈η̇,K(x)−1
ẋ〉 + 〈ẋ,∇η{K(x)−1}ẋ〉beause ∇ηẋ = ∇ẋη = η̇ (ovariant derivative) and K(x)−1 is symmetri. Therefore we have

dJ(xr)

dr
= A+B + Cwith

A = 2

∫ 1

0

〈α, η̇〉

B =

∫ 1

0

〈ẋ,∇ηK(x)−1
ẋ〉dt

C =
1

σ2

n
∑

i=1

dψ2(yi, xr,n(1))

dr
.Computation of ASine η(0) = 0 and η(1) = 0 we have

A = 2〈α(1),η(1)〉 − 2

∫ 1

0

〈α̇,η〉dt.Computation of B
B = −

∫ 1

0

〈

ẋ,K(x)−1∇ηK(x)α
〉

dt

= −
∫ 1

0

〈

K(x)−1
ẋ,∇ηK(x)α

〉

dt

= −
∫ 1

0

〈α,∇ηK(x)α〉 dt.Thus we have to ompute ∇ηK(x), ovariant derivative of the operator K(x). K(x) is a linearoperator in Tx1
S2 × · · · × Txn

S2. If πx

i is the ith anonial projetion
πx

i : Tx1
S2 × · · · × Txn

S2 → Txi
S2,we an write, diretly from the de�nition of K(x):

K(x)i
.
= πx

i ◦K(x) =

n
∑

j=1

Kji(x) ◦ πx

j11



with
Kji(x) = K(xj , xi).Now,

∇ηK(x)i =
n
∑

j=1

∇ηKji(x) ◦ πx

j

∇ηKji = ∇ηj
Kji + ∇ηi

Kji.The omputation of the derivatives of the reproduing kernel are given in annex B. Eventually we get
B =

∫ 1

0

n
∑

i=1

〈ηi, β
x

i (α)〉dtwith
βx

i (α) = 2





n
∑

j=1

k′(ψij)〈αi, Tjiαj〉eij + k(ψij)

(

cosψij − 1

sinψij

)

〈αi, T
⊥
jiαj〉fij



where Tji = T (xj , xi), ψij = ψ(xi, xj) and (eij , fij) is the mutual basis of (xi, xj).Computation of C
C =

1

σ2

n
∑

i=1

dψ2(yi, xr,n(1))

drLet (·, ·) denote the usual dot produt on R
3. We have ψ(x, y) = Arccos(x, y), hene

C = − 1

σ2

n
∑

i=1

2ψ(yi, xi(1))
√

1 − (yi, xi(1))

〈

Πxi(1)(yi), ηi(1)
〉where Πxi(1)yi is the projetion of yi ∈ S2 ⊂ R

3 on Txi(1)S
2 ⊂ R

3 the tangent spae at xi(1).4.2.2 Seond formulationWe inlude here the ase of exat mathing, whih orrespond to σ = 0. Here we onsider variations ηwith two endpoint onditions η(0) = 0 and η(1) = 0. The variation of the funtional is
dJ(xr)

dr
= A+Bwith

A = 2

∫ 1

0

〈α, η̇〉 = −2

∫ 1

0

〈α̇,η〉dt,and
B = −

∫ 1

0

〈α,∇ηKσ(x)α〉 dt.But sine Kσ(x) = K(x) + σ2I, we have ∇ηKσ(x) = ∇ηK(x), and thus the previous formula holds for
B :

B =

∫ 1

0

n
∑

i=1

〈ηi, β
x

i (α)〉dt.

12



4.3 Gradient of the funtionalTo write a gradient of J we must speify a salar produt on the spae of in�nitesimal deformationsof the paths. Atually the expresion of the funtional requires that the paths be of H1 regularity, andtherefore we will hoose :
〈η, ξ〉 .=

∫ 1

0

〈η̇, ξ̇〉dt.4.3.1 First formulationHere the in�nitesimal variations η and ξ are suh that η(0) = ξ(0) = 0. We have
〈η, ξ〉 = 〈η̇(1), ξ(1)〉 −

∫ 1

0

〈η̈, ξ〉dt

=

n
∑

i=1

〈η̇i(1), ξi(1)〉 −
∫ 1

0

n
∑

i=1

〈η̈i(t), ξi(t)〉dt.The i-th omponent of the gradient is then given by
∇̈J(x)i(t) = 2α̇i(t) − βx

i (α)with the two initial onditions
∇̇J(x)i(1) = − 1

σ2

2ψ(yi, xi(1))
√

1 − (yi, xi(1))
Πxi(1)(yi) + 2αi(1),

∇J(x)i(0) = 0.This gradient an be omputed by numerial integration.4.3.2 Seond formulationHere we have η(0) = ξ(0) = 0 and η(1) = ξ(1) = 0. We inlude the ase of exat mathing (σ = 0).
〈η, ξ〉 = −

∫ 1

0

〈η̈, ξ〉dt

= −
∫ 1

0

n
∑

i=1

〈η̈i(t), ξi(t)〉dt.Then
∇̈J(x)i(t) = 2α̇i(t) − βx

i (α)with the two initial onditions ∇J(x)i(0) = 0 and ∇J(x)i(0) = 0.5 Implementation and experiments5.1 Computation of the vetor spline interpolationWe now turn to the problem of e�etive omputation of the reproduing kernel and of the solution to(VSI) and (IVSI). We show that in the ase of L = ∆2 these omputations are greatly simpli�ed andredue to applying parallel transport operators to the tangent vetors.
13



5.1.1 Mutual basis and parallel transport on the sphereGiven two points x, y ∈ S2 we de�ne the basis (exy, fxy) of tangent spae TxS
2 and (eyx, fyx) of TyS

2by the formulas :
fxy =

x ∧ y
‖x ∧ y‖

exy = fxy ∧ xand
fyx =

y ∧ x
‖y ∧ x‖ (= −fxy)

eyx = fyx ∧ ywhere ∧ denotes the vetor ross-produt (here points and vetors are onsidered as vetors in R
3).These basis an be refered to as mutual basis of the pair (x, y) (see �gure 5.1.1). Note that they arenot de�ned when y = x and when y is at the antipode of x.

xy

yx

xy

y

e

f

e

fyx

xψ

Figure 1: The mutual basisNow de�ne by T (x, y) the parallel transport 1 of tangent vetors on S2 along the great irle onnet-ing x and y. T (x, y) is a linear operator from TxS
2 to TyS

2. Its matrix expressed in the basis (exy, fxy)and (eyx, fyx) is −Id.5.1.2 Computation of K(x, y)From assumptions made on V , we have that the injetion V →֒ H is ompat and that the map
L−1 : H → H is a ompat, self-adjoint operator [?℄. Hene L−1, and thus also L, an be diagonalizedin an Hilbertian basis of L2 [?℄. Now the reproduing kernel an be omputed with the use of thefollowing formula :Proposition 2 Let λm, m ≥ 0 be the eigenvalues of L, with Im the assoiated eigenspaes. We note
dm = dim(Im) and Eml ∈ Im for 1 ≤ l ≤ dm the orthonormalized eigenvetors for the L2 salar produt.If x,y are points on S2, αx ∈ TxS

2 a tangent vetor, then
K(x, y).αx =

∑

m≥0

1

λm

dm
∑

l=1

〈Eml(x), αx〉Eml(y).1If v ∈ TxS2, x, y ∈ S2 and α : [0, 1] → S2 is a smooth urve on the sphere with α(0) = x and α(1) = y, then there existsa unique vetor �eld w along α with w(0) = v, w(t) ∈ Tα(t)S
2 for all t, and the ovariant derivative of w(t) equal to 0 for all

t. w(1) ∈ TyS2 is said to be the parallel transport of v along α.14



Proof The vetor �eld δαx
x ∈ V ⊂ H an be deomposed in the basis (Eml)ofH : δαx

x =
∑

m,l〈Eml, δ
αx
x 〉HEml.Now 〈Eml, δ

αx
x 〉H = 1

λm
〈LEml, δ

αx
x 〉H = 1

λm
〈Eml, δ

αx
x 〉V = 1

λm
〈Eml(x), αx〉V .Now we fous on the ase L = ∆2. Again, note that ∆ is the laplaian operator de�ned on vetor�elds, whih is not the usual salar spherial laplaian applied to eah spherial oordinate, as it wouldbe in an eulidean setting. The eigenvetors for this operator are given by taking the gradients of thespherial harmonis (see [?℄): we have, for m ≥ 1,











λm = m2(m+ 1)2

Eml1 = 1√
m(m+1)

∇Yml

Eml2 = 1√
m(m+1)

(∇Yml)
⊥,where Yml are the usual spherial harmonis and ⊥ denotes the π
2 -rotation on TxS

2.Proposition 3 When L = ∆2 the reproduing kernel satis�es
K(x, y) = k(ψ(x, y))T (x, y)where k(ψ) is a salar valued funtion of the angle between two points on the sphere.Proof The full omputation is given in annex A. It provides an expliit formula for k(ψ). This funtionis plotted on �gure 3.This expression for K is very onvenient for numerial purpose sine we only need to store the salarfuntion k. The operator T (x, y) an be omputed easily one the mutual basis of (x, y) is de�ned.Figures 2 and 4 show visual representations of the vetor �elds T (x, ·)αx and K(x, ·)αx. The vetor

αx is represented by the arrow.

Figure 2: Parallel transport T (x, ·)αx of a vetor αx. Front view and bak viewThe resulting shape of the kernel funtion k(ψ) is diretly related to the initial hoie of V . One anadjust this shape by hanging the eigenvalues of the operator L, obtaining various types of deformationmappings.5.1.3 Numerial solution to the spline interpolationThe spline interpolation problem leads to a 2n-dimensional linear system, as stated above. Writingthe matrix of this linear system would require that we work oordinate frames on the sphere, e.g. theoordinate frames obtained by stereographi projetion at north and south poles as in Bakirioglu etal. [?℄. But as we have seen, the operator K(x, y) has a very simple expression and an be omputeddiretly using artesian oordinates. This fat has led us to hoose a onjugate gradient algorithm to15



Figure 3: Graph of funtion k(ψ) for L = ∆2

Figure 4: Computation of the vetor �eld K(x, ·)αx. Front view and bak viewsolve the linear system without omputing its matrix, and enables us to use only artesian representationfor both points and tangent vetors.Figure 5 represents the solution to a spline interpolation problem with n = 4. The vetors γi arerepresented by the arrows.5.2 Implementation of the landmark mathing problemsAlgorithms to solve (LM), (ILM1) and (ILM2) problems have been written in the C programminglanguage. The method used to minimize the funtional J is a simple gradient desent: at eah iterationthe trajetory x is replaed by x − λ∇J , whih is then projeted on the sphere. The salar oe�ient
λ is adaptively adjusted to ensure minimization of the funtional.The main steps of the algorithm are the following :

• Compute the mutual basis of the n landmarks xn,t for eah disrete time step t ∈ {1, . . . , T}. Thesebasis are the key elements for the omputation of the reproduing kernel.
• For eah time step t, ompute the solution to the spline interpolation problem by solving the linearsystem K(xt)αt = ẋt, where ẋt is an appropriate disretisation of the time derivative of xt. Thisis done by a onjugate gradient algorithm. Again, the advantage of suh a method is that it doesnot require the expliit matrix form of K(xt), whih would require that we work with oordinateharts instead of artesian oordinates.
• Compute J(x) and its gradient ∇J(x).
• Compute x̃ = x−λ∇J(x) and reprojet on the sphere, with di�erent values of λ, until J(x̃) < J(x).The mutual bases are realulated and the orresponding linear system is solved at eah time step.
• Set x = x̃ at onvergene. 16



Figure 5: Solution to a spline interpolation problem with n = 45.3 ExperimentsSome results of the algorithms desribed above are presented here. Figures 7 to 10 show visual repre-sentations of the omputed deformation maps. On eah �gure are plotted the initial (irles) and targetlandmarks (rosses), the trajetories xi(·), the �owed landmarks positions φ(xi, t) (diamonds), and thedeformation of a regular grid through the ation of the di�eomorphism at di�erent times t ∈ [0, 1].The initial trajetories (before minimization) are set to be the setions of the great irle onnetingthe landmarks to their targets. Note that this initialization already provides a true di�eomorphismmathing the landmarks. In the experiments with 5 and 10 landmarks, the positions of the landmarksand their targets were hosen at random.For eah experiment, we have also plotted the energy (squared V -norm) of the time-dependantvetor �eld v(x, t). As we have seen, the landmark mathing problem an be reformulated in terms ofgeodesis on the manifold (S2)n. Therefore this energy must be onstant for all time at the end of theminimization. In the (LM) and (ILM2) ases, its square root gives the distane between the two sets oflandmarks (whih is also d(Id, ϕ)).In the �rst example (�gure 7), there is a large di�erene between trajetories before and after min-imization: they tend to move away from eah other sine at �rst they ross with opposite diretions,whih has very high ost. Conversely, in �gure 8, trajetories tend to draw near. Note also the substan-tial regularization ahieved by the minimization in �gure 7. In �gures 9 and 10 some of the landmarktrajetories ross one another, whih may seem ounter intuitive to a sequene of transformations thatare di�eomorphi. However, the �ow of the partiles whih these trajetories represent, do not rossat the same time and therefore the partiles from two di�erented trajetories never oupy the sameposition at the same time.6 ConlusionWe have presented three formulations of the landmark mathing problem on the sphere � the solution toeah provides a di�eomorphism of the sphere to itself, with landmark onstraints. In the experiments,we have seen good performane of the algorithm. In partiular, the algorithm ahieved di�eomorphimappings for severe landmark onstraints, for whih other landmarks mathing tehniques would learlyfail to maintain the topology of the manifold (see Joshi [?℄ for a pathologial example). A metri betweensets of landmarks is simultaneously generated from the mapping, whih provides a natural setting forstatistial omparison and �ts the framework of [?℄. In future work, we plan to apply the algorithm tobrain mapping studies, and to extend the large deformation setting to a broader lass of manifolds.
17
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Figure 6: Experiment with two landmarks
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t = 0 t = .3 t = .6 t = 1Deformation map after minimization - inexat mathing (ILM1) with σ = 0.05
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AppendixA Proof of Proposition 3 - Computation of the reproduing ker-nelSine ∆ is rotation invariant, K(x, y) is also rotation invariant, and it only depends on the angle between
x and y. Thus we need only to ompute it in a speial ase, say θx = π

2 , ϕx = 0 and θx = π
2 , ϕx = ϕin polar oordinates (θ is the olatitude and ϕ the longitude). We will note (∂x

θ , ∂
x
ϕ) (resp. (∂y

θ , ∂
y
ϕ))the oordinate frames at x (resp. y). Note that in this speial ase these are orthonormal basis of TxS

2(resp. TyS
2).

Figure 11: Positions of points x and yThere are 2m+ 1 spherial harmonis of order m for m ≥ 0 whih are, in polar oordinates (see [?℄)
Ym0(θ, ϕ) = km0Pm(cos θ)for m ≥ 0, and

Y c
ml(θ, ϕ) = kmlP

l
m(cos θ) cos lϕ

Y s
ml(θ, ϕ) = kmlP

l
m(cos θ) sin lϕfor m ≥ 1 and 1 ≤ l ≤ m, with







km0

√

2m+1
4π m ≥ 0

kml =
√

2m+1
2π

(m−l)!
(m+l)! m ≥ 1, 1 ≤ l ≤ m.

Pm are the Legendre polynomials
Pm(x) =

1

2mm!

dm

dxm
(x2 − 1)m

=
∑

m
2
≤k≤m

(−1)m−k (2k − 1)!!

(m− k)!(2k −m)!2m−k
x2k−mand P l

m the assoiated Legendre funtions :
P l

m(x) = (−1)l(1 − x2)l/2 d
l

dxl
Pm(x)

= (−1)m+l(1 − x2)l/2
∑

m+l
2

≤k≤m

(−1)k (2k − 1)!!

(m− k)!(2k − (m+ l))!2m−k
x2k−(m+l).24



We use the notation (2n + 1)!! = 1 ∗ 3 ∗ · · · ∗ (2n + 1) and (2n)!! = 2 ∗ 4 ∗ · · · ∗ (2n) with the rule
0!! = (−1)!! = 1. Now we have, for m ≥ 1 and 1 ≤ l ≤ m :

∇Ym0(x) = −km0P
′
m(0) ∂x

θ

∇Ym0(x)
⊥ = −km0P

′
m(0) ∂x

ϕ

∇Y c
ml(x) = −kmlP

l′
m(0) ∂x

θ

∇Y c
ml(x)

⊥ = −kmlP
l′
m(0) ∂x

ϕ

∇Y s
ml(x) = kmlP

l
m(0)l ∂x

ϕ

∇Y s
ml(x)

⊥ = −kmlP
l
m(0)l ∂x

θand
∇Ym0(y) = −km0P

′
m(0) ∂y

θ

∇Ym0(y)
⊥ = −km0P

′
m(0) ∂y

ϕ

∇Y c
ml(y) = −kmlP

l′
m(0) cos lϕ ∂y

θ − kmlP
l
m(0)l sin lϕ ∂y

ϕ

∇Y c
ml(y)

⊥ = kmlP
l
m(0)l sin lϕ ∂y

θ − kmlP
l′
m(0) cos lϕ ∂y

ϕ

∇Y s
ml(y) = −kmlP

l′
m(0) sin lϕ ∂y

θ + kmlP
l
m(0)l cos lϕ ∂y

ϕ

∇Y s
ml(y)

⊥ = −kmlP
l
m(0)l cos lϕ ∂y

θ − kmlP
l′
m(0) sin lϕ ∂y

ϕremark Sine Y00 is onstant, its gradient vanishes, and onsequently there is no eigenvetor for
m = 0.The expliit formula for Pm entails that P l

m(0) = 0 when m− l is odd while P l′
m(0) = 0 when m− lis even. Thus P l

m(0)P l′
m(0) = 0 for all m and l. Finally we get, for αx ∈ TxS

2,
K(x, y).αx =

∑

m≥1

1

m3(m+ 1)3

m
∑

l=0

βl
m cos lϕ

(

〈αx, ∂
x
θ 〉∂y

θ + 〈αx, ∂
x
ϕ〉∂y

ϕ

)

.The oe�ients βl
m are

βl
m = k2

ml(P
l′
m(0)2 + l2P l

m(0)2).We �nd
βl

m =























2m+1
4π

(

m!!
(m−1)!!

)2 when l = 0, m odd
0 when l = 0, m even
2m+1

2π
(m+l)!!

(m+l−1)!!
(m−l)!!

(m−l−1)!! when l 6= 0, m+ l odd
2m+1

2π l2 (m+l−1)!!
(m+l)!!

(m−l−1)!!
(m−l)!! when l 6= 0, m+ l evenNote that in this speial ase, the parallel transport of vetor αx preisly writes: T (x, y)αx =

(

〈αx, ∂
x
θ 〉∂

y
θ + 〈αx, ∂

x
ϕ〉∂y

ϕ

)Therefore the above formula an be written
K(x, y).αx = k(ϕ)T (x, y).αxwhere

k(ϕ) =
∑

l≥0





∑

m≥l

βl
m

m3(m+ 1)3



 cos(lϕ).

k(ϕ) is a trigonometri series whih an be omputed rapidly one its oe�ients are stored. Theeigenvalues m2(m+ 1)2 an be modi�ed to adjust the smoothing properties of the operator. This wouldonly hange the oe�ients of the funtion k.Now in the general ase, beause of rotation invariane, we an onlude that
K(x, y) = k(ψ(x, y))T (x, y).25



B Derivatives of the reproduing kernelHere we ompute the two partial oderivatives of K(x, y) for every x, y ∈ S2, ηx ∈ TxS
2 and ηy ∈ TyS

2.We have
K(x, y) = k(ψ)T (x, y)

∇ηx
K(x, y) = k′(ψ)

∂ψ

∂x
.ηx T (x, y) + k(ψ) ∇ηx

T (x, y).Now we use the mutual basis (exy, fxy) and (eyx, fyx) introdued before. First
∂ψ

∂x
.ηx = −〈ηx, exy〉 .= −ηe

x.The parallel transport operator T (x, y) an be written:
T (x, y) = −e∗xy ⊗ eyx − f∗

xy ⊗ fyx.We have also the following results (see annex C):
∇exy

exy = ∇exy
fxy = 0

∇exy
eyx = ∇exy

fyx = 0

∇fxy
exy = − cotψfxy

∇fxy
fxy = cotψexy

∇fxy
eyx = − 1

sinψ
fyx

∇fxy
fyx =

1

sinψ
eyx.Consequently, ∇exy

T (x, y) = 0 and
∇fxy

T (x, y) = −(∇fxy
exy)

∗ ⊗ eyx − e∗xy ⊗∇fxy
eyx

−(∇fxy
fxy)

∗ ⊗ fyx − f∗
xy ⊗∇fxy

fyx

=

(

cosψ − 1

sinψ

)

(f∗
xy ⊗ eyx − e∗xy ⊗ fyx)

=

(

cosψ − 1

sinψ

)

T (x, y)⊥.

T (x, y)⊥ is the parallel transport T (x, y) omposed with a π/2-rotation on the tangent spae at y:
T (x, y)⊥ = R(y)T (x, y)(also equal to T (x, y)R(x)). Thus,

∇ηx
K(x, y) = −ηe

xk
′(ψ)T (x, y) + ηf

xk(ψ)

(

cosψ − 1

sinψ

)

T (x, y)⊥.For ∇ηy
K(x, y) we have ∇eyx

T (x, y) = 0 and
∇fyx

T (x, y) = −(∇fyx
exy)

∗ ⊗ eyx − e∗xy ⊗∇fyx
eyx

−(∇fyx
fxy)

∗ ⊗ fyx − f∗
xy ⊗∇fyx

fyx

=

(

cosψ − 1

sinψ

)

(e∗xy ⊗ fyx − f∗
xy ⊗ eyx)

= −
(

cosψ − 1

sinψ

)

T (x, y)⊥.and then
∇ηy

K(x, y) = −ηe
yk

′(ψ)T (x, y) − ηf
yk(ψ)

(

cosψ − 1

sinψ

)

T (x, y)⊥.26



This ould also have been dedued from the formula
K(x, y) = K(y, x)Twhih implies

∇ηy
K(x, y) = (∇ηy

K(y, x))T

= −ηe
yk

′(ψ)T (y, x)T + ηf
yk(ψ)

(

cosψ − 1

sinψ

)

(T (y, x)⊥)T .But we have T (y, x)T = T (x, y) and
(T (y, x)⊥)T = (R(x)T (y, x))T = T (x, y)R(x)T = −T (x, y)R(x) = −T (x, y)⊥; hene we get the sameresult.C Covariant derivatives of the mutual basisComputation in a speial aseWe must obtain the oderivatives of the tangent vetors exy,fxy, eyx and fyx with respet to exy and
fxy, for every x, y ∈ S2. Using the rotational invariane of these basis, we will onsider a speial ase.Let y be the North Pole, ie the point (0, 0, 1) in artesian oordinates, and x another point with spherialoordinates (θ, ϕ), (eθ, eϕ) being the orthonormal basis assoiated on TyS

2.
θ

θ

xy

yx

xy

y

x

e

e
e

f

e

f

ϕ

ϕ

yx

Figure 12: Positions of points x and yIn artesian oordinates we have:
exy = −eθ =





− cos(θ) cos(ϕ)
− cos(θ) sin(ϕ)

sin(θ)



 fxy = −eϕ =





sin(ϕ)
− cos(ϕ)

0





eyx =





cosϕ
sinϕ

0



 fyx =





− sinϕ
cosϕ

0



 .

27



Now,
∂θexy =





sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)



 ⇒ ∇exy
exy = ∇∂θ

exy = 0

∂θfxy =





0
0
0



 ⇒ ∇exy
fxy = ∇∂θ

fxy = 0

∂θeyx =





0
0
0



 ⇒ ∇exy
eyx = ∇∂θ

eyx = 0

∂θfyx =





0
0
0



 ⇒ ∇exy
fyx = ∇∂θ

fyx = 0and
∂ϕexy =





cos(θ) sin(ϕ)
− cos(θ) cos(ϕ)

0



 ⇒ ∇fxy
exy = − 1

sin θ
∇∂ϕ

exy = − cot θfxy

∂ϕfxy =





cos(ϕ)
sin(ϕ)

0



 ⇒ ∇fxy
fxy = − 1

sin θ
∇∂ϕ

fxy = cot θfxy

∂ϕeyx =





− sin(ϕ)
cos(ϕ)

0



 ⇒ ∇fxy
eyx = − 1

sin θ
∇∂ϕ

eyx = − 1

sin θ
fyx

∂ϕfyx =





− cos(ϕ)
− sin(ϕ)

0



 ⇒ ∇fxy
fyx = − 1

sin θ
∇∂ϕ

fyx =
1

sin θ
eyx.General aseUsing rotational invariane property, we dedue the formulae in the general ase.

∇exy
exy = 0 ∇fxy

exy = − cotψxyfxy

∇exy
fxy = 0 ∇fxy

fxy = cotψxyexy

∇exy
eyx = 0 ∇fxy

eyx = − 1

sinψxy
fyx

∇exy
fyx = 0 ∇fxy

fyx =
1

sinψxy
eyx,where ψxy = ψ(x, y).
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