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1.1 Introduction

This paper focuses on the study of plane curve deformation, and how it can
lead to curve evolution, comparison and matching. Our primary interest is in
diffeomorphic deformations, in which a template curve is in one-to-one smooth
correspondence with a target curve. This correspondence will be expressed as
the restriction (to the template curve) of a 2D diffeomorphism, which will
control the quality of the matching.

This point of view, which is non standard in the large existing literature
on curve matching, emanates from the general theory of “large deformation
diffeomorphisms”, introduced in [9, 6, 16], and further developed in [12, 13].
This is a different approach than the one which only considers the restriction
of the diffeomorphisms to the curves starting with the introduction of dynamic
time warping algorithms in speech recognition [14], and developed in papers
like [7, 3, 21, 17, 22, 11, 15, 18].

Like in [21, 11], however, our approach is related to geodesic distances
between plane curves. In particular, we will provide a Hamiltonian interpreta-
tion of the geodesic equations (which in this case shares interesting properties
with a physical phenomenon called solitons [10]), and exhibit the structure of
the momentum, which is of main importance in this setting.

The deformation will be driven by a data attachment term which measures
the quality of the matching. In this paper, we review 3 kinds of attachments.
The first one, that we call measure-based, is based on the similarity of the
singular measures in R2 which are supported by the curves. The second, which
is adapted to Jordan curves corresponds to the measure of the symmetric
differences of the domains within the curves (binary shapes). The last one is
for data attachement terms based on a potential, as often introduced in the
theory of active contours.

The paper is organized as follows. Section 1.2 provides some definition and
notation, together with a heuristic motivation of the approach. Section 1.3 de-
velops a first version of the momentum theorem, which relates the momentum
of the hamiltonian evolution to the diffierential of the data attachement term.
Section 1.4 is an application of this framework to measure-based matching.
Section 1.5 deals with binary shapes, and provides a more general version of
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the momentum theorem, which will also be used in section 1.6 for data at-
tachment terms based on a potential. Finally, section 1.7 proves an existence
theorem for the Hamiltonian flow.

1.2 Diffeomorphic curve and shape matching with large
variability

In this paper, a shape Sγ ⊂ R2 is defined as the interior of a sufficiently
smooth Jordan curve (i.e. continuous, nonintersecting) γ : T → R2 where T
is the 1D torus. (Hence, γ is a parametrization of the boundary of S.)4.

The emphasis will be on the action of global non-rigid deformation, for
which we introduce some notation. Assume that a group G of C1 diffeomor-
phisms of R2 provides a family of admissible non-rigid deformations. The
action of a given deformation ϕ on a shape S ⊂ R2 is defined by

Sdef = ϕ(S) . (1.1)

Selecting one shape as an initial template Stemp = Sγtemp , we will look for
the best global deformation of the ambient space which transforms Stemp into
a target shape Starg . The optimal matching of the template on the target will

2 ALAIN TROUVÉ AND LAURENT YOUNES

Then, there exists p∗ ∈ conv(D), the closure in H2 of the convex hull of D, such that for any

u ∈ H1

〈p∗, ∂u∗Fu〉 = 0 . (2)

Proof. Let Ẽ be the closure in H2 of the linear space ∂u∗F (H1) and π the orthogonal projection

on Ẽ. Now, let C = conv(D). From (H2), we get that C is a non-empty bounded closed convex

subset of H2 so that we deduce from corollary III.19 in [1] that C is weakly compact. Now, π is

continuous for the weak topology so that C̃ = π(C) is weakly compact and thus strongly closed.

From the projection theorem on closed non-empty convex subsets of an Hilbert space (Theorem

V2 in [1]), we deduce that there exist p̃∗ ∈ C̃ such that |p̃∗| = inf p̃∈C̃ |p̃| and 〈p̃∗, p̃ − p̃∗〉 ≥ 0 for

any p̃ ∈ C̃. Considering p∗ ∈ C such that π(p∗) = p̃∗ we deduce eventually that for any p ∈ C,

|p̃∗|2 = 〈p̃∗, p∗〉 ≤ 〈p̃∗, p〉 . (3)

Assume that p̃∗ 6= 0, and let u ∈ H1 such that |p̃∗ − ∂u∗Fu| ≤ |p̃∗|2/2M where supp∈C |p| ≤
M < ∞. From (H2), there exists p ∈ C such that for h > 0

G ◦ F (u∗ − hu) ≤ G(z∗)− h〈p, ∂u∗Fu〉+ o(h) ≤ G(z∗) + h(|p̃∗|2/2− 〈p, p̃∗〉) + o(h)

so that using (3), we get

G ◦ F (u∗ − hu) ≤ G(z∗)− h|p̃∗|2/2 + o(h)

which is in contradiction with (H1).

Hence p̃∗ = 0 and p∗ is orthogonal to Ẽ which gives the result. �

2. An application to shape matching

We look in this section at the problem of matching two binary shapes in the framework of large

deformations. The emphasize will be put on the action of global non-rigid deformation on shapes

and the path we follow here is to single out one of the binary shape as an initial template Ω0 and

to look at the best global deformation of the ambient space inducing a good matching of Ω0 to

target shapes Ωf .

Target shape

Deformed template

Template

y=phi(x)

x

Fig. 1.1. Comparing deformed shapes

be defined as an energy minimization problem
4 Obviously, the mapping γ → Sγ is not one to one since Sγ = Sγ′ as soon as

γ′ = γ ◦ ζ and ζ is a parameter change.
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ϕ∗ = argminϕ∈GR(ϕ) + g(ϕ(Stemp), Starg) (1.2)

where R is a regularization term penalizing unlikely deformations and g is the
data term penalizing bad approximations of the target Starg . In the framework
of large deformations, the group G of admissible deformations is equipped with
a right invariant metric distance dG and the regularization term R(ϕ) is de-
signed as an increasing function of dG(Id, ϕ) where Id is the identity (x → x)
mapping. One of the strengths of this diffeomorphic approach, which intro-
duces a global deformation of the ambient space, is that it allows to model
large deformations between shapes while preserving their natural non over-
lapping constraint. This is very hard to ensure with boundary-based methods,
which match the boundaries of the region based on their geometric proper-
ties without involving their situation in the ambient space. Then, singularities
may occur when, for example, two points which are far from each other for
the arc length distance on the boundary are close for the Euclidian distance
in the ambient space (cf. fig 1.2).

SHAPE MODELING VIA INEXACT MATCHING OF BINARY IMAGES 3

The family of admissible non-rigid deformations will be a group G of C1 di�eomorphisms and

the action of a given deformation φ on the template shape Ω0 will be de�ned by

Ω1 = φ(Ω0) (4)

which is nothing more than the image through φ of the template domain Ω0. The optimal matching

of the template on the target will be de�ned as an energy minisation problem

φ∗ = argmin
φ∈G

R(φ) + G(φ(Ω0),Ωf ) (5)

where R is a regularization term penalizing unlikely deformations and G is the data term penalizing

bad approxitations of the target Ωf . In the framework of large deformations, the group G of

admissible deformation is equipped with a right invariant metric dG distance and the regularization

term R(φ) is designed as an increasing function of dG(Id, φ) where Id is the identity (x → x)

mapping. The strength of this region based approach with global deformation of the ambient

space in the context of matching deformable soft objects comes from the possibility to handle large

deformations between binary shapes and preserving the natural non overlapping constraint. This

property is very hard to preserve with curves based methods where one try to move the boundary

of the template shape with deplacement �elds de�ned along the boundary: two points far from

each others (for the arc length distance on the boundary) can be fairly close for the euclidian

distance in the ambient space. However, in case of large deformation, the use of displacement

Target shape

Deformed template shape

Template shape

Violation of the non
intersection contraint

Figure 1. Violation of the non overlapping constraint for usual curve based approaches

�elds to deform the template cannot garantee the invertibility of the induced mapping and for

instance loops can appear along the boundary. Even if this can be �xed with various way, we

argue that considering the deformation itself φ as the variable instead of the displacement �eld

u = Id − φ leads to a more natural geometrical framework. At �rst glance, the overhead of such

an approach may look too be high since such φs live in a in�nite dimensional manifold when the

displacement �eld live in a more amenable vector space. Our �rst response is that the φs of G are

in fact de�ned as the solutions at time 1 of �ow equations

∂tφ = vt ◦ φt, φ0 = Id (6)

where at each time t, vt belong to a vector space of vactor �eld on the ambient space. To be slighly

more precise, let assume that the ambient space is a bounded open domain with smooth boundary

Fig. 1.2. Violation of the non overlapping constraint for usual curve based ap-
proaches

Another issue in the context of large deformations is that smoothness con-
straints acting only on the displacement fields (point displacements from the
initial configuration to the deformed one) cannot guarantee the invertibility of
the induced mapping, creating, for instance, loops along the boundary. Even
if there may be ad hoc solutions to fix this (like penalties on the Jacobian,
[5]), we argue that considering the deformation itself ϕ as the variable in-
stead of linearizing with respect to the displacement field u = Id − ϕ leads
to a more natural geometrical framework. There is a high overhead in such
an approach, since such ϕs live in an infinite dimensional manifold whereas
the displacement fields belongs in a more amenable vector space. However,
this turns out to be manageable, if one chooses a computational definition of
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diffeomorphisms in G as the solutions at time 1 of flow equations

∂ϕt

∂t
= ut ◦ ϕt, ϕ0 = id (1.3)

where at each time t, ut belongs to a vector space of vector fields on the
ambient space. To be slighly more precise, assume that the ambient space
is a bounded open domain with smooth boundary Ω ⊂ R2 and that V is a
Hilbert space of vector fields continously embedded in Cp

0 (Ω, R2) with p ≥ 1
(the set of Cp vector fields on mR2 which vanish outside Ω). Then, a unique
solution of such flows exists for t ∈ [0, 1] for any time-dependent vector field
u ∈ L2([0, 1], V ) ([6]) and we can define for any t ∈ [0, 1], the flow mapping

u → ϕu
t , u ∈ L2([0, 1], V ). (1.4)

We finally define G as

G = { ϕu
1 | u ∈ L2([0, 1], V ) }, (1.5)

which is a subgroup of the C1 diffeomorphisms on Ω (they all coincide with
the identity on ∂Ω, because of the boundary condition that has been imposed
on V ). In the following, we will use the notation H1 = L2([0, 1], V ). This is
the basic Hilbert space on which the optimization is performed: any problem
involving a diffeomorphism in G as its variable can be formulated as a problem
over H1 through the onto map u 7→ ϕu

1 . In our setting, the regularization term
R(ϕ) is taken as a squared geodesic distance between ϕ and id on G, this
distance being defined by

dG(ϕ, ϕ′)2 = inf
{∫ 1

0

|ut|2V dt | u ∈ H1, ϕu
1 ◦ ϕ = ϕ′

}
. (1.6)

The variational problem (1.2) becomes

u∗ = argminu∈H1

(∫ 1

0

|ut|2V dt + g(ϕu
1 (Stemp), Starg)

)
(1.7)

Note that the reformulation of the problem from an infinite dimensional man-
ifold to a Hilbert space comes at the cost of adding a new (time) dimension.
One can certainly be concerned by the fact that the initial problem which was
essentially matching 1D shape outlines, has become a problem formulated in
term of time-dependent vector fields on Ω. However, this expansion from 1D
to 3D is only apparent. An optimal solution u∗ ∈ H1 minimizes the kinetic
energy

∫ 1

0
|ut|2V dt over the set of {u ∈ H1 : ϕu∗

1 = ϕu
1} (for such u, the data

term stays unchanged). This means that t → ϕu∗
t is a geodesic path from

id to ϕu∗
1 , so that t → u∗,t satisfies an evolution equation which allows for

the whole trajectory and the final ϕ∗ = ϕu∗
1 to be reconstructed from inital

data u∗,0 ∈ V . Moreover, the main results in this paper show that this initial
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data can in turn be put into a form u∗,0 = Kp∗,0 where K is a known kernel
operator and p∗,0 is a bounded normal vector field on the boundary of Stemp ,
therefore reducing the problem to its initial dimension.

Let us summarize this discussion: comparing shapes via a region based
approach and global action of non rigid deformations of the ambient space
is natural for modelling deformations of non-rigid objects. The estimation of
large deformations challenges the usual linearized approaches in terms of dense
displacement fields. The large deformation approach via the ϕ variable, more
natural but apparently more complex has in fact potentially the same coding
complexity: a normal vector field p∗,0 on the ∂Stemp from which the optimal
ϕ∗ and thus the deformed template shape ϕ∗(Sa), can be reconstructed.

1.3 Optimal matching and geodesic shooting for shapes

1.3.1 Hypotheses on the compared shapes

The compared shapes Stemp and Starg are assumed to correspond to the fol-
lowing class of Jordan shapes. We let T be the unit 1D torus T = [0, 1]{0=1}.
Definition 1 (Jordan Shapes). Let k ≥ 1 be a positive integer.

1. We say that γ is a non stopping piecewise Ck Jordan curve in Ω if γ ∈
C(T, Ω), γ has no self-intersections and there exists a subdivision 0 =
s0 < s1 < · · · < sn = 1 of T such that the restriction γ|[si,si+1] is in
Ck([si, si+1], R2) on each interval and γ′(s) 6= 0 for any si < s < si+1.
Such a subdivision will be called an admissible subdivision for γ. We denote
Ck

[ (Ω), the set of non stopping piecewise Ck Jordan curves in Ω.
2. Let Sk(Ω) be the set of all subset Sγ where Sγ is the interior (the unique

bounded connected component of R2 \ γ(T)) of γ ∈ Ck
[ (Ω).

Introducing a parametrization γ of the boundary of a Jordan shape S (S =
Sγ), and considering the action of ϕ on curves 5 defined by

γdef = ϕ ◦ γ (1.8)

we get
ϕ(Sγ) = Sϕ◦γ , (1.9)

so that we can work as well with the curve representation of the boundary
of a shape. A variational problem on Jordan shapes can be translated to a
variational problem on Jordan curves thanks to the γ → Sγ mapping. Con-
versly, if gc(γ) is a driving matching term in a variational problem on Jordan
curves, this term reduces to a driving matching term in a variational problem
on Jordan shapes if

gc(γ) = gc(γ ◦ ζ) (1.10)
for any C∞ diffeomorphic change of variable ζ : T → T. Such a driving
matching term gc will be called a geometric driving matching term.
5 We check immediately that ϕ′ ◦ (ϕ ◦ γ) = (ϕ′ ◦ ϕ) ◦ γ so that we have an action.
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1.3.2 Momentum theorem for differentiable driving matching term

We first study the case of a differentiable gc, in the following sense:

Definition 2. 1. Let (γn)n≥0 be a sequence in Ck
[ (Ω). We say that γn

Ck
[ (Ω)
−→

γ∞ if there exists a common admissible subdivision 0 = s0 < s1 < · · · <
sn = 1 of T for all the γn, n ∈ N ∪ {+∞} such that for any j ≤ k

sup
i,s∈[si,si+1]

| dj

dsj
(γn − γ∞)| → 0 .

2. We say that Γ : T×]− η, η[ is a smooth perturbation of γ in Ck
[ (Ω) if

a) Γ (s, 0) = γ(s), for any s ∈ T,
b) Γ (., ε) ∈ Ck

[ (Ω), for any |ε| < η,
c) there exists an admissible subdivision 0 = s0 < s1 < · · · < sn = 1 of

γ such that for any 0 ≤ i < n, Γ|[si,si+1]×]−η,η[ ∈ Ck,1([si, si+1]×] −
η, η[, R2).

3. Let gc : Ck
[ (Ω) → R and γ ∈ Ck

[ (Ω). We say that gc is Γ -differentiable
(in L2(T, R2)) at γ if there exists ∂gc(γ) ∈ L2(T, R2) such that for any
smooth perturbation Γ in Ck

[ (Ω) of γ, q(ε) .= gc(Γ (., ε)) has a derivative
at ε = 0 defined by q′(0) =

∫
T〈∂gc(γ)(s), (∂Γ/∂ε)(s, 0)〉ds.

Our goal in this section is to prove the following:

Theorem 1. Let p ≥ k ≥ 0 and assume that V is compactly embedded in
Cp+1

0 (Ω, R) and let gc : Ck
[ (Ω) → R be lower semi-continuous on Ck

[ (Ω) ie

lim inf gc(γn) ≥ gc(γ) for any sequence γn
Ck

[ (Ω)
−→ γ.

1. Let H1 = L2([0, 1], V ). There exists u∗ ∈ H1 such that J(u∗) = minu∈H1 J(u)
where

J(u) =
∫ 1

0

|ut|2V dt + λgc(ϕu
1 ◦ γtemp) .

2. Assume that gc is Γ -differentiable in Ck
[ (Ω) at γ∗ = ϕu∗

1 ◦γtemp. Then, the
solution u∗ is in fact in C1([0, 1], V ) and there exists (γt, pt) ∈ Ck

[ (Ω) ×
L2(T, R2) such that
a) γ0 = γtemp, p1 = −λ∂gc(γ∗) and for any t ∈ [0, 1]

u∗,t(m) =
∫

T
K(m, γt(s))pt(s)ds, γt = ϕu∗

t ◦ γtemp

and pt = (dϕu∗
t,1(γt))∗(p1)

where ϕu
t′,t = ϕu

t ◦(ϕu
t′)
−1 and K is the reproducing kernel 6 7associated

with V .
6 We have use the notation dϕu

t′,t(x) for the differential at x and (dϕu
t′,t(x))∗ for

the adjoint of dϕu
t′,t(x).

7 K : Ω × Ω →M2(R) (the set of 2 by 2 matrices) is defined by 〈K(., x)a, v〉V =
〈a, v(x)〉R2 for (a, v) ∈ R2 × V and its existence and uniqueness are guaranteed
by Riesz’s theorem on continuous linear forms in a Hilbert space.
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b) γt and pt are solutions in C1([0, 1], L2(T, R2)) of
∂γ

∂t
=

∂

∂p
H(γ, p)

∂p

∂t
= − ∂

∂γ
H(γ, p)

(1.11)

where H(γ, p) =
1
2

∫
t
p(y)K(γ(y), γ(x))p(x)dxdy.

Moreover, if k ≥ 1 and gc is geometric, then for any t ∈ [0, 1], the mo-
mentum pt is normal to γt i.e 〈pt(s), (∂γ1/∂s)(s)〉 = 0 a.e.

Remark 1. Not surprisingly, H can be interpreted as the reduced hamilto-
nian associated with the following control problem on L2(T, R), with control
variable u ∈ V : 

γ̇ = f(γ, u)

γ̇0 = f0(γ, u)

where f(γ, u) = u(γ(.)) and f0(γ, u) = 1
2 |u|

2
V .

1.3.3 Proof

We give in this section a proof of Theorem 1. Let us recall a regularity result
we borrow from [18] (lemma 11). If V is compactly embedded in Cp+1

0 (Ω, R2),
then for any u, h ∈ H1, Φ : Ω × [−η, η] → R2 defined by Φ(x, ε) = ϕu+εh

1 (x)
is a map in Cp,1(Ω × [−η, η], R2). From it, we deduce easily for u = u∗ and
h ∈ H1 that Γ (s, ε) .= Φ(γtemp(s), ε) is a smooth perturbation of γtemp in
Ck

[ (Ω).
Let us denote γ0 = γtemp . The first step is the decomposition of J as G◦F

where F : H1 → M with H1 = L2([0, 1], V ), M = R× Ck
[ (Ω),

F (u) =
(

1
2

∫ 1

0

|ut|2V dt, γu
1

)
where γu

t = ϕu
t ◦ γ0 (1.12)

and G : M → R is given by

G(x, γ) = x + λgc(γ) (1.13)

so that

J(u) = G ◦ F (u) =
1
2

∫ 1

0

|ut|2V dt + λgc(γ) . (1.14)

With this decomposition, we emphasize with F that we have an underlying
curve evolution structure and G appears has a terminal cost in a optimal
control point of view [20].
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Point (1) of Theorem 1 follows from the strong continuity of the mapping
u → ϕu

1 for the weak convergence in H1 [18] (Theorem 9): if un ⇀ u in H1,

then ϕun
1 → ϕu

1 in Cp(Ω, R2) so that γn
Ck

[ (Ω)
−→ γ where γn = ϕun

1 ◦ γ0 and
γ = ϕu

1 ◦γ0. Using the lower semicontinuity property of gc for the convergence
in Ck

[ (Ω) and the lower semi-continuity of 1
2

∫ 1

0
|ut|2V dt for weak convergence in

H1, we deduce that J is lower semi-continuous for the weak convergence in H1.
Thus, the existence of u∗ comes then from standard compactness argument
of the strong balls in H1 for the weak topology.

Point (2) of Theorem 1: For any h ∈ H1, F admits a Gâteaux derivative
in H2 = R × L2(T, R2) in the direction h , denoted ∂F (u)(h), and given by
(cf. [18], lemma 10)

∂F (u)(h) = lim
ε→0

1
ε
(F (u + εh)− F (u)) =

(∫ 1

0

〈ut, ht〉dt, vh ◦ γu
1

)
(1.15)

where γu
1 = ϕu

1 ◦ γ0 and

vh =
∫ 1

0

dϕu
t,1(ϕ

u
1,t)ht ◦ ϕu

1,tdt . (1.16)

Considering u = u∗, η > 0, |ε| < η and Γ (s, ε) = γu∗+εh
1 (s), Γ is a smooth

perturbation of γ∗ = γu∗
1 so that if Q(ε) = J(u∗+ εh) = 1

2

∫ 1

0
|u∗,t + εht|2V dt+

λq(ε), we get

Q′(0) =
∫ 1

0

〈u∗,t, ht〉V dt + λ

∫
T

〈
∂gc(γ∗)(s),

∂Γ

∂ε
(s, 0)

〉
R2

ds

=
∫ 1

0

〈u∗,t, ht〉V dt + λ

∫
T
〈∂gc(γ∗)(s), vh ◦ γu∗

1 〉R2ds

Using (1.16), we deduce that∫
T
〈∂gc(γ∗)(s), vh ◦ γu∗

1 〉ds =
∫ 1

0

∫
T
〈(dϕu∗

t,1(γt))∗(∂gc(γ∗)(s)), ht(γu∗
t (s)〉dsdt .

Hence, introducing pt(s) = −λ(dϕu∗
t,1(γt))∗(∂gc(γ∗)(s)), we get

Q′(0) =
∫ 1

0

〈
u∗,t −

∫
T

K(., γu∗
t (s))pt(s)ds , ht

〉
V

dt .

Since J(u∗) is the minimum of J , Q′(0) = 0 for any h ∈ H1 and we have

u∗,t(m) =
∫

T
K(m, γu∗

t (s))pt(s)ds .

Since, t → ϕu∗
t (resp. t → dϕu∗

t ) is a continuous path in C1(Ω,Ω) (resp.
in C(Ω,M2(R))), as soon as V is compactly embedded in C1

0 (Ω, R2) [18],
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we deduce that t → γu∗
t is continuous in C(T, Ω), t → pt in L2(T, R2) and

t → u∗,t in V . Thus, (2a) is proved.
The part (2b) is straightforward: Let us denote γt = γu∗

t . We first check
that

u∗,t(γt) = (∂/∂p)H(γt, pt)

so that ∂γt/∂t(s) = u∗,t(γt(s)) = (∂/∂p)H(γt, pt). Now, from

pt(s) = −(dϕu∗
t,1(γt))∗(∂gc(γ∗)(s)) = (dϕu∗

t,1(γt))∗(p1(s))

we get

∂pt

∂t
(s) =

∂

∂t
(dϕu∗

t,1(γt))∗(p1(s)) = −(dut(γt(s)))∗(pt(s)). (1.17)

Since V is continuously embedded in C1
0 (Ω, R2), the kernel K is in C1

0 (Ω ×
Ω,M2(R)) and

du∗,t(m) =
∫

T
∂1K(m, γt(s′))pt(s′)ds′,m ∈ Ω

so that8

(dut(γt(s)))∗(pt(s)) =
∫

T

tpt(s)∂1K(γt(s), γt(s′))pt(s′)ds′ =
∂

∂γ
H(γt, pt)

and this combined with (1.17) provides the required evolution of p.
Now, from the previous expression of ∂γt/∂t and ∂pt/∂t, one deduces easily

that t → γt and t → pt belongs to C1([0, 1], L2([0, 1], R2)).
The last thing to be proved is the normality of the momentum for geometric

driving matching terms. Indeed, let α ∈ C∞(T, R) such that α(si) = 0 for any
0 ≤ i < n where 0 = s0 < · · · < sn = 1 is an admissible subdivision for γ∗.
Let ζ(s, ε) be the flow defined for any s ∈ T by ζ(s, 0) = s and

∂

∂ε
ζ(s, ε) = α(ζ(s, ε)) .

Obviously the flow is defined for ε ∈ R and ζ ∈ C∞(T × R, T) and satisfies
ζ(si, ε) = si for any 0 ≤ i ≤ n so that Γ (s, ε) = γ∗(ζ(s, ε)) is a smooth
perturbation in Ck

[ (Ω) of γ∗. Since gc is geometric, gc(Γ (., ε)) ≡ gc(γ∗) so that∫
T

〈
∂gc(γ∗)(s),

∂Γ

∂ε
(s, 0)

〉
ds =

∫
T
〈∂gc(γ∗)(s),

∂

∂s
γ∗(s)α(s)〉ds = 0

8 Here and in the following, when α is a function of several variables, the notation
∂1α refers to the partial derivative or differential with respect to the first variable.
We will use this notation in particular when the variables in α are not identified
with a specific letter, which makes notation like ∂/∂x ambiguous.
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Considering all the possible choice for α, we deduce that 〈∂gc(γ∗)(s), (∂γ∗/∂s)〉 =
0 a.e. so that 〈p1(s), ∂

∂sγ∗(s)〉 = 0 a.e. Since pt(s) = (dϕu∗
t,1(γt))∗(p1(s)), we

get

〈pt(s),
∂

∂s
γt(s)〉 = 〈p1(s), dϕu∗

t,1(γt)(
∂

∂s
γt(s))〉 = 〈p1(s),

∂

∂s
γ∗(s)〉

so that 〈pt(s), ∂
∂sγt(s)〉 = 0 a.e.

1.4 Application to measure based matching

1.4.1 Measure matching

We present here a first application of Theorem (1) for shape matching. This
is a particular case of a more general framework introduced in [8] for measure
matching.

Let Ms(Ω) be the set of signed measures on Ω and consider I, a Hilbert
space of functions on Ω, such that I is continously embedded in Cb(Ω, R),
the set of bounded continuous functions. Since Ms(Ω) is the dual of Cb(Ω, R)

and I
cont.
↪→ Cb(Ω, R), we have Ms(Ω)

cont.
↪→ I∗ where I∗ is the dual of I. Define

the action of diffeomorphisms on I∗, (ϕ, µ) → ϕ.µ, by (ϕ.µ, f) = (µ, f ◦ ϕ),
which, in the case when µ is a measure, yields

(ϕ.µ, f) .=
∫

fd(ϕ.µ) =
∫

f ◦ ϕ dµ, ∀f ∈ I ⊂ Cb(Ω, R).

The dual norm on I∗ provides a nice way to compare two signed measures µ
and ν:

|µ|I∗ = sup
f∈I,|f |I≤1

∫
Ω

fdµ.

Introduce the reproducing kernel (x, y) 7→ kI(x, y) on I, which is such that,
for f ∈ I and x ∈ Ω,

f(x) = 〈f, kI(x)〉I
with kI(x) : y 7→ kI(x, y). We have

〈µ, ν〉I∗ =
∫

Ω×Ω

kI(x, y)dµ(x)dν(y). (1.18)

Indeed,∫
Ω

f(x)dµ(x) =
∫

Ω

〈f, kI(x)〉I dµ(x) =
〈

f,

∫
Ω

kI(x, .)dµ(x)
〉

I

which is maximized for f(y) = 1
C

∫
Ω

kI(x, y)dµ(x) with
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C =
∣∣∣∣∫

Ω

kI(., x)dµ(x)
∣∣∣∣
I

so that |µ|I∗ = C. Now, we have

C2 =
∫

Ω

∫
Ω

〈kI(x), kI(y)〉Idµ(x)dµ(y) =
∫

Ω

∫
Ω

kI(x, y)dµ(x)dµ(y)

from the properties of a reproducing kernel. This proves (1.18).
Coming back to the shape matching problem, for any curve γ : T → R2,

we define µγ ∈Ms(Ω) by∫
Ω

fdµγ =
∫

T
f ◦ γ(s)ds .

For example, when S is a Jordan shape and γ is a parametrization with con-
stant speed, µγ is a uniform measure on ∂S (a probability measure if properly
normalized). More generally, given a compact submanifold M of dimension k,
one can associate with M the uniform probability measure denoted µM . This
measure framework is useful also to represent finite union of submanifolds of
different dimensions or more irregular structures (see [8]). Moreover, this al-
lows various approximation schemes since for any reasonable sampling process
over the manifold M , µn = 1

n

∑n
i=1 δxi

→ µM . We focus on the simple case
of 2D shape modeling but instead of working with the approximation scheme
µn = 1

n

∑n
i=1 δxi

(by uniform sampling on the curve) we will work with a
continuous representation as a 1D measure µγ where S = Sγ . We introduce
as in [8] the following energy:

J(u) .=
1
2

∫ 1

0

|ut|2V dt +
λ

2
|ϕu

1 .µ∂Stemp − µ∂Starg |2I∗

=
1
2

∫ 1

0

|ut|2V dt +
λ

2
|ϕu

1 .µγtemp − µγtarg |2I∗

where γtemp (resp. γtarg) is a constant speed parametrization of Stemp (resp.
Starg).

Note that for any f ∈ I,∫
fd(ϕ.µγ) =

∫
f ◦ ϕdµγ =

∫
f ◦ ϕ ◦ γds =

∫
fd(µϕ◦γ)

so that, with

gc(γ) =
1
2
|µγ − µγtarg |2I∗ ,

minimizing J is a variational problem which is covered by Theorem 1. It is
clear that gc is not geometric since, in general, µγ◦ζ 6= µγ for a change of
variable ζ : T → T. However, this approach provides a powerful matching
algorithm between unlabelled sets of points and submanifolds.
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Let p ≥ k ≥ 0 and consider Γ a smooth perturbation of a curve γ ∈ Ck
[ (Ω).

Then if v(s) = (∂Γ/∂ε)(s, 0) and q(ε) = gc(Γ (., ε)) we get immediately

q′(0) =
∫

T×T
〈∂1kI(γ(s), γ(s′))− ∂1kI(γ(s), γtarg(s′)), v(s)〉 dsds′

giving

∂gc(γ)(s) =
∫

T
(∂1kI(γ(s), γ(s′))− ∂1kI(γ(s), γtarg(s′))) ds′

Theorem 1 can therefore be directly applied, yielding

Theorem 2. Let p ≥ k ≥ 0 and assume that V is compactly embedded in
Cp+1

0 (Ω, R). Let I be a Hilbert space of real valued functions on Ω and as-
sume that I is continuously embedded in Ck(Ω, R). Let Stemp and Starg be two
Jordan shapes in Sk(Ω). Then the conclusions of Theorem 1 are true, with

p1(s) = −λ∂gc(γ1)(s) =
∫

T
(∂1kI(γ1(s), γtarg(s′))− ∂1kI(γ1(s), γ1(s′))) ds′

From Theorem 1, we have pt = (dϕu∗
t,1(γt))∗(p1), and since p ≥ k, inherits the

smoothness properties of p1. Now, if 0 ≤ s0 < · · · < sn = 1 is an admissible
partition of γtemp (ie Stemp has a Ck boundary except at a finite number
γtemp(s0), · · · , γtemp(sn) of possible “corners”) then p1 is continuous and p1

restricted to [si, si+1] is Ck, and this conclusion is true also for all pt.

1.4.2 Geometric measure-based matching

As said before, the previous formulation is not geometric and in particular,
µγ∗ is not generally the uniform measure on S∗ = ϕu∗

1 (Stemp) ie µγ∗ 6= µS∗ .
If we want to consider a geometric action, we can propose a new data term,
derived from the previous one, which is now fully geometric

gc(γ) =
1
2
|µ∂Sγ

− µ∂Starg |2I∗

or equivalently

gc(γ) =
1
2

∫
T×T

kI(γ(s), γ(r)) |γ′(s)| |γ′(r)| dsdr

+
1
2

∫
T×T

kI(γtarg(s), γtarg(r)) |γ′targ(s)| |γ′targ(r)| dsdr

−
∫

T×T
kI(γ(s), γtarg(r)) |γ′(s)| |γ′targ(r)| dsdr (1.19)

The main difference from the previous non geometric matching term is the
introduction of speed of γ and γtarg in the integrals (with the notation γ′(s) =
∂γ(s)/∂s).
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The derivative of gc(γ) under a smooth perturbation Γ of γ in Ck
[ (Ω) for

k ≥ 2 can be computed. Note first that for γ ∈ Ck
[ (Ω) and k ≥ 2, we can

define for any s ∈ T \ {s0, · · · , sn} (where 0 = s0 < · · · < sn = 1 is an
admissible subdivision of γ), the Frenet frame (τs, ns) along the curve, and
the curvature κs. In the following we will use the relations γ′(s) = |γ′(s)|τs

and ∂τs/∂s = κs|γ′(s)|ns. Let Γ be a smooth perturbation of γ in Ck
[ (Ω) for

k ≥ 2. As previously, we will denote v(s) = (∂Γ/∂ε)(s, 0). Since Γ is C1, we
have (∂v/∂s) = (∂γ′/∂ε)(s, ε)|ε=0. Then, if q(ε) = gc(Γ (., ε)), assuming that
kI ∈ C1(Ω ×Ω, R),

q′(0) =
∫

T×T
[〈∂1kI(γ(s), γ(r)), v(s)〉 |γ′(s)|

+ kI(γ(s), γ(r)) 〈τs, ∂v/∂s〉] |γ′(r)| dsdr

−
∫

T×T
[〈∂1kI(γ(s), γtarg(r)), v(s)〉 |γ′(s)|

+ kI(γ(s), γtarg(r)) 〈τs, ∂v/∂s〉] |γ′targ(r)| dsdr.

Consider the term
∫

T kI(γ(s), γ(r)) 〈τs, ∂v/∂s〉 ds. Integrating by parts on
each [si, si+1] yields∫

T
kI(γ(s), γ(r)) 〈τs, ∂v/∂s〉 ds =

n∑
i=0

kI(γ(si), γ(r)) 〈−δτi, v(si)〉

−
∫

T
〈[〈∂1kI(γ(s), γ(r)), τ(s)〉 τs + kI(γ(s), γ(r)) κsns] , v(s)〉 |γ′(s)| ds,

(1.20)

where δτi = lim
r→0

τsi+r − lim
r→0

τsi−r (note that v is always continuous). Since
we have allowed corners in our model of shapes, the boundary terms of the
integration do not vanish, and consequently gc is not Γ -differentiable, unless
we allow singular terms (Dirac measures) in the gradient, which is possible
but will not be addressed here. In the case of smooth curves, the singular
terms cancel and we have

Theorem 3. Let p ≥ k ≥ 2 and assume V
comp.
↪→ Cp+1

0 (Ω, R) and I
cont.
↪→

Ck(Ω, R). Let Stemp and Starg be two Ck Jordan shapes. Then, the conclusions
of Theorem 1 are valid for

J(u) =
1
2

∫ 1

0

|ut|2V dt +
λ

2
|µ∂Sγ − µ∂Starg |2I∗

with

p1(s) = −λ

[∫
T

[〈∂1kI(γ1(s), γ1(r)), ns〉 − kI(γ1(s), γ1(r)) κs] |γ′1(r)| dr

−
∫

T
[〈∂1kI(γ1(s), γtarg(r)), ns〉 − kI(γ1(s), γtarg(r)) κs] |γ′targ(r)| dr

]
|γ′1(s)| ns.

(1.21)
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More over, pt is at all times normal to the boundary of γt.

The normality of pt at all times is a consequence of Theorem 1, but can be
seen directly from the fact that p1 is normal to γ1 and from the equations
pt = (dϕu∗

t,1(γt))∗(p1) and γt = ϕ1,t(γ1).

1.4.3 Geometric measure-based matching, second formulation

The following version of the driving term has a non singular gradient, at the
difference of the previous one. Define

gc(γ) =
1
2

∫
T×T

kI(γ(s), γ(r)) 〈γ′(s), γ′(r)〉 dsdr

+
1
2

∫
T×T

kI(γtarg(s), γtarg(r))
〈
γ′targ(s), γ′targ(r)

〉
dsdr

−
∫

T×T
kI(γ(s), γtarg(r))

〈
γ′(s), γ′targ(r)

〉
dsdr, (1.22)

i.e. we replace products of scalar velocities by dot products of vector velocities.
This expression may be interpreted as follows: given a curve γ, one may define
the vector-valued Borel measure −→µ γ such that for any continuous vector field
v : Ω → R2,

−→µ γ(v) =
∫

T
〈v(γ(s)), γ′(s)〉 ds.

Now extend the |·|I norm introduced in the preceding section to vector-valued
maps v = (vx, vy) : Ω → R2 by defining |v|I =

√
|vx|2I + |vy|2I . One may check

that the corresponding matrix-valued kernel is the scalar kernel kI(x, y) times
the identity matrix. Consequently, formula (1.22) corresponds in this setting
to the dual norm squared error |−→µ γ −−→µ γtarg |2I∗ .

Let Γ be a smooth perturbation of γ in Ck
[ (Ω) for k ≥ 1, and denote

v(s) = (∂Γ/∂ε)(s, 0) and q(ε) = gc(Γ (., ε) as before. We have

q′(0) =
∫

T×T
[〈∂1kI(γ(s), γ(r)), v(s)〉 〈γ′(s), γ′(r)〉

+ kI(γ(s), γ(r)) 〈∂v/∂s, γ′(r)〉] dsdr

−
∫

T×T
[〈∂1kI(γ(s), γtarg(r)), v(s)〉

〈
γ′(s), γ′targ(r)

〉
+ kI(γ(s), γtarg(r))

〈
∂v/∂s, γ′targ(r)

〉
] dsdr

Integrating by parts on each [si, si+1] the second part of each integral,
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q′(0) =
∫

T×T
[〈∂1kI(γ(s), γ(r)), v(s)〉 〈γ′(s), γ′(r)〉

− 〈∂1kI(γ(s), γ(r)), γ′(s)〉 〈v(s), γ′(r)〉] dsdr

−
∫

T×T
[〈∂1kI(γ(s), γtarg(r)), v(s)〉

〈
γ′(s), γ′targ(r)

〉
− 〈∂1kI(γ(s), γtarg(r)), γ′(s)〉

〈
v(s), γ′targ(r)

〉
] dsdr.

Hence in this case we get a Γ -derivative

∂gc(γ)(s) =
∫

T
[〈γ′(s), γ′(r)〉 ∂1kI(γ(s), γ(r))

− 〈∂1kI(γ(s), γ(r)), γ′(s)〉 γ′(r)] dr

−
∫

T
[
〈
γ′(s), γ′targ(r)

〉
∂1kI(γ(s), γtarg(r))

− 〈∂1kI(γ(s), γtarg(r)), γ′(s)〉 γ′targ(r)] dr.

As expected, this can be rewritten to get an expression which is purely normal
to the curve γ. Indeed,

∂gc(γ)(s) =
[∫

T
〈nr, ∂1kI(γ(s), γ(r))〉 |γ′(r)| dr

−
∫

T

〈
ntarg

r , ∂1kI(γ(s), γtarg(r))
〉
|γ′targ(r)| dr

]
|γ′(s)| ns.

This implies

Theorem 4. Let p ≥ k ≥ 1 and assume V
comp.
↪→ Cp+1

0 (Ω, R) and I
cont.
↪→

Ck(Ω, R). Let Stemp and Starg be two Jordan shapes in Sk(Ω). Then the con-
clusions of Theorem 1 hold for

J(u) =
1
2

∫ 1

0

|ut|2V dt +
λ

2
|−→µ ϕu

1 ◦γtemp −−→µ γtarg |2I∗

with

p1(s) = −λ

[∫
T
〈nr, ∂1kI(γ1(s), γ1(r))〉 |γ′1(r)| dr

−
∫

T

〈
ntarg

r , ∂1kI(γ1(s), γtarg(r))
〉
|γ′targ(r)| dr

]
|γ′1(s)| ns. (1.23)

More over, pt is at all times normal to the boundary of γt, continuous and
Ck−1 on any interval on which γtemp is Ck.
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1.5 Application to shape matching via binary images

1.5.1 Shape matching via binary images

Another natural way to build a geometric driving matching term is to consider,
for any shape S, the binary image χS such that χS(m) = 1 if m ∈ S and 0
otherwise. Then the usual L2 matching term between images (

∫
Ω

(Itemp◦ϕ−1−
Itarg)2dm) leads to the area of the set symmetric difference

∫
Ω
|χϕ(Stemp) −

χStarg |dm. Introducing

gc(γ) =
∫

Ω

|χSγ − χStarg |dm

we get an obviously geometric driving matching term leading to the definition
of

J(u) =
∫ 1

0

|ut|2V dt + λ

∫
Ω

|χSγu
1
− χStarg |dm .

where γu
1 = ϕu

1 ◦ γtemp . The problem of diffeomorphic image matching has
been quite studied in the case of sufficiently smooth images in ([12], [18], [1]).
It has been proved that the momentum, p0, is a function defined on Ω of the
form p0 = α∇Itemp , where α = |dϕu∗

0,1|(Itemp − Itarg ◦ ϕu∗
0,1) ∈ L2(Ω, R). This

particular expression α∇Itemp shows that the momentum is normal to the
level sets of the template image, and vanishes on regions over which Itemp is
constant. (This property is conserved over time for the deformed images It.
This is what we called the normal momentum constraint [13].) In the case
of binary images, we lose the smoothness property since ∇Itemp is singular
and much less was known except that the momentum is a distribution whose
support is concentrated on the boundary of Stemp . We show in this section
that this distribution is as simple as it can be, and is essentially an L2 function
on the boundary of the template, or using a parametrization (and with a slight
abuse of notation), an element of p0 ∈ L2(T, R2) which is everywhere normal
to the boundary.

The main idea is to proceed like in Theorem 1, but we here have to deal
with the fact that gc is not Γ -differentiable in Ck

[ (Ω) (it is still lower semi-
continuous for k ≥ 1). We need to introduce for this the weaker notion of
Γ -semi-differentiability and a proper extension of Theorem 1.

1.5.2 Momentum Theorem for semi-differentiable driving
matching term

We start with the definition of the Γ -semi-differentiability.

Definition 3. Let gc : Ck
[ (Ω) → R and γ ∈ Ck

[ (Ω). We say that gc is Γ -semi
differentiable at γ if for any smooth perturbation Γ in Ck

[ (Ω) of γ, q(ε) .=
gc(Γ (., ε)) has left and right derivatives at ε = 0. We say that gc has Γ -semi-
derivatives upper bounded by B if B is a bounded subset of L2(T, R2) such
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that for any smooth perturbation Γ in Ck
[ (Ω) of γ, there exists b ∈ B such

that
∂+q(0) ≤

∫
T
〈b(s), (∂Γ/∂ε)(s, 0)〉ds

where ∂+q(0) denotes the right derivative of q at 0.

Under this weaker condition, we can prove the following extension of Theorem
1:

Theorem 5. Let p ≥ k ≥ 0 and assume that V is compactly embedded in
Cp+1

0 (Ω, R) and let gc : Ck
[ (Ω) → R be lower semi-continuous on Ck

[ (Ω) ie

lim inf gc(γn) ≥ gc(γ) for any sequence γn
Ck

[ (Ω)
−→ γ.

1. Let H1 = L2([0, 1], V ). There exists u∗ ∈ H1 such that J(u∗) = minu∈H1 J(u)
where

J(u) =
∫ 1

0

|ut|2V dt + λgc(ϕu
1 ◦ γtemp) .

2. Assume that gc is Γ -semi-differentiable in Ck
[ (Ω) at γ∗ = ϕu∗

1 ◦γtemp with
Γ -semi-derivative upper bounded by B ⊂ L2(T, R2). Then, the solution u∗
is in fact in C1([0, 1], V ) and there exist (γt, pt) ∈ Ck

[ (Ω)×L2(T, R2) such
that
a) γ0 = γtemp, p1 = −λb with b ∈ conv(B) and for any t ∈ [0, 1]

u∗,t(m) =
∫

T
K(m, γt(s))pt(s)ds, γt = ϕu∗

t ◦γtemp and pt = (dϕu∗
t,1(γt))∗(p1)

where ϕu
s,t = ϕu

t ◦ (ϕu
s )−1 and K is the reproducing kernel associated

with V .
b) γt and pt are solutions in C1([0, 1], L2(T, R2)) of

∂γ

∂t
=

∂

∂p
H(γ, p)

∂p

∂t
= − ∂

∂γ
H(γ, p)

(1.24)

where H(γ, p) = 1
2

∫ t
p(y)K(γ(y), γ(x))p(x)dxdy.

Proof. The proof of the Theorem 5 follows closely the lines of the proof of
Theorem 1. In particular, introduce F and G as in equations (1.12) and (1.13),
and for u ∈ H1, consider ∂F (u) defined by (1.15) and (1.16). We focus on
the proof of point (2), since point (1) does not differ from Theorem 1. Let
h ∈ H1 , η > 0, |ε| < η and Γ (s, ε) = γu∗+εh

1 (s) where γu
t = ϕu

t ◦ γtemp . The
mapping Γ is a smooth perturbation of γ∗ = γu∗

1 in Ck
[ (Ω) and if Q(ε) =

J(u∗ + εh) = 1
2

∫ 1

0
|u∗,t + εht|2V dt + λq(ε) where q(ε) .= gc(Γ (., ε)), we deduce

from the hypothesis that there exists b ∈ B such that
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∂+Q(0) ≤
∫ 1

0

〈ut, ht〉dt +
∫

T
〈b(s), (∂Γ/∂ε)(s, 0)〉ds = 〈(∂F (u∗)h, b〉H2

where H2 = R× L2(T, R2) and b = (1, b). We need now the following lemma:

Lemma 1. Let F : H1 → M and G : M → R∪{+∞} be two mappings where
H1 is a separable Hilbert space. Let us assume the following:

(H1) There exists u∗ ∈ H1 such that

G ◦ F (u∗) = inf
u∈H1

G ◦ F (u) < +∞.

(H2) For any h ∈ H1, the function ρh(ε) = G ◦ F (u∗ + εh) has left and right
derivatives at 0 and the following holds for a separable Hilbert space H2

and a bounded subset D of H2: there exists a linear mapping ∂F (u∗) :
H1 → H2 such that, for any h ∈ H1, there exists b̄ ∈ D with

∂+ρh(0) ≤ 〈b, ∂F (u∗)h〉. (1.25)

Then, there exists b∗ ∈ conv(D), the closure in H2 of the convex hull of D,
such that for any h ∈ H1

〈b∗, ∂F (u∗)h〉 = 0 . (1.26)

Proof. Let Ẽ be the closure in H2 of the linear space ∂F (u∗)(H1) and π the
orthogonal projection on Ẽ. Now, let C = conv(D). From (H2), we get that
C is a non-empty bounded closed convex subset of H2 so that we deduce
from corollary III.19 in [2] that C is weakly compact. Now, π is continuous
for the weak topology so that C̃ = π(C) is weakly compact and thus strongly
closed. From the projection Theorem on closed non-empty convex subsets of
an Hilbert space (Theorem V2 in [2]), we deduce that there exist b̃∗ ∈ C̃ such
that |b̃∗| = inf b̃∈C̃ |b̃| and 〈b̃∗, b̃ − b̃∗〉 ≥ 0 for any b̃ ∈ C̃. Considering b∗ ∈ C

such that π(b∗) = b̃∗ we deduce eventually that for any b ∈ C,

|b̃∗|2 = 〈b̃∗, b∗〉 ≤ 〈b̃∗, b〉 . (1.27)

Assume that b̃∗ 6= 0, and let h ∈ H1 such that |b̃∗ + ∂F (u∗)h| ≤ |b̃∗|2/2M
where supb∈C |b| ≤ M < ∞. From (H2), there exists b ∈ C such that

∂+
0 ρh ≤ 〈b, ∂F (u∗)h〉 ≤ (|b̃∗|2/2− 〈b, b̃∗〉)

so that using (1.27), we get

∂+
0 ρh ≤ −|b̃∗|2/2 < 0

which is in contradiction with (H1).
Hence b̃∗ = 0 and b∗ is orthogonal to Ẽ which gives the result.
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Using the lemma, we deduce that there exists b ∈ B such that for any h ∈ H1,∫ 1

0

〈u∗,t, ht〉V dt + λ

∫
T
〈b(s), vh(γ(s))〉R2ds = 0

where
vh =

∫
dϕu∗

t,1(ϕ
u∗
1,t)ht ◦ ϕu∗

1,tdt .

Denoting pt(s) = −λ(dϕu∗
t,1(γt(s)))∗(b(s)), we get eventually for any h ∈ H1∫ 1

0

〈u∗,t −
∫

T
K(., γu∗

t (s))pt(s)ds, ht〉V dt = 0 .

so that
u∗,t(m) =

∫
T

K(m, γu∗
t (s))pt(s)ds . (1.28)

Given this representation of u∗,t the remaining of the proof of Theorem 5 is
identical to Theorem 1.

1.5.3 Momentum description for shape matching via binary images

Coming back to the case of the driving matching term gc defined by

gc(γ) =
∫

Ω

|χSγ
− χStarg |dm ,

the Γ -semi-differentiability is given in the following proposition. For a shape
S in Sk(Ω), denote by dS the function equal to -1 within S and to 1 outside.

Proposition 1. Let p ≥ k ≥ 1 and assume that V is compactly embedded in
Cp+1

0 (Ω, R). Let Starg be a Jordan shape in Sk(Ω) and gc : Ck
[ (Ω) → R such

that
gc(γ) =

∫
Ω

|χSγ
− χStarg |dm .

Let γ1 ∈ Ck
[ (Ω) be positively oriented. Denote T0 = { s ∈ T | γ1(s) /∈ ∂Starg }

and

T+ = { s ∈ T\T0| ntarg(γ1(s)) and n1(γ1(s)) exist and n1(γ1(s)) = ntarg(γ1(s)) },

n1 and ntarg being the outward normals to the boundaries of Sγ1 and Starg
(which are well-defined except at a finite number of locations).

Then, gc is Γ -semi-differentiable at γ1 and for any smooth perturbation Γ
of γ1 in Ck

[ (Ω), if q(ε) = gc(Γ (., ε)), we have

∂+q(0) ≤
∫

T0

dStarg(γ1(s))〈(∂Γ/∂ε)(s, 0), n1(γ1(s))〉|∂γ1/∂s|ds

+
∫

T+

|〈(∂Γ/∂ε)(s, 0), n1(γ1(s))〉||∂γ1/∂s|ds.
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Moreover, if

B = { b ∈ L2(T, R2) |
b(s) = dStarg(γ1(s))n1(γ1(s)) when γ1(s) /∈ ∂Starg and |b(s)| ≤ 1 otherwise },

then the Γ -semi-derivatives of gc at γ1 are upper bounded by B.

Proof. Let Γ be a smooth perturbation of γ1 in Ck
[ (Ω) and let v(s) =

(∂Γ/∂ε)(s, 0). Denote for any ε ∈] − η, η[, Sε = SΓ (.,ε), S′ε = Ω \ Sε so that
S0 = Sγ1 and∫

Ω

|χSε
−χStarg |dm =

∫
Sε

|1−χStarg |dm+
∫

S′
ε

|0−χStarg |dm =
∫

Sε

(1−2χStarg )dm+Cst

The proof relies on the following remark: for any bounded measurable
function f on Ω, we have:∫

Sε

f(m)dm−
∫

S0

f(m)dm =
∫ ε

0

∫
T

f ◦ Γ (s, α)|(∂Γ/∂α), (∂Γ/∂s)|(s, α)dsdα

where |a, b| denotes det(a, b) for a, b ∈ R2. If Γ is C1 and f is smooth, one
can assume that there exists a diffeomorphism ϕε such that ϕ0 = id and
for Γ (s, ε) = ϕε(Γ (s, 0)) in which case the result is a consequence of the
divergence Theorem [4]. The general case can be derived by density arguments
that we skip to avoid technicalities.

Denote, for any a,m ∈ R2,

χa
Starg

(m) = lim sup
t→0,t>0

χStarg (m + ta)

Since Starg ∈ Sk(Ω), we can define nm, the outwards normal to the bound-
ary of Starg everywhere except in a finite number of locations and we get
immediately that χa

Starg
(m) = χStarg (m) for m /∈ ∂Starg and χa

Starg
(m) =

(1− sgn(〈a, ntarg(m)〉))/2 for 〈a, nm〉 6= 0.
Let T′ = {s ∈ T | γ1(s) ∈ ∂Starg , 〈v(s), ntarg(γ1(s))〉 = 0 }. There can be

at most a finite number of points s ∈ T′ such that 〈(∂γ1/∂s), ntarg(γ1(s))〉 6=
0, since this implies that s is isolated in T′. For all other s ∈ T′, we have
〈(∂γ1/∂s), ntarg(γ1(s))〉 = 0 and |v(s), (∂γ1/∂s)| = 0 so that

0 = lim
α→0,α>0

(1− 2χStarg ◦ Γ (s, α))|(∂Γ/∂α), (∂Γ/∂s)|(s, α) (1.29)

= (1− 2χ
v(s)
Starg

◦ γ1(s))|v(s), (∂γ1/∂s)|

We check easily that if s /∈ T′, then γ1(s) /∈ ∂Starg or γ1(s) ∈ ∂Starg and
〈v(s), ntarg(γ1(s))〉 6= 0, so that

lim
α→0,α>0

(1− 2χStarg ◦ Γ (s, α))|(∂Γ/∂α), (∂Γ/∂s)|(s, α)

= (1− 2χ
v(s)
Starg

◦ γ1(s))|v(s), (∂γ1∂s)| (1.30)
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Using the dominated convergence Theorem and equations (1.29) and (1.30),
we deduce

lim
ε→0,ε>0

1
ε

(∫
Sε

dStargdm−
∫

S0

dStargdm

)
=

∫
T
(1− 2χ

v(s)
Starg

◦ γ1(s))|v(s), (∂γ1/∂s)|ds (1.31)

(We have dStarg = 1 − 2χStarg .) Considering T0, T+ and T− = T \ (T0 ∪ T+)
as introduced in Theorem 1 we get

∂+q(0) =
∫

T0

dStarg (γ1(s))〈v(s), n1(γ1(s))〉|∂γ1/∂s|ds

+
∫

T+

|〈v(s), n1(γ1(s))〉||∂γ1/∂s|ds−
∫

T−
|〈v(s), n1(γ1(s))〉||∂γ1/∂s|ds

(1.32)

which ends the proof of Proposition 1.

Given Proposition 1, we can apply immediatly Theorem 5 and get a precise
description of the initial momentum.

Theorem 6. Let p ≥ k ≥ 1 and assume that V is compactly embedded in
Cp+1

0 (Ω, R). Let Stemp and Starg be two Jordan shapes in Sk(Ω). Then the
conclusions of theorem 5 hold for

J(u) =
1
2

∫ 1

0

|ut|2V dt + λ

∫
Ω

|χSγu
1
− χStarg |dm .

with
p1(s) = λβ1(s)|∂γ1/∂s|n1(s)

where
β1(s) = (2χStarg − 1) ◦ γ1(s) if γ1(s) ∈ Ω \ ∂Starg (1.33)

and |β1(s)| ≤ 1 for all s. Here n1 is the outwards normal to the boundary
∂Sγ1 (which is defined everywhere except on a finite number of points).

Proof. This is a direct consequence of Proposition 1 and Theorem 5.

Using the fact that pt(s) = (dϕu∗
t,1(γt(s)))∗(p1(s)) a straightforward computa-

tion gives
p0(s) = λβ1(s)|dϕu∗

0,1(γ0(s))||∂γ0/∂s|n0
γ0(s)

,

where n0 is the outwards normal to ∂Stemp . In particular, assuming an arc-
length parametrization of the boundary of Stemp , we get that the norm of the
inital momentum is exactly equal to the value of the Jacobian of the optimal
matching at any location s ∈ T0 (see Proposition 1) along the boundary.
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1.6 Application to driving terms based on a potential

In this section, we consider the case

gc(γ) =
∫

γ

Utarg(x)dx =
∫

T
Utarg(γ(s))|γ′(s)|ds

where Utarg ≥ 0 is a function, depending on the target shape, which van-
ishes only for x ∈ ∂Starg, the main example being the distance function
Utarg(x) = dist(∂Starg, x).9 However, before dealing specifically with the dis-
tance function, we first address the simpler case of smooth Utarg. We moreover
restrict to smooth templates (without corners) to avoid the introduction of
additional singularities. Then, an easy consequence of Theorem 1 is

Theorem 7. Let p ≥ k ≥ 2 and assume that V is compactly embedded in
Cp+1

0 (Ω, R). Let Stemp be a C2 Jordan shape and Utarg be a C1 function in
R2. Then the conclusions of Theorem 1 hold for

J(u) =
1
2

∫ 1

0

|ut|2V dt + λ

∫
T

Utarg(γ1(s))|∂γ1|/∂sds

with
p1 = −λ|γ′1(s)|(∇⊥

γ1(s)
Utarg − Utarg(γ1(s))κ1(s)n1(s))

where n1 is the normal to γ1, κ1 is the curvature on γ1 and ∇⊥
γ1(s)

Utarg is the
normal component of the gradient of Utarg to γ1.

Proof. The hypothesis on Utarg obviously implies the continuity of gc. Let γ
be a C2 curve and Γ a smooth perturbation of γ. The derivative at 0 of the
function q(ε) = gc(Γ (., ε)) is (letting v(s) = (∂Γ/∂ε)(s, 0)):

q′(0) =
∫

T

(〈
∇γ(s)Utarg , v(s)

〉
|γ′1(s)|+ Utarg(γ(s))〈τs , ∂v/∂s〉

)
ds

=
∫

T

(〈
∇γ(s)Utarg −

〈
∇γ(s)Utarg , τs

〉
τs , v(s)

〉
−〈Utarg(γ(s))κsns , v(s)〉) |γ′1(s)|ds

=
∫

T

(〈
∇⊥

γ(s)Utarg , v(s)
〉
− 〈Utarg(γ(s))κsns , v(s)〉

)
|γ′1(s)|ds

where the second equation comes from an integration by parts. This proves
Theorem 7.
9 This can be seen as a form of diffeomorphic active contours since the potential

Utarg can obviously arise from other contexts, for example from the locations of
discontinuities within an image.
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Now, consider the case Utarg = dist(∂Starg, .). This function has singulari-
ties on ∂Starg and on the medial axis, denoted Σ̂targ, which consists in points
m ∈ R2 which have at least two closest points in ∂Starg. Denote

∂+
mUtarg(h) .= lim

ε→0,ε>0
(Utarg(m + εh)− Utarg(m))/ε

when the limit exists. We assume that there is a subset Σtarg ⊂ Σ̂targ such
that

• Σ̂targ \Σtarg has a finite or number of points.
• Σtarg is a union of smooth disjoint curves in R2 .
• The directional derivatives

∂+
mUtarg(h) .= lim

ε→0,ε>0
(Utarg(m + εh)− Utarg(m))/ε = |〈h , ntarg(m)〉| .

exist for m ∈ Σtarg and h ∈ R2, and are negative if h is not tangent to
Σtarg. If h is tangent to Σtarg, the function U(m + εh) is differentiable at
ε = 0, with derivative denoted ∂mUtarg.h.

Let Rtarg = R2 \ (∂Starg ∪ Σtarg). The gradient of Utarg on this set is
well-defined and has norm 1. On ∂Starg, we have Utarg = 0 and

∂+Utarg(m)(h) = |〈h , ntarg(m)〉| .

We have:

q′(0) =
∫

T
∂+Utarg(γ(s))(v(s))|γ′(s)|ds +

∫
T

Utarg(γ(s))〈τs , ∂v/∂s〉ds

Denote T0 = γ−1(Rtarg), T+ = γ−1(∂Starg) and

T∗ = {s ∈ T, γ(s) ∈ Σtarg, v(s) tangent to Σtarg}

with the convention that 0 is always tangent to Σtarg. For the remaining
points in T (up to a finite number), ∂+Utarg(m)(v(s)) ≤ 0 so that the first
integral is bounded by∫

T0

〈∇γsUtarg , v(s)〉|γ′(s)|ds +
∫

T+

|〈n(s) , v(s)〉| |γ′(s)|ds

+
∫

T∗
∂γ(s)Utarg(v(s))|γ′(s)|ds

We now address the integration by parts needed for the second integral. This
leads to compute the derivative, with respect to s, of Utarg(γ(s)). Consider
the three cases: (i) γ(s) ∈ Rtarg ; (ii) γ(s) ∈ ∂Starg and γ′(s) is tangent to
∂Starg ; (iii) γ(s) ∈ Σtarg and γ′(s) is tangent to Σtarg. Points which are in
none of these categories are isolated in T and therefore do not contribute to
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the integral. In all these cases, the function s 7→ Utarg(γ(s)) is differentiable.
Moreover, in case (ii), the differential is 0, and in case (iii), the resulting term
cancels with the integral over T∗ above. All this together implies that

∂+q(0) ≤
∫

T0

〈
∇⊥

γs
Utarg , v(s)

〉
|γ′(s)|ds +

∫
T+

|〈n(s) , v(s)〉| |γ′(s)|ds

−
∫

T
Utarg(γ(s))κsnsds.

This finally implies

Theorem 8. Let p ≥ k ≥ 2 and assume that V is compactly embedded in
Cp+1

0 (Ω, R). Let Stemp and Starg be two Ck Jordan shapes. Then the conclu-
sions of Theorem 5 hold for

J(u) =
1
2

∫ 1

0

|ut|2V dt + λ

∫
T

Utarg(γu
1 (s))|∂γu

1 /∂s|ds.

with Utarg = dist(∂Starg, .) and

p1(s) = −λ|γ′1(s)|(β1(s)− Utarg(γ1(s))κ1(s))n1(s)

with β1(s) =
〈
∇⊥

γs
Utarg , n1(s)

〉
if γ1(s) ∈ Rtarg, β1(s) = 0 if γ1(s) ∈ Σtarg

and |β1(s)| ≤ 1 if γ1(s) ∈ ∂Starg.

1.7 Existence and uniqueness of the hamiltonian flow

In this short section, we show that the hamiltonian flow exists globally in time
for any inital data in the phase space.

Theorem 9 (Flow Theorem). Assume that V is continuously embedded in
C1

0 (Ω, R2) with a C2 kernel K having bounded second order derivative. Let
H : L2(T, R2)× L2(T, R2) → R be defined by

H(γ, p) =
1
2

∫
t
p(y)K(γ(y), γ(x))p(x)dxdy

Then for any initial data (γ0, p0) there exists a unique solution (γ, p) ∈
C1(R, L2(T, R2)× L2(T, R2)) of the ODE

γ̇ =
∂

∂p
H(γ, p)

ṗ = − ∂

∂γ
H(γ, p)

(1.34)

where ∂H(γ, p)/∂p =
∫

K(γ(.), γ(y))γ(y)dy and
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∂H(γ, p)/∂γ =
∫

t
p(.)∂1K(γ(.), γ(y))p(y)dy.

Here, the notation tu∂1K(α0, β)v refers to the gradient at α0 of the function
α 7→ tuK(α, be)v.

Proof. The existence of a solution in small time is straightforward since
the smoothness conditions on the kernel imply that there exists M > 0
such that |∂H(γ, p)/∂p − ∂H(γ′, p′)/∂p|2 ≤ M(|p − p′|2 + |p|2|γ − γ′|2) and
|(∂/∂γ)H(γ, p) − (∂/∂γ)H(γ′, p′)|2 ≤ M(|p|22|γ − γ′|2 + |p|2|p − p′|2). Thus
∂H/∂γ and ∂H/∂p is uniformly Lipschitz on any ball in L2(T, R2)×L2(T, R2).
This implies obviously the local existence and uniqueness of the solution for
any inital data but also that for any maximal solution defined on [0, T [ with
T > ∞, then

lim
t→T

(|γt|2 + |pt|2) = +∞ (1.35)

The global existence in time follows from standard arguments: Assume
that (γt, pt) is a maximal solution defined on [0, T [ with T < ∞. Since
V is continuously embedded in C1

0 (Ω, R2), we deduce that m → v(m) =∫
K(m, γt(s′))pt(s′)ds defines an element v ∈ V with continuous differ-

ential and such that |dv|∞ ≤ M |v|2 with M independent of v. Hence
|∂H(γt, pt)/∂γ|2 = |dv(γt)(pt)|2 ≤ M |v|V = MH(γt, pt)1/2. Since H is con-
stant along the solution, we get |γt − p0|2 ≤ MT

√
H(γ0, p0) so that |γ̇t|2 ≤

|K|∞(|p0|2+MT
√

H(γ0, p0)) and |γt−γ0|2 ≤ |K|∞T (|p0|2+MT
√

H(γ0, p0)).
This is in contradiction with (1.35).

1.8 Conclusion

We have spent some time, in this paper, in order to provide, for specific
examples of interest, the Hamiltonian structure of large deformation curve
matching. The central element in this structure, is the momentum pt, t ∈
[0, 1], and the fact that the deformation can be reconstructed exactly from
the template and the knowledge of the initial momentum p0.

This implies that p0 can be considered as a relative signature for the de-
formed shape with respect to the template. In all cases, it was a vector-valued
function defined on the unit circle, characterized in fact by a scalar when the
data attachement term is geometric. Because the initial momentum is always
supported by the template, it is possible to add them, or average them with-
out any issue of registering the data, since the work is already done. This facts
lead to simple procedures for statistical shape analysis, when they are based
on the momentum, and some developments have already been provided in [19]
in the case of landmark-based matching.

This paper therefore provides the theoretical basis for the computation of
this representation. Future works will include the refinement and development
of numerical algorithms for its computation. Such algorithms already exist, for
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example, in the case of measure-based matching, but still need to be developed
in the other cases.
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